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Abstract

This is a survey article on recent study of collapsing of Calabi-Yau
metrics under complex structure degenerations and related questions.
An important role is played by the construction of possibly incomplete
Calabi-Yau metrics with symmetry.

1 Introduction

A Calabi-Yau metric is by definition a Ricci-flat Kähler metric. Yau’s so-
lution of the Calabi conjecture [22] produces a unique Calabi-Yau metric
in each Kähler class on a compact Kähler manifold X with vanishing first
Chern class. These metrics have local holonomy group contained in SU(n).
They are fundamental objects in geometry.

Yau’s original construction is based on solving a fully nonlinear complex
Monge-Ampère equation via a priori estimates. A typical example is when X
is an n dimensional smooth projective variety with trivial canonical bundle.
In this case one can often write down explicitly a holomorphic volume form
Ω. A Calabi-Yau metric ω solves the equation ωn = CΩ∧Ω̄ for some constant
C, but the solution ω in general can not be explicitly written down. Yau’s
result then generates an interesting question on understanding the geometry
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of these metrics. Compact Ricci-flat metrics are difficult objects to visualize,
partly because they can not admit non-trivial continuous symmetries.

Notice once the differentiable structure on a compact manifold X is fixed,
Calabi-Yau metrics on X are naturally parametrized by two sets of algebraic
data: the complex structure J and the Kähler class α ∈ H2(X;R). By
moving towards the boundary of moduli space one can often gain geometric
description of these metrics. In connecting with algebraic geometry there
are two important special classes of degenerations.

• Kähler degenerations. We work on a fixed underlying compact
complex manifold X. The Kähler cone C is an open convex cone in
H1,1(X;R). Given a sequence αi ∈ C which limits to a point α∞
on ∂C, we then obtain a sequence of degenerating Calabi-Yau metrics
ωi ∈ αi. A typical situation arises as follows. Suppose π : X → Y is a
holomorphic map onto a possibly singular variety Y which contracts
at least one non-trivial holomorphic cycle. Given a Kähler class α on
X and a Kähler class α′ on Y , then we can take positive numbers
ti → 0 and take αi = tiα+ π∗α′.

• Complex degenerations. This involves flat polarized degenerating
families π : (X ,L) → ∆, where ∆ ⊂ C is a disk. A typical situation
arises as follows. Consider Calabi-Yau submanifold Xf1,··· ,fk in CPN
defined as the complete intersection of hypersurfaces {f1 = · · · fk = 0}
with

∑
j deg(fj) = N+2. Then varying the coefficients of the defining

equations can yield complex degenerations. A special case involving
maximal degenerations is related to the SYZ formulation of mirror
symmetry.

In terms of Riemannian geometry, by Gromov’s precompactness theo-
erem, for a sequence of n dimensional Calabi-Yau manifolds (Xi, gi) with
base points pi, we can always pass to a subsequence and obtain a (pointed)
Gromov-Hausdorff limit (X∞, p∞), which is a possibly non-compact length
space. Then we may distinguish the geometric behavior into two cases. We
say this sequence is volume non-collapsing if

Vol(Bgi(pi, 1)) ≥ κ (1.1)

for some κ > 0 for all i; otherwise we say this sequence is volume collapsing In
the non-collapsing situation one can appeal to the well-developed Cheeger-
Colding regularity theory, which in particular implies that X∞ has the struc-
ture of a smooth Calabi-Yau manifold off a closed subset of small Hausdorff
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dimension. In the collapsing case when we assume the sectional curvature of
gi is uniformly bounded, then the theory of Cheeger-Fukaya-Gromov asserts
that the collapsing is essentially along certain nilpotent directions. Only in
real four dimensions there is a Cheeger-Tian ε-regularity result for collaps-
ing Einstein metrics, which in particular implies that the collapsing is with
bounded curvature away from finitely many points, provided that the L2

norm of curvature is uniformly bounded. A general foundational theory on
collapsing of Einstein metrics is yet to be developed.

Since the Ricci-flat equation is invariant under rescaling, we can rescale
the sequence gi by a sequence of positive numbers λi, then we may obtain
different Gromov-Hausdorff limits. If limi λi = ∞ then we are moving into
a smaller scale; if limi λi = 0 then we are moving into a larger scale; if log λi
stays bounded, then we are essentially not changing the scale. This multi-
scale phenomenon is an important aspect in our later discussion. Naively
as common in geometric analytic contexts, one expects the structure of a
bubble tree if we collect the limits in all possible scales.

Notice if the original manifolds Xi are compact, then there is a maximal
scale defined by making the diameters of gi to be a fixed constant. This
scale is maximal in the sense that if we scale down further then we just
get a point as the Gromov-Hausdorff limit. When we talk about volume
non-collapsing without referring to scales, we always mean that (1.1) holds
in the maximal scale. By Bishop-Gromov volume comparison theorem, if
a sequence is volume non-collapsing in the maximal scale, then it is also
volume non-collapsing in any smaller scales.

In this article we shall explain some recent progress towards understand-
ing the metric collapsing of Calabi-Yau metrics and the connection with
complex degenerations in algebraic geometry. In particular we shall explain
one situation [19] where definitive statements can be said in all dimensions,
and the construction of local models for large complex structure limits in
complex dimension 3 [16]. In complex dimension 2 on K3 surfaces Calabi-
Yau metrics are hyperkähler, and this is special in the sense that one can
mix together complex degenerations and Kähler degenerations in terms of
hyperkähler rotation. In this case one can even forget the choice of complex
structures and simply talk about the collapsing of Ricci-flat metrics. We
will explain various geometric construction of collapsing on K3 manifolds,
including the recent work [10] which is motivated by the study of complex
degenerations.

