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The speaker is represented to talk about the paper

Kähler-Einstein metrics on Fano manifolds, I, II, III. Journal of the AMS (28)
183-278, 2015, Xiuxiong Chen, Simon Donaldson and Song Sun

We will also discuss some further development on related topics.



Plan:

◮ Background
◮ Main result
◮ Further developments



Background

Kähler geometry studies triples (g, J,ω), where g is a Riemannian metric, J is an
almost complex structure, ω is a 2-form, that satisfy

◮ (algebraic condition) ω(·, ·) = g(J·, ·)

◮ (differential condition)
◮ dω = 0 (ω is symplectic)
◮ NJ = 0 (J is integrable).



A central theme in Kähler geometry is the connection between

differential geometry (g and ω)

and

(complex) algebraic geometry ( J )



Complex geometry

Let X be a complex manifold. In local holomorphic coordinates {z1, · · · , zn}, a
Kähler form is given by

ω =

√
−1
2

󰁛

α,β

hαβ̄dzα ∧ dz̄β

where (hαβ̄) is positive definite Hermitian and dω = 0.

Locally ω =
√
−1∂∂̄φ for φ pluri-subharmonic ⇝ several complex variables theory

If X is compact, a Kähler form is determined by [ω] ∈ H2(X ;R) up to variation of a
potential function: ω +

√
−1∂∂̄φ.



Standard example:

◮ CPN is endowed with the Fubini-Study metric

ωFS =
√
−1∂∂̄ log |z|2

◮ a smooth algebraic subvariety X ⊂ CPN is endowed with the induced Kähler
metric ωFS|X .



Riemannian geometry
A Riemannian metric g is Kähler if it has holonomy group contained in U(n).

Note: the complex structure J is (essentially) determined by the metric g.
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Ricci curvature

For a Riemannian metric g, the Ricci curvature tensor at p is given in normal
coordinates by

Ric =
󰁛

i,j

Rijdxidxj

where 󰁴
det(gij) = 1 − 1

6

󰁛

i,j

Rijxixj + O(|x |3)



For a Kähler metric ω, the corresponding Ricci form is given by the Chern
curvature of K−1

X , with respect to the induced hermitian metric ωn.

Locally

Ric = −
√
−1∂∂̄ log det(hαβ̄)

Chern-Weil theory

[Ric] = 2πc1(X ) ∈ H2(X ;R)



Canonical Kähler metrics

Let X be a compact complex manifold. A Kähler metric ω is Kähler-Einstein if

Ric(ω) = λω, λ ∈ R

Local form:

det(
∂2φ

∂zα∂z̄β
) = e−λφ+f

Necessary condition: c1(X ) is definite, i.e., for some Kähler form β and λ ∈ R,

c1(X ) = λ · [β]



◮ More generally, we can study the equation

d∗Ric(ω) = dRic(ω) = 0

which is equivalent to S(ω) = S, i.e. ω having constant scalar curvature
(CSCK) .

◮ CSCK metrics are special cases of Calabi’s extremal Kähler metrics, which
are defined as critical points of the functional

ω̃ ∈ [ω] 󰀁→
󰁝

X
|Riem(ω̃)|2ω̃n



Calabi conjecture (1954):

There is a Kähler-Einstein metric on X if and only if c1(X ) is definite.

The Calabi conjecture is known when

◮ (Yau 1976) c1(X ) = 0 ⇝ Calabi-Yau metric

◮ (Yau 1976, Aubin 1976) c1(X ) < 0.

In both cases, the Kähler-Einstein metric is uniquely determined by the
cohomology class.



When c1(X ) > 0, X is a Fano manifold.

Kähler-Einstein metrics do not always exist. If exists, then

◮ Matsushima 1957:Aut(X ) must be reductive.

◮ Futaki 1983: The Futaki invariant on Lie(Aut(X )) must vanish.

Example: BlpCP2 does not admit a Kähler-Einstein metric.

Uniqueness (Bando-Mabuchi 1987): a Kähler-Einstein metric, if exists, is unique
modulo the action of KC, where K is the isometry group.



There is a heuristic reason why NOT all Fano manifolds can admit Kähler-Einstein
metrics:

Let J be the space of all Fano complex structures on X , and K be the space of
Kähler-Einstein metrics with positive Ricci curvature on X .

The natural map Φ : K/Diff (X ) → J /Diff (X ) is injective by uniqueness.

If Φ were surjective, then the fact that a Kähler-Einstein metric is a canonical
metric would suggest Φ be a homeomorphism.

However, J /Diff (X ) is well-known to be non-Hausdorff in general, but K/Diff (X )
is always Hausdorff. Contradiction!



Main result

Theorem (Chen-Donaldson-S., 2012):

X admits a Kähler-Einstein metric ⇐⇒ X is K-stable.

