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Interpreting Aut(®) within ©

assignments

An assignment of reals consists of
» A countable w-model M of T' (T = £1-ZFC).

» A function f and a countable ideal Z in ® such that
f : ®™ - T surjectively and for all z and y in ®™,
M |=z >7 y if and only if f(z) >7 f(y) in Z.

For assignments (Mo, fo, Zo) and (M, f1,Z1), (M1, f1,7Z1)
extends (Mo, fo,Zp) if and only if

» DY C DM,
> Iy C T4,
» and f; | D% = fo.




Interpreting Aut(®) within ©

extendable assignments

An assignment (90, fo,Zp) is extendable if

Vz13(My, f1,71)
[ (94, f1,Z1) extends (Mo, fo,Zo)), 21 € I1, and W
Vz23(My, f2, I2)
(Mo, f2,I>) extends (M4, f1,Z1), 22 € I», and
(M3, f3,Z3) extends
(Mo, f2,Z>) and 23 € IJ

Vz33(Ms3, f3,13)



Interpreting Aut(®) within ©

extendable assignments

If (M, f,Z) is an extendable assignment, then there is a
7 : DD such that for all z € D™, n(z) = f(z).
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Interpreting Aut(®) within ©

extendable assignments

If (M, f,Z) is an extendable assignment, then there is a
7 : DD such that for all z € D™, n(z) = f(z).

Proof

We chase the inclusions between the Turing degrees of the
domain models and the range ideals. Sets coded in the range 7
belong to the domain 9. Sets in the range which together with
0’ can only code elements of 9t must belong to M.

We conclude that if (90, f,Z) is an extendable assignment, then
f : ©®” - T extends to a persistent automorphism of a larger
ideal. Hence, it extends to an automorphism of ©. ]



Defining relative to parameters

Theorem

If g 1s the Turing degree of an arithmetically definable
5-generic set, then the relation R(?, d) gwen by

R(C,d) <= ¢ codes a real D and D has degree d
1s definable in ® from g.

This is the internal realization of the previous result that every
automorphism is determined by its action on g.



Use following property of ¢ and d. There are Wl,, 7), and 7
such that all of the following conditions are satisfied.

» ¢ codes N with a unary predicate for a set D;

» m codes an w-model 9 of T,

> 7) codes a countable ideal Z in ©;

> ? codes a function f from ®™ onto Z;

> (9N, f,Z) is an extendable assignment;

> g € Z, degree(G)™ is the Turing degree of G as identified
in M by G’s arithmetic definition, and f(degree(G)™) = g;

> the set D coded by ¢ is an element of 91, degree(D)™ is

the Turing degree of D as defined in 9, and
f(degree(D)™) = d.



Invariance and Definability

Suppose that R 1s a relation on ©. The following conditions
are equivalent.

» R 1s induced by a projective, degree invariant relation
Row on 2¢.

» R 1s definable in © using parameters.

Proof

Z satisfies R if and only if there is an extendible assignment
such that f(degree(?)) — 7 and Y satisfies Rou. O




Definability of the double-jump

The function ¢ — z" is definable in ©.

Proof

We have already shown that the relation y = z” is invariant
under all automorphisms of ®. It is clearly degree invariant and
definable in second order arithmetic. Therefore, it is definable

in®. ]



Biinterpretability

9 is biinterpretable with second order arithmetic if and only if
the relation on ¢ and d given by

R(C,d) <= ¢ codes a real D and D has degree d

is definable in ®.



Biinterpretability

® is biinterpretable with second order arithmetic if and only if
the relation on ¢ and d given by

R(C,d) <= ¢ codes a real D and D has degree d

is definable in ®.

The following are equivalent.

> © 1s bunterpretable with second order arithmetic.

> D 15 rigid.



Biinterpretability

® is biinterpretable with second order arithmetic if and only if
the relation on ¢ and d given by

R(C,d) <= ¢ codes a real D and D has degree d

is definable in ®.

The following are equivalent.

> © 1s bunterpretable with second order arithmetic.

> D 15 rigid.

Conjecture

D 1s bunterpretable with second order arithmetic.
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It only remains to show that z — z’ is definable in ©. This is
an account of joint work with Richard Shore.



The Turing Jump

It only remains to show that z — z’ is definable in ©. This is
an account of joint work with Richard Shore.

We begin by showing that Z(AY), the ideal of AJ degrees, is
definable in ®. Our definition is based on the following Join
Theorem for the Double-Jump.

Theorem (Shore and Slaman, 1999)

For A € 2, the folloutng conditions are equivalent.
» A 1s not recursive in 0'.
» There is a G € 2 such that A® G >7 G".

So, Z(AY9) is definable in terms of order, join, and the double
jump. Consequently, it is definable in ©.



Join Theorem

The join theorem has precursors.

Theorem (Posner and Robinson, 1981)

For A € 2, the follounng conditions are equivalent.
» A 1s not recursive.
» There is a G € 2¥ such that A® G >7 G'.