We point out that due to its length this article is not supposed to be
inclusive of all results on collapsing of Calabi-Yau metrics. For example
we will not discuss the case of Kähler degenerations (except in complex
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dimension 2). There are many interesting recent work in this direction, and
we refer to [21, 15, 12] and the references therein.

In the construction of [10, 19] a key role is played by Calabi-Yau metrics
with torus symmetry. One philosophy for our study is that even though
compact Ricci-flat metrics do not admit non-trivial continuous symmetries,
when they become degenerate one often observes approximate symmetries.
In the non-collapsing situation this is reflected by the fact that at every sin-
gularity there are metric tangent cones, which admit dilation symmetry; in
the Kähler setting using the complex structure J the dilation symmetry is
turned to Killing symmetry and this property underpins the study of singu-
larities of non-collapsed limits of Kähler-Einstein metrics. In the collapsing
case as mentioned above if we assume curvature is uniformly bounded then
we see approximate nilpotent symmetry.

On the complex geometry side one can observe complex torus symmetry
in the following local model degenerations. Let D be a complex manifold
with a holomorphic volume form ΩD. Given k+1(k ≥ 1) ample holomorphic
line bundles L0, · · · , Lk over D, we let E be the total space of the vector
bundle L0 ⊕ · · · ⊕ Lk, and we fix a holomorphic section f of L0 ⊗ · · · ⊗ Lk,
generic in the sense that {f = 0} defines a smooth hypersurface in D. Notice
E is endowed with a natural (C∗)k+1 action given by the C∗ multiplication
on each factor Lj . Let N be the subvariety in E×C defined by the equation

s0 ⊗ · · · ⊗ sk + tf(x) = 0, (1.2)

Let Nt = N ∩ (E×{t}), then Nt is smooth and all isomorphic for t 6= 0 and
N0 is the union of the hypersurfaces {sj = 0} in E. So we can view N as the
total space of a degenerating family of complex manifolds. Using residues
we can also explicitly write down a family holomorphic volume forms Ωt on
Nt(t 6= 0) and on the smooth locus of N0, in terms of ΩD. In reality when
we consider polarized degeneration of compact manifolds, we are not exactly
in the above situation, but as explained in [19], to leading order in generic
cases the above local model provides a good approximation.

Notice for all t,Nt is invariant under the action of (C∗)k = {(λ0, · · · , λk) ∈
(C∗)k+1|λ0 · · · · · λk = 1}, and this action preserves Ωt. It then makes sense
to ask for a T k ⊂ (C∗)k invariant Calabi-Yau metric ωt on Nt for t 6= 0.
In general one only expects ωt to be incomplete and only defined on com-
pact subsets of Nt. Such family of metrics ωt are important local models
for understanding metric collapsing of complex structure degenerations for
compact Calabi-Yau manifolds, and this serves as our starting point for the
constructions in [10, 19]. Notice for t 6= 0, the (C∗)k action on Nt is only
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free off the singular set of the total space N , which is given by the union of
Πij = {(x, [s0, · · · , sk]) ∈ E|f(x) = 0, si = sj = 0} for all i 6= j.

This article is organized as follows. In Section 2 we review the classi-
cal Gibbons-Hawking construction in four dimensions, with an emphasis on
some important examples of incomplete metrics including the Ooguri-Vafa
metric and its recently found cousin in [10]. In Section 3 we discuss degen-
eration of hyperkähler metrics on K3 manifolds. In Section 4 we discuss the
relationship between complex degenerations and collapsing of Calabi-Yau
metrics in higher dimensions.

2 Four dimensional hyperkähler metrics with S1

symmetry

2.1 Gibbons-Hawking construction

Fix the Euclidean space R3 with an orientation. Take a domain Q in R3

and a positive harmonic function V on Q. Then ∗dV is a closed 2-form.
Suppose

1

2π
[∗dV ] ∈ H2(Q;Z), (2.1)

then there is a principal U(1) bundle P over Q and a connection 1-form
−
√
−1θ on P with curvature −

√
−1 ∗ dV . Denote by π : P → Q the

projection map. On P we can define an explicit Riemannian metric

g = V π∗gR3 + V −1θ ⊗ θ.

We fix an orthogonal splitting

R3 = C⊕ R (2.2)

with complex coordinate x +
√
−1y and real coordinate z, so that gR3 =

dx2 + dy2 + dz2 and dx∧ dy ∧ dz is compatible with the fixed orientation on
R3. Then the complex valued 2-form

Ω = −
√
−1(dx+

√
−1dy) ∧ (V dz +

√
−1θ) (2.3)

is closed, hence it defines an integrable complex structure with respect to
which Ω becomes holomorphic. Furthermore, g is Kähler with respect to
this complex structure and the corresponding Kähler form is given by

ω = V dx ∧ dy + dz ∧ θ. (2.4)
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The pair (ω,Ω) satisfies the complex Monge-Ampère equation

ω2 =
1

2
Ω ∧ Ω̄. (2.5)

In particular ω is a Calabi-Yau metric. Now varying the splitting R3 = C⊕R
yields an S2 family of parallel compatible complex structures, making g a
hyperkähler metric. In other words, the holonomy group of g is contained in
SU(2) = Sp(1).

The natural S1 action rotating the fibers of π preserves both forms ω
and Ω. Conversely, any hyperkäher metric with an S1 symmetry is locally
(away from the fixed points) given by this construction. One should view
the coordinates z and x +

√
−1y as the real and complex moment map for

the S1 action with respect to the real and complex 2-forms ω and Ω, and
V −1 as the norm squared of the corresponding Killing field.