The “only if" direction was due to Tian, Donaldson, Stoppa, Mabuchi, Berman...

Solvability of a nonlinear PDE reduces to (essentially) finite dimensional algebra.

Compare Donaldson-Uhlenbeck-Yau theorem:

Existence of Hermitian-Yang-Mills connections ⇐⇒ stable holomorphic bundles.



Theorem proves a conjecture that goes back to Yau for Kähler-Einstein metrics.

Yau-Tian-Donaldson Conjecture:

Let X be a compact complex manifold and L be an ample line bundle over X. Then
there is a CSCK metric ω ∈ 2πc1(L) if and only if (X , L) is K-stable.

Our result proves the conjecture when X is Fano and L = K−1
X .



K-stability

Fix a Kähler metric ω on X . Consider the space of Kähler potentials

H := {φ ∈ C∞(X )|ωφ = ω +
√
−1∂∂̄φ > 0}

Riemannian metric on H: for δφ1, δφ2 ∈ TφH,

〈δφ1, δφ2〉φ =

󰁝

X
δφ1δφ2ω

n
φ

(Mabuchi, Semmes, Donaldson) H is formally a symmetric space with non-positive
curvature.



Define the 1-form α on H

α(δφ) = −
󰁝

X
δφ(S(ωφ)− S)ωn

φ

α is closed, so α = dE , where E is the Mabuchi functional.

◮ Critical points of E are CSCK metrics;

◮ E is geodesically convex on H.

◮ Aut0(X ) acts naturally on H and preserves α, so any V ∈ Lie(Aut(X ))
generates a vector field v on H with Lvα = d(α(v)) = 0

◮ Futaki invariant Fut(V ) = α(v).



Formally, there exists a CSCK metric in [ω] if and only if

limt→∞
dE
dt

(φ(t)) > 0

along any geodesic ray φ(t).

K-stability is an algebraization of this, by replacing geodesic rays in H by
1-parameter subgroups in PGL(N + 1;C).



Heuristic picture: convex functions on R

Stable

Critical point exists

Not stable

No critical points



K-stability

K-stability is an algebro-geometric notion (Tian 1997, Donaldson 2002).

It generalizes the Hilbert-Mumford criterion for stability in geometric invariant
theory.

It involves two key concepts:

Test Configurations and the Futaki invariant.



A Test Configuration X is a degeneration of (X , L) given by

◮ a projective embedding of X ⊂ CPN using sections of Lr for some r , and

◮ a one parameter subgroup

λ : C∗ → PGL(N + 1;C)

Taking the limit of λ(t).X as t → 0, we obtain an algebraic scheme (X0, L0).



The Futaki invariant Fut(X ) is a number associated to X .

It is defined in terms of the weights of the C∗ action on the vector spaces
H0(X0, Lk

0) for k ≫ 1.

It agrees with the original Futaki invariant when X0 is smooth.

One can re-interprete Fut(X ) in terms intersection numbers on the natural
compactification of X (X. Wang, Y. Odaka).



Definition: (X , L) is K-stable if Fut(X ) ≥ 0 for all test configurations and “="
occurs only in trivial cases.

There are many variations of the notion of K-stability, on different levels of strength.



Ideas in the proof

Main strategy is via a continuous deformation.

◮ Start with a chosen initial Kähler metric

◮ Deform it towards a Kähler-Einstein metric via a prescribed process

◮ If the deformation breaks down at some point, then we produce a
de-stabilizing test configuration.



In our case, we consider Kähler-Einstein metrics with cone singularities along a
smooth divisor D, cut out by a holomorphic section of K−a

X for some a > 1.

D



Families of equations:

Ric(ωβ) = µβωβ + 2π(1 − β)[D], β ∈ (0, 1]

• The set of β ∈ (0, 1] such that the above equation is solvable is open (Donaldson
2011)

• µβ < 0 for 0 < β = 1/p ≪ 1, so one can solve the equation and get a starting
point. Then we increase β.

• µβ = 1 when β = 1, which yields the desired Kähler-Einstein metric



If the deformation breaks down at some point β, then we need to construct a
de-stabilizing test configuration

• Construct X0;

• Construct a one parameter subgroup λ(t);

• Show that the Futaki invariant is non-positive.



Take a sequence βi increasing to β, we obtain a Gromov-Hausdorff limit of
(X ,ωβi ). A priori the latter is only a metric space. Nevertheless, it is a natural
candidate for X0.

Needs to bridge with algebraic geometry. This is possible because

“Metric determines the complex structure"



For Kähler-Einstein metrics on Fano manifolds without cone singularities (Yi ,ωi),
the study of limit spaces fits into the Riemannian convergence theory developed
by Cheeger-Colding in the 1990s.

