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Interpreting Aut(D) within D
assignments

Definition
An assignment of reals consists of

I A countable !-model M of T (T = �1-ZFC).
I A function f and a countable ideal I in D such that
f : DM ! I surjectively and for all x and y in DM,
M j= x �T y if and only if f(x) �T f(y) in I.

Definition
For assignments (M0; f0; I0) and (M1; f1; I1), (M1; f1; I1)
extends (M0; f0; I0) if and only if

I DM0 � DM1 ,
I I0 � I1,
I and f1 � DM0 = f0.



Interpreting Aut(D) within D
extendable assignments

Definition
An assignment (M0; f0; I0) is extendable if

8z19(M1; f1; I1)2
66666664

(M1; f1; I1) extends (M0; f0; I0)), z1 2 I1, and
8z29(M2; f2; I2)0
BB@
(M2; f2; I2) extends (M1; f1; I1), z2 2 I2, and

8z39(M3; f3; I3)

"
(M3; f3; I3) extends

(M2; f2; I2) and z3 2 I3

#
1
CCA

3
77777775



Interpreting Aut(D) within D
extendable assignments

Theorem
If (M; f; I) is an extendable assignment, then there is a
� : D

�

!D such that for all x 2 DM, �(x) = f(x).

Proof
We chase the inclusions between the Turing degrees of the
domain models and the range ideals. Sets coded in the range I
belong to the domain M. Sets in the range which together with
00 can only code elements of M must belong to M.

We conclude that if (M; f; I) is an extendable assignment, then
f : DM ! I extends to a persistent automorphism of a larger
ideal. Hence, it extends to an automorphism of D.
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Defining relative to parameters

Theorem
If g is the Turing degree of an arithmetically definable
5-generic set, then the relation R(�!c ; d) given by

R(�!c ; d) () �!
c codes a real D and D has degree d

is definable in D from g.

This is the internal realization of the previous result that every
automorphism is determined by its action on g.



Proof
Use following property of �!c and d. There are �!m,

�!
f , and

�!
i

such that all of the following conditions are satisfied.
I �!

c codes N with a unary predicate for a set D;
I �!

m codes an !-model M of T ;
I
�!
i codes a countable ideal I in D;

I
�!
f codes a function f from DM onto I;

I (M; f; I) is an extendable assignment;
I g 2 I, degree(G)M is the Turing degree of G as identified

in M by G’s arithmetic definition, and f(degree(G)M) = g;
I the set D coded by �!c is an element of M, degree(D)M is

the Turing degree of D as defined in M, and
f(degree(D)M) = d.



Invariance and Definability

Theorem
Suppose that R is a relation on D. The following conditions
are equivalent.

I R is induced by a projective, degree invariant relation
R2! on 2!.

I R is definable in D using parameters.

Proof
�!
x satisfies R if and only if there is an extendible assignment
such that f(degree(

�!
Y )) = �!

x and
�!
Y satisfies R2! .



Definability of the double-jump

Theorem
The function x 7! x00 is definable in D.

Proof
We have already shown that the relation y = x00 is invariant
under all automorphisms of D. It is clearly degree invariant and
definable in second order arithmetic. Therefore, it is definable
in D.



Biinterpretability

Definition
D is biinterpretable with second order arithmetic if and only if
the relation on �!c and d given by

R(�!c ; d) () �!
c codes a real D and D has degree d

is definable in D.

Theorem
The following are equivalent.

I D is biinterpretable with second order arithmetic.
I D is rigid.

Conjecture

D is biinterpretable with second order arithmetic.
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The Turing Jump

It only remains to show that x 7! x0 is definable in D. This is
an account of joint work with Richard Shore.

We begin by showing that I(�0
2
), the ideal of �0

2
degrees, is

definable in D. Our definition is based on the following Join
Theorem for the Double-Jump.

Theorem (Shore and Slaman, 1999)

For A 2 2!, the following conditions are equivalent.
I A is not recursive in 00.
I There is a G 2 2! such that A�G �T G00.

So, I(�0
2
) is definable in terms of order, join, and the double

jump. Consequently, it is definable in D.
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Join Theorem

The join theorem has precursors.

Theorem (Posner and Robinson, 1981)

For A 2 2!, the following conditions are equivalent.
I A is not recursive.
I There is a G 2 2! such that A�G �T G0.