To make interesting topology we should allow V to have singularities.
Suppose p0 ∈ Q ⊂ R3 and V is a positive harmonic function defined on
Q \ {p0}, then by Bôcher’s theorem we can write

V =
A

2|p− p0|
+ F

for a constant A and a smooth harmonic function F on Q. To apply the
Gibbons-Hawking construction on Q \ {p0}, the integrality condition (2.1)
forces A to be an integer. If A = 1 then we can smoothly compactify the
corresponding hyperkähler metric on P by adding a point p̂0 which maps
to p0 under the projection π. The S1 action can be extended so that this
added point is a fixed point. The local model is given as follows. Consider
the flat metric on C2 with the S1 action

λ · (z1, z2) = (λ−1z1, λz2). (2.6)

This corresponds to the case Q = R3, p0 = 0, and V = 1
2|p| . The projection

map is given by the Hopf projection

π : C2 → C⊕ R; (z1, z2) 7→ (z1z2,
1

2
(|z1|2 − |z2|2)). (2.7)

In general for the above V with A = 1, one can locally use (z1, z2) as
coordinates in a neighborhood of p̂0 and it is not difficult to see that the
hyperkähler metric extends smoothly across p̂0. We can view the function
V as a function across p0 and satisfies the distributional equation

∆V = −2πδp0 . (2.8)
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If A > 1 one can also compactify the space as an orbifold, locally of the
form C2/ZA.

Now we choose two points p1 6= p2 in R3 and apply the Gibbons-Hawking
construction to the function on R3 of the form

V =
1

2|p− p1|
+

1

2|p− p2|
. (2.9)

Then we obtain a hyperkähler metric which contains a 2-sphere S, given as
the pre-image under π of the straight line segment p1p2 in R3 connecting p1
and p2. It has self-intersection −2. The resulting metric is known as the
Eguchi-Hanson space, and the underlying differentiable manifold is diffeo-
morphic to T ∗S2. The underlying complex manifold depends on the choice
of the complex structure, hence on the choice of the orthogonal splitting
(2.2). If the segment p1p2 is not contained in the R factor of the splitting
R3 = C ⊕ R, then the resulting complex manifold is a smooth quadric in
C3. Otherwise the 2-sphere S is holomorphic and the underlying complex
manifold is isomorphic to the total space of the line bundle O(−2) over CP1.
If we let p1 and p2 come together, then the 2-sphere S shrinks to a point
and the limiting metric is the flat orbifold C2/Z2. The latter can be seen as
obtained by applying the Gibbons-Hawking construction to the function 1

|p|
on R3.

It is straightforward to generalize this construction using k ≥ 2 points,
and obtain multi-Eguchi-Hanson spaces. For generic choice of complex struc-
tures the underlying complex manifold is a smooth hypersurface in C3 de-
fined by the equation x1x2 = f(x3) where f is degree k polynomial. Letting
points collide corresponds to contraction of 2-sphere’s and in the extreme
case when all the k points collide we obtain the flat orbifold C2/Zk.

Now notice that the above family of metrics admits an extra deformation.
For example, for the flat metric on C2 we can consider instead the function

VT =
1

2|p|
+ T, T > 0. (2.10)

Then we obtain a family of hyperkähler metrics ZT , and they correspond to
homothetic rescaling of a single Taub-NUT metric gTN which corresponds
to T = 1. The underlying manifold is easily seen to be diffeomorphic to R4,
but the geometry is quite different from the standard flat metric. At infinity,
the length of the fibers of the Hopf projection (2.7) tends to a fixed constant,
and the volume of a ball of radius R grows like O(R3). If we let T → ∞,
then the geometry corresponds to scaling down the fixed metric gTN , and
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in the limit the space collapses to R3 with the flat metric in the Gromov-
Hausdorff sense. However, this convergence is not with bounded curvature,
due to the existence of the singular fibers of the Hopf projection. This also
suggests a different way of interpreting (2.10) for T � 1, as a perturbation
of the constant solution T by a fixed singular harmonic function, which has
the effect of changing the topology from a trivial S1 bundle to a non-trivial
one.

Complex geometrically, if we fix a splitting R3 = C⊕ R, and denote by
π1 the projection onto the C factor, then the composition π1 ◦π : ZT → C is
a holomorphic map, with generic fiber C∗ and the fiber over 0 given by the
singular curve x1x2 = 0 in C2. Using this one can show that the underlying
complex manifold of the Taub-NUT metric is the same as C2 (see [14]).
Moreover, one can write down the Kähler potential of the metric in terms
of the coordinates {z1, z2} as in the above Hopf projection (2.7) (but notice
these are no longer holomorphic coordinates if T > 0).

φ =
1

2
(|z1|2 + |z2|2) +

T

4
(|z1|4 + |z2|4). (2.11)

As before one can work with more than one singular points and obtain
multi-Taub-NUT spaces.

It is worth mentioning that the Gibbons-Hawking construction easily
extends to domains in a flat 3 manifold with a global parallel orthonor-
mal frame. In the following we shall explain interesting examples of both
incomplete and complete hyperkähler metrics with S1 symmetry.

2.2 Ooguri-Vafa metric and its cousin

We first discuss the Ooguri-Vafa metric following [8, 10]. Here the domain
will be an open subset of the product S1 × R2 with the flat metric. Let V
be a Green’s function with a singularity at a point p0 ∈ S1 × {0}. One can
think of V as the electric potential of a point charge at p0. In other words,
V satisfies the equation

∆V = −2πδp0 . (2.12)

There are many ways to see the existence of such function V , for example
by a direct separation of variables method [19]. Notice V is certainly not
unique since one can add any harmonic function on R2. For us the key extra
property, which makes V essentially unique, is that

V (x, u) + log |u| = O(e−δ|u|), |u| → ∞, (2.13)
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for some δ > 0 and (x, u) ∈ S1×R2. Intuitively in terms of electric potential
this is clear since when we are far away from p0 the S1 fiber direction is
negligible and the situation is approximated by a point charge on R2. The
property (2.13) can be established more precisely from the construction of
V .

Now we can consider the family of harmonic functions

VT = V + T, T > 0.