Donaldson-S. (2012): algebraicity of Gromov-Hausdorff convergence:

◮ A Gromov-Hausdorff limit space Y∞ is naturally a Q-Fano variety
◮ the convergence can be realized in a flat family over a Hilbert scheme
◮ Y∞ admits a Kähler-Einstein metric in a suitable sense

The proof involves a combination of the Cheeger-Colding theory and Hörmander
L2 theory.



Construction of X0 requires an extension to the case with cone singularities.

The main new technical difficulty has to do with the codimension 2 cone
singularities, especially the possible merging of singularities.

It also involves PDE theory for complex Monge-Ampere equation with singularities.



The construction of the one-parameter subgroup λ(t) is a finite dimensional
problem.

Question: Suppose V is a complex representation of G = SL(N;C) and v ′ ∈ G.v
for some v , v ′ ∈ V , can v ′ be approachable from v via a 1 PS subgroup of G?

In general the answer is NO, but the answer is YES if Stab(v ′) is reductive (by the
Luna slice theorem, c.f. Donaldson 2011).



In our setting one needs to prove that the Gromov-Hausdorff limit has reductive
automorphism group. This is exactly the (generalized) Matsushima theorem.

The point is that the limit X0 admits a Kähler-Einstein metric with cone singularities
in a suitable sense. We then apply the uniqueness theorem of Berndtsson 2011
and Berman-Boucksom-Essydieux-Guedj-Zeriahi 2011.

The sign of Futaki invariant is a consequence of the KE =⇒ K-stability by Berman
for Q-Fano varieties.



Other proofs of the Kähler-Einstein result:

◮ Classical continuity path (Datar-Székelyhidi 2015).

◮ Ricci-flow (Chen-S.-Wang 2015) [based on the proof of the Hamilton-Tian
conjecture (Chen-Wang 2015)].

◮ Variational approach (Berman-Boucksom-Jonsson 2015). This proves the
result under the stronger assumption of uniform K-stability.



Extension and further developments

(1) Spotti-S.-Yao 2014: A K-stable smoothable Q-Fano variety admits a
Kähler-Einstein metric.

This was used by Li-Wang Xu 2014 and Odaka 2014 to construct moduli
compactification for K-stable Fano manifolds, given by adding K-stable smoothable
Q-Fano varieties.

Explicit description of the compact moduli spaces are known in dimension 2
(Mabuchi-Mukai 1993, Odaka-Spotti-S. 2012) and some sporadic higher
dimensional examples (Spotti-Sun 2017, Liu-Xu 2017, Liu 2021)



(2) General Q-Fano varieties:

C. Li 2019: uniform K-stability implies existence of a weak Kähler-Einstein potential

It remains an open question to show that a weak Kähler-Einstein potential is
indeed a Kähler-Einstein metric.

There are recent progress following the PDE estimates of Guo-Phong-Tong 2021.



(3) Algebro-geometric study of K-stability has seen major advances through the
work of Odaka, Li, Wang, Xu, Fujita, Blum, Liu, Zhuang and others.

Liu-Xu-Zhuang 2021: K-stability of a Q-Fano variety implies uniform K-stability.

Moduli spaces for general K-stable Q-Fano varieties were constructed
algebraically by the works of Alper, Blum, Halpern-Leistner, Jiang, Liu, Xu,
Zhuang.

The deep work of Birkar in birational geometry is used to as an alternative to the
Cheeger-Colding theory.



(4) General CSCK setting

The formal picture of H is now made precise

◮ Chen 2000: existence of weak geodesics in H connecting any two points.

◮ T. Darvas 2015: metric completion H of H is a CAT(0) space, which can
identified with the space of finite energy classes in pluripotential theory.

◮ Berman-Berndtsson 2015: geodesic convexity of the Mabuchi functional and
uniqueness of CSCK metrics (modulo Aut0(X ))



◮ Darvas-Rubinstein 2015: properness of E implies the existence of a
minimizer in H.

◮ Chen-Cheng 2018: PDE regularity theory for CSCK metrics: weak minimizers
are smooth solutions; analytic criterion for existence in terms of geodesic
stability

Boucksom-Jonsson, C. Li: connections with stronger version of K-stability.

In a related context, G. Chen 2019 proved algebro-geometric criteria for the
solving the J-equation and deformed Hermitian-Yang-Mills equation.



Philosophy:

"Natural objects from canonical Kähler metrics have algebro-geometric meaning"

New directions can arise from further exploration of Kähler-Einstein metrics

In the volume non-collapsing setting we have

◮ Local stability theory
◮ optimal degeneration theory
◮ Stability at infinity
◮ Bubbling theory



Local stability theory

Consider a Gromov-Hausdorff limit X∞ of Kähler-Einstein Fano manifolds and a
singular point p ∈ X∞.

Cheeger-Colding: Singularities are conical. Rescale the limit metric around p ⇝
metric tangent cones.