In order to determine G’, Posner and Robinson constructed G
to be 1-generic. They arranged for A ® G to compute the way in
which G met the relevant dense sets, and thereby compute G'.



Join Theorem

The join theorem has precursors.

Theorem (Posner and Robinson, 1981)

For A € 2, the follounng conditions are equivalent.
» A 1s not recursive.
» There is a G € 2¥ such that A® G >7 G'.

In order to determine G’, Posner and Robinson constructed G
to be 1-generic. They arranged for A ® G to compute the way in
which G met the relevant dense sets, and thereby compute G'.

Jockusch and Shore generalized the proof and extended the
theorem to operators in the n-r.e. hierarchy.
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Given A, we will build a functional ® to satisfy
&(A) = 3"

Note, ® is a collection of elements (z,y, 0); so it makes sense to
take its jump.



Non-coding approach

Given A, we will build a functional ® to satisfy
&(A) = 3"

Note, ® is a collection of elements (z,y, 0); so it makes sense to
take its jump.

Our problem will be to determine whether n € " without
deciding the value of ®(n, A).



Kumabe-Slaman Forcing

The following notion of forcing is due to Kumabe and Slaman.
We use it to construct a generic functional ®¢

Let P be the following partial order.

_)
» The elements p of P are pairs ($,, Xp) in which &, is a

finite use-monotone Turing functional and )_fp is a finite
collection of subsets of w.

» If p and g are elements of P, then p > q if and only if

» &, C &, and for all (zq,yq,04) € $5\ ®, and all
(zp,Yp, 0p) € ®p, the length of g, is greater than the length

Op,

. X, %,

» for every z, y, and X € ?p, if ®4(z, X) = y then
®,(z,X) =v.
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Consider this forcing and the Posner-Robinson Theorem.



Kumabe-Slaman Forcing

the single jump

Consider this forcing and the Posner-Robinson Theorem.

Suppose that p = ($,, Yp) is a condition such that A ¢ 7;, and
n is the least number not in the domain of $,(A).



Kumabe-Slaman Forcing
the single jump

Consider this forcing and the Posner-Robinson Theorem.

Suppose that p = ($,, Yp) is a condition such that A ¢ )_{>p and
n is the least number not in the domain of $,(A).

Produce a condition g stronger than p such that the following
conditions hold.
» g forces that ®,(n) =1
> $,(n,A) =1 and 7 is the only number added to the
domain of ®,(A) by &,
» A¢ )_{>p



Kumabe-Slaman Forcing

€asy case

The easy case occurs when there is a &, extending &, such that
» n € $, based on a witness verified by &,
> for each X € X p, ®q(X) = &,(X),
> and ®,(A4) = $,(4).

Since A ¢ ?p, we can extend &, to &, so that &,(n,4) =1

and for each X € X, &,(X) = ®,(X). Then, r = (&,, X,) is
the desired extension of p.
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Otherwise, for every ®, extending ®,, if n € ®; based on a
witness verified by @% then &, adds a computation relative to A

or to an element of X.



Kumabe-Slaman Forcing

the harder case

Otherwise, for every ®, extending ®,, if n € ®; based on a
witness verified by <I>% then &, adds a computation relative to A

or to an element of X.

Definition

Suppose n € w and &, is a finite use-monotone Turing
functional. For 7 = (71,...,7Tk) a sequence of elements of 2<%
all of the same length, we say that 7 is essential to n € &
over &, iff for all ¢, extending ®,, if n € $}; based on ¥4, then
®, \ $, includes a triple (z,y, o) such that o is compatible with
at least one component of 7.
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Soare applies and we can conclude to there is another infinite
path ¥ in that T} such that A ¢ Y.



Kumabe-Slaman Forcing

the harder case

For each k, the set of essential sequences of length k forms a
I19-tree T'. (T can be replaced by a recursive tree.)

In the hard case under consideration, )_f U {A} determines an
infinite path in some T%.

But then, since A is not recursive, a theorem of Jockusch and
Soare applies and we can conclude to there is another infinite
path ¥ in that T} such that A ¢ Y.

Then, ¢ = ($p, ?p U 7) forces n ¢ $;. We can then obtain the
desired extension of p by extending g to r so as to define
®,(n,A) =0.
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Kumabe-Slaman Forcing
the double jump

The argument generalizes in the following way.
» Relate the forcing relation for I19-sentences to the
unboundedness of recursive trees of essential sequences.
» Show that being essential to forcing a &3 sentence is I13.

» Apply the previous argument using the hypothesis that A
is not AJ.



Defining the Jump

The functions a — Z(A3(a)) and a +— a' are definable in D.

Proof

By relativizing the previous theorem. For each degree a and
each d greater than or equal to a, d is not AJ relative to a if
and only if there is an z greater than or equal to a such that
d+z >r z". Again, the double jump is definable in ©, and this
equivalence provides first order definitions as required. []



Defining Recursively Enumerable?

Question

Is the relation y s recursively enumerable relative to z
definable in ©?

A positive answer would follow from a proof of the
Biinterpretability Conjecture.



Finas
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