Then the domains QT on which VT is positive exhaust S1×R2 as T tends to
infinity. Applying the Gibbons-Hawking construction to VT we then obtain
an incomplete S1 invariant hyperkähler metric on the fibration π : XT →
QT . Denote by πC : S1×R2 → R2 the natural projection map. Choosing the
obvious splitting R⊕C on the universal cover of S1×R2, then the composed
projection πC ◦π is holomorphic and this makes XT an elliptic fibration over
a domain in C, with a singular fiber over 0, and the monodromy around 0
is

I1 :=

[
1 1
0 1

]
∈ SL(2,Z). (2.14)

The singular fiber is called an I1 fiber in terms of the Kodaira classification.
One can perform a hyperkähler rotation, i.e., choose a different complex

structure, so that πC ◦ π : XT → R2 becomes a special Lagrangian fibration
over a domain. For example, we can choose the splitting on the universal
cover R×R2 as C⊕R (by fixing a line R ⊂ R2). Then at the same time XT

is holomorphic cylinder fibration over a cylinder.
Now we let T →∞. The limit geometry depends on the choice of scales.

If we rescale so that the diameter is fixed, then we can see collapsing onto a
metric on the unit disc in R2, given in the form

g∞ = (− log |u|)(dx2 + dy2), u = x+
√
−1y. (2.15)

This metric is singular at the origin but the singularity is very mild. For
example, its tangent cone is the flat R2. If we rescale so that the volume
is fixed, then the metrics collapse to the flat R2, but the convergence is
with bounded curvature only away from the origin. Notice in a very small
neighborhood of p0, VT is given by 1

2|p−p0|+T+F for a fixed smooth function

F , so if we rescale further in a neighborhood of the fixed point of the S1

action, then we obtain the Taub-NUT space as a bubble. In this sense we
see the Taub-NUT metric naturally embeds into the Ooguri-Vafa space.

Just as before, when T is large, we can view VT as a singular perturbation
of the constant solution T , and the singularity is responsible for creating
interesting topologies.
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In [10] similar construction was applied to T 2 × R instead of S1 × R2,
with p0 ∈ T 2 × {0}. Here T 2 is endowed with a fixed flat metric so it also
has a moduli. We normalize so that the area of T 2 is 1. There is a Green’s
function V with pole at p0 and with asymptotics

V = −2π|z|+O(e−δz) (2.16)

where δ > 0. Again applying the Gibbons-Hawking construction to the
family of harmonic functions VT = V + T we obtain a family of incomplete
hyperkähler metrics YT .

Again the underlying complex manifold has different models depending
on the choice of complex structure. For example if we choose the splitting
of the universal cover R2 × R as C ⊕ R, then the projection map to T 2 is
holomorphic and we obtain a holomorphic cylinder fibration. The singular
fiber becomes union of two discs attached at one point. One can also perform
a hyperkähler rotation to make YT bi-holomorphic to the complement of an
I1 singular fiber in an elliptic fibration. Topologically we can always view
YT as a singular fibration over an interval in R, and the generic fiber is a
principal S1 bundle over T 2, which have different degrees on the two ends,
and the singular fiber is a pinched nilmanifold, i.e. a singular S1 fibration
over T 2.

Now let T → ∞. If we fix the diameter then the metrics collapse to
a one dimensional interval with standard metric. But the convergence is
only with bounded curvature away from the limit point of the fixed point
of S1 action. If we rescale suitably around this point then we obtain the
Taub-NUT metric as a bubble. Hence the Taub-NUT metric also naturally
embeds into the space YT . Again for T large, VT is a singular perturbation
of the constant solution T , and the singularity creates topology.

Notice in the above discussion in both cases one may use instead Green’s
function with more than one singular point to construct slightly more general
spaces. In Section 3 we shall see the use of these incomplete metrics in the
construction of collapsing families of hyerkähler metrics on K3 manifolds.

2.3 Model ends for complete metrics

We can also make hyperkähler metrics with both an complete and incom-
plete end, and these can model the infinity of certain complete hyperkähler
metrics.
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On T 2 × [1,∞) and we can simply choose the function V = 2πkz for
some positive integer k, then we obtain a metric C with both a complete
end and boundary. One can choose a complex structure so that this be-
comes a holomorphic fibration over T 2 with fibers isomorphic to punctured
discs. Furthermore, the underlying complex manifold can be identified with
a submanifold in the total space of a degree k holomorphic hermitian line
bundle L (whose curvature is the flat metric on T 2), as the complement of
the zero section in the unit disc bundle. Notice in this case the choice of the
connection 1-form is not unique and this corresponds to choosing different
holomorphic structures on L. It follows from (2.16) that this space models
the boundary of the space YT in Section 2.2 for T large.

On the other hand, using the above holomorphic description, one can
write down its Kähler potential (see for example [10])

φ(ξ) = C(− log |ξ|2)
3
2 , ξ ∈ L, C > 0, (2.17)

where we have fixed a hermitian metric | · | on L whose curvature is the flat
metric on T 2. This corresponds to the Calabi ansatz for constructing Kähler-
Einstein metrics on line bundles over Kähler-Einstein manifolds. One can
generalize this to higher dimensional case, replacing T 2 by an n dimensional
Calabi-Yau manifold, L by an ample hermitian line bundle with curvature
form given by the Calabi-Yau metrics, and 3

2 by n+1
n . For simplicity we call

these spaces Calabi model spaces.
These spaces can serve as models at infinity of a class of complete Ricci-

flat Kähler metrics. The later were constructed by Tian-Yau [20], on the
complement of a smooth anti-canonical divisor D in a smooth Fano mani-
fold M . They exhibit interesting geometric behavior at infinity. As we move
towards infinity, certain directions expand and other directions shrink. If
we scale down the metric based at a fixed point, then the manifold collapses
to [0,∞), but the collapsing is of multi-scale. This type of Tian-Yau spaces
should not be confused with another type of complete Calabi-Yau metrics
also constructed in [20], on the complement of a smooth anti-canonical di-
visor in a projective manifold, when the divisor has trivial normal bundle.
These metrics are asymptotically cylindrical so do not exhibit the above
multi-scale behavior at infinity.