A priori uniqueness is a difficult question in geometric analysis.



The cross section of such a cone, if smooth, is a Sasaki-Einstein manifold.

Sasaki-Einstein geometry has close connections with AdS/CFT correspondence.

Martelli-Sparks-Yau 2006: volume minimization for Sasaki-Einstein metrics. In
particular, the volume of a Sasaki-Einstein manifold is an algebraic number.

Collins-Szekeleyhidi 2015: Existence of Sasaki-Einstein metrics ↔ K-stable Fano
cones.



Donaldson-S. 2015: There is a unique metric tangent cone Cp, which admits
algebro-geometric description.

metric rescaling ↔ algebraic rescaling

2-step degeneration theory via Kähler-Einstein metrics:

◮ Valuation on the local ring at p, sending Op to a Fano cone W .

◮ An equivariant degeneration from W to Cp.

Cp is K-stable and the intermediate object W is K-semistable.

Compare: Harder-Narasimhan and Seshadri filtration of holomorphic bundles.



Conjecture (Donaldson-S. 2015): Both W and Cp are local algebro-geometric
invariants of Op (hence leads to local stability theory for KLT singularities).

C. Li 2015: reformulated the DS conjecture using a generalized volume
minimization principle.

The conjecture was proved by Li-Liu 2016, Li-Xu 2017, Li-Wang-Xu 2018,
Xu-Zhuang 2022 in greater generality.



Optimal degeneration theory

Ricci flow on Fano manifolds
󰀫

∂
∂tωt = ωt − Ric(ωt), t ∈ [0,∞);

ω0 ∈ 2πc1(X ).

Chen-S.-Wang 2015: If X is K-unstable, ωt canonically determines a 2-step
degeneration

◮ A (possibly irrational) de-stabilizing test configuration X → W .
◮ An equivariant degeneration W → X ′.

X ′ is the unique Ricci-flow limit (Q-Fano variety with a Kähler-Ricci soliton)



Conjecture (Chen-S.-Wang 2015): This 2-step degeneration is independent of ω0
and gives rise to algebro-geometric optimal degenerations of Fano varieties.

W. He 2012, Dervan-Székelyhidi 2016: This test configuration is optimal in a
suitable sense.

Han-Li 2020: Conjecture holds.

Blum-Liu-Xu-Zhuang 2021: Construction of the Chen-S.-Wang degeneration using
purely algebro-geometric procedure.



Stability at infinity

In the dual setting one considers complete Calabi-Yau metrics with

lim
R→∞

R−2nVol(B(p,R)) > 0.

We call these AC Calabi-Yau metrics.

Scaling down the metric gives rise to asymptotic cones.

Under suitable assumptions there is a dual 2-step degeneration theory for the
unique asymptotic cone C∞.



There is a sharp contrast to the local setting:

Sun-Zhang 2022 (no semistability at infinity):
For AC Calabi-Yau metrics with |Rm| = O(R−2) we have W = C∞.

Combined with works by Conlon-Hein, this gives a complete classification of AC
Calabi-Yau metrics with |Rm| = O(R−2) in terms of algebraic geometry



Conjecture (Yau’s compactification conjecture):
An AC Calabi-Yau manifold is quasi-projective.

This is known when the metric is globally of the form
√
−1∂∂̄φ.

In general is not even known that an AC Calabi-Yau metric has finite topology.



AC metric is not unique/canonical non-compact manifolds, even on C3 (Y. Li 2017,
Conlon-Rochon 2017, Szekelyhidi 2017).

It is more natural to study AC metrics on a pair (X , ν), where X is a
quasi-projective variety together with an algebraic scaling ν (negative valuation)
that degenerates X to a K-stable Fano cone.

Expect suitable uniqueness statement for a fixed (X , ν).



Bubbling theory

The local theory only deals with the limit space (X∞, p) itself.

To understand the dynamical singularity formation of the sequence (Xj , pj), we
rescale the metric ωj based at pj by λj → ∞ for all possible {λj}.

We obtain complete AC Calabi-Yau metrics as “bubbles".



p

pj



Iterating the procedure we obtain a bubble tree.

S. 2023: The bubble tree terminates in finitely many steps.

The first bubble at p is Cp.

The next bubble is Z1, whose asymptotic cone coincides with Cp.

Z1 is a minimal bubble. It is a polarized Calabi-Yau affine variety.



Question (Algebraic bubble tree)
Give an algebro-geometric description of the bubble tree.

More precisely, given π : X → ∆ a flat degeneration of KLT singularities with a
section σ. How to generate in a canonical way the minimal bubble?

This question is related to recent work of Odaka (and Z. Chen) studying moduli
space of Fano cones and singularities.



There are many more interesting questions come in the collapsing setting, but that
will be another talk...


