Letter 6

Sufficient conditions for a model of NFU*

ROBERT M. SOLOVAY P. O. BOX 5949 EUGENE, OR 97405 email: solovay@math.berkeley.edu

§1 Introduction

We are currently working in the theory $\mathbf{ZFC} + \mathbf{V} = \mathbf{L} +$ "There is an inaccessible cardinal". We let θ be an inaccessible cardinal. Our goal is to prove the consistency of $\mathbf{NFU}*$

Let $\alpha < \theta$ be a lbfp. In letter 4, we have associated to α a term language \mathcal{L} . This letter has the following goals:

- 1. To show that if \mathcal{M} is a well-instantiated term model then \mathcal{M} yields a model of **NFU** via "the usual construction".
- 2. To give sufficient conditions on \mathcal{M} that this model of **NFU** will be a model of **NFU***.

Subsequent letters [perhaps only one] will show that we can construct a termmodel meeting these requirements

§2 The automorphism j

We define a map j on the closed terms of \mathcal{L} as follows:

- 1. $j(\xi_i) = \xi_{i+1}$.
- 2. If $\gamma < \alpha$ then $j(\bar{\gamma}) = \bar{\gamma}$.
- 3. Suppose that f is an *n*-ary function symbol of \mathcal{L} and that the closed term τ has the form $f(\tau_1, \ldots, \tau_n)$. Then $j(\tau) = f(j(\tau_1), \ldots, j(\tau_n))$.

That j is a bijection is clear. [It is easy to write down an analogous definition of j^{-1} .]

2. 1

Lemma 2.1 Let τ_1 and τ_2 be closed terms of \mathcal{L} . Then the following are equivalent: 1. $\mathcal{M} \models \tau_1 = \tau_2$.

2. $\mathcal{M} \models j(\tau_1) = j(\tau_2).$

Proof: Choose $n < \omega$ and $\alpha_1 < \alpha$ large enough that $\tau_1, \tau_2, j(\tau_1)$ and $j(\tau_2)$ are all terms of rank at most (α_1, n) . Let $\langle M^*, Y \rangle$ be an (α_1, n) pre-instantiation model for \mathcal{M} as provided by the definition of "well-instantiated". So in particular, if $\beta_0, \ldots, \beta_{2n+1}$ are the first 2n + 2 members of Y, then the models $M_0 = \langle M^*, \beta_0, \ldots, \beta_{2n} \rangle$ and $M_1 = \langle, M^*, \beta_1, \ldots, \beta_{2n+1} \rangle$ instantiate \mathcal{M} .

We have $j(\tau_i)^{M_0} = \tau_i^{M_1}$ (for i = 0, 1). Thus $\mathcal{M} \models j(\tau_0) = j(\tau_1) \leftrightarrow M_0 \models j(\tau_0) = j(\tau_1) \leftrightarrow M_1 \models \tau_0 = \tau_1 \leftrightarrow \mathcal{M} \models \tau_0 = \tau_1$. \Box_{Lemma}

2. 2

Lemma 2.2 Let τ_1 and τ_2 be closed terms of \mathcal{L} . Then the following are equivalent: 1. $\mathcal{M} \models \tau_1 \in \tau_2$.

2. $\mathcal{M} \models j(\tau_1) \in j(\tau_2)$.

Proof: Entirely analogous to the proof of the preceding lemma. \Box _{Lemma}

2. 3

We now know that j induces an automorphism of \mathcal{M} viewed as a model of the set theory T. Evidently, $j([\xi_i]) = [\xi_{i+1}]$. Thus we can use j to construct a model of **NFU** in the usual way.

We say that an element of \mathcal{M} is Cantorian if it's fixed by j.

Lemma 2.3 The following is a sufficient condition that the model, call it Q, of **NFU** derived from \mathcal{M} , j is in fact a model of **NFU***:

If η is a Cantorian ordinal of \mathcal{M} , then either:

1. $\eta < \alpha$.

2. OR there is a non-Cantorian ordinal $\eta' < \eta$.

Proof: The conditions imply that the set of strongly Cantorian ordinals of Q can be identified with the ordinals less than α . It is clear that Q contains for each $\eta < \alpha$ all the constructible subsets of η . [This follows from the way that Q was constructed offline.] But since we are working in the theory V = L, this means that *all* the subsets of η are represented in the model Q. The crucial new axiom of **NFU*** has been verified. \square_{Lemma}

This ends letter 6.