Now consider instead S1 × R2, and use the harmonic function V =
k log |u| for a positive integer k. Then it is positive for |u| > 1. We also
obtain a hyperkähler metric with a complete end and a boundary. One can
choose a complex structure so that the underlying complex manifold is an
elliptic fibration over a punctured disc in R2 = C, with monodromy type Ik.
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It is an interesting question whether these metrics can serve as model at
infinity of a complete hyperkähler metric. What is known is that some Z2

quotients of them indeed do so, and they provide the model at infinity of
complete hyperkähler metrics constructed by Hein [9]. Choosing a suitable
complex structure, the underlying complex manifold is the complement of
an I∗k singular fiber in a rational elliptic surface.

3 Hyperkähler metrics on K3 manifolds

A K3 manifold K is, by definition, a four dimensional oriented differentiable
manifold underlying a complex K3 surface. It is known that the cup-product
on H2(K;Z) has signature (3, 19). A hyperkähler metric g on K is by defini-
tion a Riemannian metric with holonomy group equal to Sp(1) = SU(2). So
choosing any compatible complex structure makes the metric a Calabi-Yau
metric but we can also forget about the complex structures and study the
moduli space of only the underlying Riemannian metrics.

Denote by M the space of all unit diameter hyperkähler metrics on
K modulo diffeomorphisms. Given g ∈ M, we obtain a three dimensional
positive definite subspace in H2(K,R) given by H+

g , the space of cohomology
classes of self-dual harmonic 2-forms on K with respect to g. This defines a
period map

P :M→D = Γ\O(3, 19)/(O(3)×O(19)); g 7→ H+
g , (3.1)

where Γ is the automorphism group of the lattice H2(K;Z). The global
Torelli theorem states that P is injective, and is surjective if we include all
the possible orbifold degenerations of the hyperkähler metrics. The points
in D \ Im(P) correspond precisely to the non-collapsing Gromov-Hausdorff
limits of elements in M.

A typical example of orbifold degenerations is given by the converse of
the Kummer construction. Take a flat four torus T 4 and let X be its quo-
tient by the involution x 7→ −x. Then X has 16 orbifold singularities of
type R4/Z2. Notice the Eguchi-Hanson spaces are asymptotic to the cone
R4/Z2 at infinity so we can rescale the Eguchi-Hanson spaces suitably and
glue 16 of them to the singularities of X, and then perturb to a genuine
hyperkähler metric using the implicit function theorem. This is a typical
example of a gluing construction. It turns out that under the period map
P, this construction can produce an open neighborhood U of the point in
D\Im(P) corresponding to X. There are different complex geometric mod-
els depending on the choice of complex structures. One model is given by
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taking a complex structure on T 4 and consider a minimal resolution of sin-
gularities K → X. Varying the Kähler classes on K so that the area of
these exceptional curves tend to zero gives rise to Kähler degenerations, and
these give certain slices in the above U . On the other hand, we can take a
Kummer quartic X0 in CP3 with 16 nodes; then X0 can be viewed as T 4/Z2

for suitable choices of complex structures on T 4. We can fix the Kähler
class to be the cohomology class of the Fubini-Study metric, and deform
the quartic to a smooth quartic, whose underlying differential manifold is a
K3 manifold K. Reversing this procedure we then obtain complex structure
degenerations.

Now given a sequence of hyperkähler metrics gj ∈ M which are volume
collapsing, we can rescale the volume measure of gj to a probability mea-
sure νj = Vol(K, gj)−1dVolgj . By passing to a subsequence we may take
a measured Gromov-Hausdorff limit (X∞, ν∞) [1], where ν∞ is the limit
probability measure. In this case, the period P(gj) has to diverge in D. In
reality, the limit X∞ can be of dimension 1, 2, or 3, and all these cases do
occur. This can be easily seen using the Kummer construction again: taking
a sequence of 4 dimensional flat tori collapsing to a flat torus Tk of dimen-
sion k ∈ {1, 2, 3}, and applying the Kummer construction to each torus in
this sequence, then by taking a diagonal subsequence we obtain a family
of hyperkähler metrics on K that collapse to Tk/Z2. Notice as topological
spaces, T1/Z2 is a one dimensional interval and T2/Z2 is a 2 dimensional
sphere.

There are more complicated collapsing behaviors. The geometric de-
scription below is mostly obtained via a gluing construction. Namely, taking
as building blocks some complete and incomplete hyperkähler metrics, glue
them together via a cut-off to obtain approximately hyperkähler metrics,
and then perturb to genuine hyperkähler metrics by a quantitative implicit
function theorem. Technically speaking, it is convenient to use the descrip-
tion of hyperkähler condition not in terms of the Calabi-Yau equation on
(ω,Ω), but in terms of a triple of symplectic forms ω1, ω2, ω3 satisfying the
equation

ωi ∧ ωj =
1

3
(ω2

1 + ω2
2 + ω2

3)δij .

This has the advantage of making the gluing construction more flexible
(see [5, 6]), and the price to pay is the loss of the information on complex
structures. In Section 4 when we indeed want to understand the connection
with complex degenerations, we are in a much more rigid situation.

The known constructions of collapsing hyperkähler metrics on K3 man-
ifolds falls into the following cases.
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Case 1: dimX∞ = 3.