In order to determine G0, Posner and Robinson constructed G

to be 1-generic. They arranged for A�G to compute the way in
which G met the relevant dense sets, and thereby compute G0.

Jockusch and Shore generalized the proof and extended the
theorem to operators in the n-r.e. hierarchy.
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Non-coding approach

Given A, we will build a functional � to satisfy

�(A) = �00:

Note, � is a collection of elements (x; y; �); so it makes sense to
take its jump.

Our problem will be to determine whether n 2 �00 without
deciding the value of �(n;A).
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Kumabe-Slaman Forcing

The following notion of forcing is due to Kumabe and Slaman.
We use it to construct a generic functional �G

Definition
Let P be the following partial order.

I The elements p of P are pairs (�p;
�!
X p) in which �p is a

finite use-monotone Turing functional and
�!
X p is a finite

collection of subsets of !.
I If p and q are elements of P , then p � q if and only if

I �p � �q and for all (xq; yq; �q) 2 �q n �p and all
(xp; yp; �p) 2 �p, the length of �q is greater than the length
�p,

I
�!
X p �

�!
X q,

I for every x, y, and X 2
�!
X p, if �q(x;X) = y then

�p(x;X) = y.



Kumabe-Slaman Forcing
the single jump

Consider this forcing and the Posner-Robinson Theorem.

Suppose that p = (�p;
�!
X p) is a condition such that A 62

�!
X p and

n is the least number not in the domain of �p(A).

Produce a condition q stronger than p such that the following
conditions hold.

I q forces that �0

G(n) = i

I �q(n;A) = i and n is the only number added to the
domain of �p(A) by �q

I A 62
�!
X p
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Kumabe-Slaman Forcing
easy case

The easy case occurs when there is a �q extending �p such that
I n 2 �0

G based on a witness verified by �q,

I for each X 2
�!
X p, �q(X) = �p(X),

I and �q(A) = �p(A).

Since A 62
�!
X p, we can extend �q to �r so that �r(n;A) = 1

and for each X 2
�!
X p, �r(X) = �p(X). Then, r = (�r;

�!
X p) is

the desired extension of p.



Kumabe-Slaman Forcing
the harder case

Otherwise, for every �q extending �p, if n 2 �0

G based on a
witness verified by �q then �q adds a computation relative to A

or to an element of
�!
X p.

Definition
Suppose n 2 ! and �p is a finite use-monotone Turing
functional. For �!� = (�1; : : : ; �k) a sequence of elements of 2<!

all of the same length, we say that �!� is essential to n 2 �0

G

over �p iff for all �q extending �p, if n 2 �0

G based on �q, then
�q n�p includes a triple (x; y; �) such that � is compatible with
at least one component of �!� .
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Kumabe-Slaman Forcing
the harder case

For each k, the set of essential sequences of length k forms a
�0
1
-tree T . (T can be replaced by a recursive tree.)

In the hard case under consideration,
�!
X [ fAg determines an

infinite path in some Tk.

But then, since A is not recursive, a theorem of Jockusch and
Soare applies and we can conclude to there is another infinite
path

�!
Y in that Tk such that A 62

�!
Y .

Then, q = (�p;
�!
X p [

�!
Y ) forces n 62 �0

G. We can then obtain the
desired extension of p by extending q to r so as to define
�r(n;A) = 0.
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Kumabe-Slaman Forcing
the double jump

The argument generalizes in the following way.

I Relate the forcing relation for �0
1
-sentences to the

unboundedness of recursive trees of essential sequences.
I Show that being essential to forcing a �0

2
sentence is �0

2
.

I Apply the previous argument using the hypothesis that A
is not �0

2
.
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Defining the Jump

Theorem
The functions a 7! I(�0

2
(a)) and a 7! a0 are definable in D.

Proof
By relativizing the previous theorem. For each degree a and
each d greater than or equal to a, d is not �0

2
relative to a if

and only if there is an x greater than or equal to a such that
d+ x �T x00. Again, the double jump is definable in D, and this
equivalence provides first order definitions as required.



Defining Recursively Enumerable?

Question

Is the relation y is recursively enumerable relative to x

definable in D?

A positive answer would follow from a proof of the
Biinterpretability Conjecture.



Finis
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