In this case among all known examples the Gromov-Hausdorff limit is
always the flat orbifold T 3/Z2. Foscolo [6] constructed examples such that
the collapsing has curvature blowing up at 8 + n points (including the 8
orbifold points) for any 0 ≤ n ≤ 16. The construction is via a gluing
argument which we briefly sketch here. Consider the projection τ : T 3 →
T 3/Z2, and denote by S ⊂ T 3 the 8 points which map to the orbifold points
under τ . One takes a Green’s function V on the flat T 3 with positive poles
at 2n points away from S which are invariant under τ , and with possible
negative poles at S. Notice since T 3 is compact there is at least one negative
pole. Applying the Gibbons-Hawking construction to the function 1 + εV
on T 3/Z2, for ε > 0 small, produces an incomplete hyperkähler metric away
from a neighborhood of the negative poles of V . Then one can glue in multi-
Taub-NUT spaces and ALF gravitational instantons of dihedral type (which
have cubic volume growth and tangent cone at infinity given by R3/Z2). The
appearance of negative poles requires one to use gravitational instantons of
negative mass, and these are known to exist, as the Atiyah-Hitchin space
and its quotient. See [6] for more details.

Case 2: dimX∞ = 2.

The known constructions use an elliptic fibered K3 surface, i.e. a holo-
morphic fibration π : K → CP1. One takes a family of Kähler classes on
K so that the area of the fibers tends to zero. These are special cases of
Kähler degenerations mentioned in the introduction, but can be turned into
complex degenerations via hyperkähler rotation (see [8, 18]). If we fix the
diameter, then the hyperkähler metrics collapse to a singular metric on CP1,
which is smooth away from the discriminant locus of π and the Ricci curva-
ture agrees with the pull-back of the Weil-Petersson metric on the moduli
space of elliptic curves.

Away from singular fibers the hyperkähler metrics are modeled on semi-
flat metrics introduced in [7], which are flat when restricted to elliptic fibers
and whose horizontal variation is characterized by the variation of the mod-
uli of elliptic curves. Near singular fibers, there are various multi-scale col-
lapsing behaviors. In the most generic case when π has exactly 24 singular
fibers of type I1, and around a neighborhood of each I1 fiber the metric
is modeled on the Ooguri-Vafa metric. A Taub-NUT metric bubbles off as
rescaling limit. There are other types of singular fibers, and the bubbles are
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related to ALG gravitational instantons constructed by Hein [9]. We refer
to [8, 21, 3] for details.

Case 3: dimX∞ = 1.

Then one can show that X∞ must be the interval [0, 1] with the standard
metric. There are two known types of collapsing behaviors via the gluing
construction

(a). Collapsing along a generic T 3 fibration [2]. At the end points the curva-
ture blows up, and if we rescale the metrics suitably, then the bubbles
we obtain are Tian-Yau spaces which are asymptotically cylindrical.

(b). Collapsing along a generic nilmanifold fibration [10]. The collapsing is
with uniformly bounded curvature away from the end points and an
interior point t∗. At the end points the bubbles are Tian-Yau spaces
which are asymptotic to the Calabi model spaces in Section 2.3. In
the interior region the metric is modeled by the incomplete metric YT
discussed in Section 2.2 (constructed using a Green’s function with
possibly more than one singular point). One can see various multi-
scale collapsing phenomenon in this example. The construction in [10]
is motivated by studying complex degenerations of K3 surfaces, more
precisely, Type II polarized degenerations, but as explained above the
proof in [10] uses gluing construction in terms of a triple of symplectic
forms, so does not lead to a clear relationship with complex geometry.

Notice when the collapsing limit is of dimension 1, the metric structure is
unique [11]. However the limit measure ν∞ can have various possibilities. In
Case (a), ν∞ is proportional to the Lebesgue measure, but in Case (b), ν∞
has only Hölder continuous density, and the singular points of the density
function agrees with the points where curvature blows up.

It seems reasonable to expect at least topologically all the possible col-
lapsing limits of gj ∈M belong to one of T 3/Z2, T

2/Z2, T
1/Z2. In the case

when the limit is of dimension 1, one also obtains an interesting normalized
limit measure and it is interesting to classify all the possible limit measures.
Some preliminary progress has been made in [11].

It is also natural to connect the Riemannian geometric collapsing limits
to compactifications of the locally symmetric space D (see for example [18]).
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The first step would be to understand the behavior of periods under the
above construction of examples. We refer to [18] for conjectures in this
direction and partial progress.

4 Higher dimensional situation

4.1 Calabi-Yau metrics with T k symmetry

As mentioned in the introduction, when we study complex structure de-
generations of Calabi-Yau metrics it is natural to expect in certain regions
they exhibit approximate symmetries. Calabi-Yau metrics with abelian sym-
metry have a reduction which satisfies a non-linear generalization of the
Gibbons-Hawking ansatz. These equations were first derived by Matessi
[17] and Zharkov [23].

Let (X,ω,Ω) be an n dimensional Calabi-Yau manifold with a T k(k ≥ 1)
action which is holomorphic and Hamiltonian. We first assume the action
is free. Let (z1, · · · , zk) : X → Rk be the moment map, and let ξj be the
Hamiltonian vector field generated by zj . Then the quotient space X/T k

locally splits as Q = D×Rk, where D is the complex quotient (or symplectic
reduction), and Rk is given the above moment map coordinates. We also
obtain a family of Kähler forms ω̃ on the complex quotient D parametrized
by (z1, . . . zk) ∈ Rk, U(1) connection 1-forms −

√
−1Θj(j = 1, · · · , k) over

Q, and a positive definite k× k real symmetric matrix valued function W =
(Wij) on Q. The Kähler form can be written as

ω =
∑
j

dzj ∧Θj + ω̃

with
Θi(ξj) = −δij ,

and
Jdzj =

∑
l

W jlΘl,

where (W ij) is the inverse matrix of (Wij). The Kähler condition becomes
a system of equations

∂zi∂zj ω̃ + dDd
c
DWij = 0. (4.1)

dDω̃ = 0 (4.2)

∂zlWij = ∂zjWil (4.3)

dΘj = ∂zj ω̃ −
∑
l

dzl ∧ dDWjl. (4.4)
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From the last equation (4.4) we see that up to gauge equivalence and modulo
flat connections, the connection Θj ’s are determined by (ω̃,W ). So the most
essential are the first three equations (4.1), (4.2), (4.3) on (ω̃,W ). The
second equation is the Kähler condition on ω̃, and the third equation can
be viewed as a tropical analogue of the Kähler condition for Riemannian
metrics on Rk.

Now the holomorphic volume form Ω also descends to a holomorphic
volume form ΩD on the local complex quotient, and the Calabi-Yau equation
on X becomes

ω̃n−k

(n− k)!
=

(
√
−1)(n−k)

2

2n−k
det(Wij) · ΩD ∧ Ω̄D. (4.5)

Conversely, given an n− k dimensional complex manifold D with holomor-
phic volume form ΩD, and (ω̃,W ) satisfying (4.1) and (4.5), we can locally
construct an n dimensional Calabi-Yau metric (X,ω,Ω) with a T k action.

Now we make a few observations. When k = 1, we denote z = z1, the
matrix W becomes a positive function, and (4.1), (4.2), (4.3), and (4.5)
combine to one equation on ω̃:

∂2z ω̃ + dDd
c
D

2n−1ω̃n−1

(
√
−1)(n−1)2ΩD ∧ Ω̄D

= 0. (4.6)

If n = 2 then the equation (4.6) reduces to a linear equation and we get
back to the Gibbons-Hawking construction for the function

V =
ω̃

√
−1
2 ΩD ∧ Ω̄D

.

Notice in this case since we make a choice of preferred complex structure,
the base R3 naturally splits as R ⊕ C. When n > 2, (4.5) and (4.6) are
still non-linear. We call them the non-linear Gibbons-Hawking ansatz for
Calabi-Yau metrics with T k(or S1) symmetry.

As the local algebraic model in the Introduction suggests, in geomet-
rically interesting situation it is important to allow the T k action to have
fixed points. This corresponds to adding distributional terms to the right
hand side of (4.5) and (4.6). One can work out the generic models by a
local study. For example when k = 1, there are situations where the fixed
point set is of complex codimension 2 in X, and transverse to the fixed point
set the S1 action on C2 is modeled by (2.6). Then the discriminant locus
(the image of the fixed point set under the quotient map) P is of the form
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H ×{0} where H is a smooth divisor in D and we assume z = 0 on P . The
distributional equation is

(∂2z ω̃ + dDd
c
D

2n−1ω̃n−1

(
√
−1)(n−1)2ΩD ∧ Ω̄D

) ∧ dz = −2π · δP , (4.7)

where δP is the current of integration along P . It is a non-linear analogue of
(2.8). Similarly for k > 1 in interesting cases one should allow distributional
terms on the right hand side of (4.5), where the discriminant locus could be
of the form H1 ×H2, where H1 is complex hypersurface in D and H2 is the
union of real hyperplanes in Rk.

Notice unlike the classical Gibbons-Hawking construction, the above
non-linear equations are still difficult to handle in general. What is im-
portant for our applications is that in the adiabatic situation, i.e., when
the T k orbit is very small, one can expect to use a singular perturbation
method to obtain solutions. This is done in [16, 19] in special cases relevant
to collapsing.

We briefly sketch the case k = 1 first, following [19]. Suppose we have
a Calabi-Yau metric ωD on D, then it is clear that ω1(z) := TωD satisfies
(4.6) for any positive constant T . Suppose we can find a family of real closed
(1, 1) forms ψ(z) on D parameterized by z, which satisfy the linear equation

(∂2z + ∆D)(ψ(z) ∧ dz) = −2π · δP .1 (4.8)

Then ω̃T (z) := TωD+ψ(z) can be viewed as an approximate solution to (4.7)
if ψ is fixed and T is large. Then one tries to argue that for T sufficiently
large ωT (z) can be perturbed to a genuine solution of (4.7). Various technical
difficulties arise, including

• Existence and regularity of ψ. In many cases it is not difficult to show
the existence of ψ, and the local behavior of ψ near P is important
for our construction. Naively one expects that to the leading order
the situation is approximated by the flat model where Q = Cn−1 ⊕R,
P = Cn−2 ⊕ {0}, and ψ is essentially the Green’s function on the
normal space C⊕R. In reality for the purpose of doing analysis more
refined information is needed.

• Singular perturbation theory. It seems difficult to directly work with
the reduced equation (4.6). Instead one can define W = TrωD ω̃T +q(z)

1In [19] the corresponding 3-form ψ(z)∧dz is called a Green’s current for the subman-
ifold P .
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(for any function q(z)), then the Kähler identities ensure (4.1) holds, so
(ω̃T ,W ) together defines an S1 invariant Kähler metric ωT . Due to the
complicated regularity of ψ near P , such ωT does not automatically
extend smoothly across P . This is very different from the case of
classical Gibbons-Hawking ansatz. But in the end one can show ωT
has sufficient regularity and is approximately Calabi-Yau in suitable
weighted sense, and these allow for the application of implicit function
theorems.

When D is compact this is done in [19], and has direct applications to
the results to be explained in Section 4.2. The incomplete metrics can be
viewed as analogues of the metric YT discussed in Section 3.2.

When D = (C∗)2 and H is the affine hypersurface given by {z1+z2 = 1},
this is done in [16] and it gives rise to local models for negative vertices
arising from large complex structure limits of Calabi-Yau 3-folds. The in-
complete metrics can be viewed as analogues of the Ooguri-Vafa metric XT

discussed in Section 3.2.
For k > 1 one can perform similar analysis. Again in [16] the case

k = 2, n = 3 is used to produce local models for positive vertices arising
from large complex structure limits of Calabi-Yau 3-folds. These can be
viewed as different analogues of the Ooguri-Vafa metrics. Moreover, [16]
also constructed a complete Calabi-Yau metric on C3 with T 2 symmetry
and with quartic volume growth. The T 2 quotient is R4 = R2 ⊕ C, and the
discriminant locus P is of the form G × {0}, where G is a trivalent graph
given by the cone over the points (1, 0), (0, 1), (−1,−1) ∈ R2. This metric
on C3 can be viewed as a 3 dimensional generalization of the Taub-NUT
metric on C2, and [16] shows that this metric indeed embeds into the local
model for positive vertices, just as the Taub-NUT metric is embedded in
the usual Ooguri-Vafa metric. The higher dimensional situation is expected
to be similar but more complicated, and we refer to [16] for more detailed
discussion and related interesting questions.

4.2 Type II degeneration of Calabi-Yau hypersurfaces

Let f0, f1, f be homogeneous polynomials in n+2 variables of degree d0 > 0,
d1 > 0 and d0+d1 = n+2 respectively. Let X ⊂ CPn+1×∆ be the polarized
family of Calabi-Yau hypersurfaces Xt in CPn+1 defined by the equation
Ft(x) = 0, where

Ft(x) ≡ f0(x)f1(x) + tf(x), (4.9)
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and t is the complex parameter on the unit disc ∆ ⊂ C. The relative ample
line bundle L comes from the natural O(1) bundle over CPn+1.

We further assume f0, f1, f are sufficiently general so that the following
hold:

(i) X0 = Y0 ∪ Y1, where Y0 = {f0(x) = 0} and Y1 = {f1(x) = 0} are
smooth hypersurfaces in CPn+1;

(ii) Xt is smooth for t 6= 0 and small;

(iii) D = {f0(x) = f1(x) = 0} is a smooth complete intersection in CPn+1;

(iv) H = {f0(x) = f1(x) = f(x) = 0} is a smooth complete intersection in
CPn+1.

We call the above degenerations a Type II degeneration of Calabi-Yau hyper-
surfaces. The terminology is taken from the classification of degenerations
of K3 surfaces (notice there is a difference since the total space X above is
not smooth).

Now for t 6= 0 small we have the Calabi-Yau metrics ωt ∈ 2πc1(O(1)|Xt).
The main theorem in [19] gives a description of the geometric behavior of
(Xt, ωt) as t→ 0. It can be summarized as follows.

• If we normalize so that the metrics have diameter 1, then as t → 0,
the metrics collapse to the unit interval ([0, 1], ds2) in the Gromov-
Hausdorff sense. If we renormalize the volume measure of ωt to be a
probability measure, then the limit measure ν = C ·R(s)ds where the
density R(s) is given explicitly as

R(s) =

{
( s
d0

)
n−1
n+1 , s ∈ [0, d0

d0+d1
],

(1−sd1 )
n−1
n+1 , s ∈ [ d0

d0+d1
, 1].

(4.10)

• The collapsing is along a smooth fibration except s = 0, 1, d0
d0+d1

. If
we rescale suitably at s = 0 (s = 1), then we obtain a bubble which is
the Tian-Yau complete Ricci-flat metric [20] on Y0 \D (Y1 \D).

• Suitable rescalings around points on H × {t} ⊂ Xt yield a bubble
which is the product of the Taub-NUT space C2 with a flat Cn−2.

The relationship between the metric collapsing and algebraic geometry
can be seen at different scales. First in the maximal scale the collapsing
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limit is topologically identified with the dual intersectional complex of the
algebraic limit X0. Secondly the smooth locus of the algebraic limit X0

can be recovered from suitable rescaling limits. The above result suggests a
possible general connection between metric collapsing limits and algebraic
limits, which generalizes the well-known conjectures in the case of maximal
degenerations (see [8, 13]).

The above result is proved by a gluing construction. One key aspect is
to obtain a neck region connecting the two ends of the Tian-Yau spaces on
Y0 \D and Y1 \D. Algebraically in a neighborhood of D ⊂ X0, the family
Xt does not admit symmetry, but to leading order it can be approximated
by the model situation considered in the Introduction, with Li given by the
normal bundle of D in Yi, and the section f of L0 ⊗ L1 = O(n+ 2)|D given
by exactly by the polynomial f . Hence one can use the idea of singular
perturbation suggested in Section 4.1 to construct the desired neck regions.

The actual gluing construction is more involved, since we need to work
on the fixed algebraic family X . One key point is that we need to perform
certain birational modifications to X such that the central fiber consists of 3
components, two of them coming from proper transforms of Y0 and Y1, and
a new component given by a projective compactification of the total space
of L0 ⊗ L1, on which the above neck metric lives.

From the analytic side, an important ingredient is the analysis on the
Tian-Yau spaces, and this in turn relies on the linear analysis on the in-
complete Calabi model spaces. In [10, 19] a Liouville theorem for harmonic
functions is proved, which involves uniform asymptotics of special functions.
It is an interesting question to make a more systematic study of the linear
analysis on complete spaces with multi-scale asymptotic behaviors.

As a final remark, for more general degenerating family of Calabi-Yau
manifolds, one can imagine a similar gluing construction using more com-
plicated local models, for example the ones constructed in [16] (as briefly
discussed in Section 4.1). However, when the Gromov-Hausdorff limit has
dimension bigger than 1, its generic part is expected to carry a non-trivial
metric. This is the main missing building block for the gluing construction,
and it is an interesting question to determine it a priori from the algebro-
geometric data. What makes the situation simpler in the above special case
of Type II degenerations is exactly the fact that a posteriori the (measured)
Gromov-Hausdorff limit has a relatively explicit form.
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