Turing Degrees and Definability of the Jump

Theodore A. Slaman

University of California, Berkeley

July, 2005

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Outline

Lecture 3

- Effective bounds on the values of π
- Invariance of the double-jump
- Arithmetic representations of automorphisms

ション ふゆ マ キャット しょう くりく

- Lecture 4
 - Interpreting $Aut(\mathfrak{D})$ within \mathfrak{D}
 - Join theorem for the double-jump
 - Definability of the jump

Definition

An assignment of reals consists of

- A countable ω -model \mathfrak{M} of T ($T = \Sigma_1$ -ZFC).
- A function f and a countable ideal \mathcal{I} in \mathfrak{D} such that $f: \mathfrak{D}^{\mathfrak{M}} \to \mathcal{I}$ surjectively and for all x and y in $\mathfrak{D}^{\mathfrak{M}}$, $\mathfrak{M} \models x \geq_T y$ if and only if $f(x) \geq_T f(y)$ in \mathcal{I} .

Definition

For assignments $(\mathfrak{M}_0, f_0, \mathcal{I}_0)$ and $(\mathfrak{M}_1, f_1, \mathcal{I}_1)$, $(\mathfrak{M}_1, f_1, \mathcal{I}_1)$ extends $(\mathfrak{M}_0, f_0, \mathcal{I}_0)$ if and only if

うつん 川川 スポットボット 大臣 くうく

- $\blacktriangleright \ \mathfrak{D}^{\mathfrak{M}_0} \subseteq \mathfrak{D}^{\mathfrak{M}_1},$
- ► $\mathcal{I}_0 \subseteq \mathcal{I}_1$,
- ▶ and $f_1 \upharpoonright \mathfrak{D}^{\mathfrak{M}_0} = f_0$.

Definition

```
An assignment (\mathfrak{M}_0, f_0, \mathcal{I}_0) is extendable if
```

```
orall z_1 \exists (\mathfrak{M}_1, f_1, \mathcal{I}_1) \ egin{aligned} &\left[ egin{aligned} (\mathfrak{M}_1, f_1, \mathcal{I}_1) 	ext{ extends } (\mathfrak{M}_0, f_0, \mathcal{I}_0)), \, z_1 \in \mathcal{I}_1, 	ext{ and} \ & orall z_2 \exists (\mathfrak{M}_2, f_2, \mathcal{I}_2) \ & \left( egin{aligned} (\mathfrak{M}_2, f_2, \mathcal{I}_2) 	ext{ extends } (\mathfrak{M}_1, f_1, \mathcal{I}_1), \, z_2 \in \mathcal{I}_2, 	ext{ and} \ & orall z_3 \exists (\mathfrak{M}_3, f_3, \mathcal{I}_3) \ & \left( egin{aligned} (\mathfrak{M}_3, f_3, \mathcal{I}_3) 	ext{ extends} \ & \left( \mathfrak{M}_2, f_2, \mathcal{I}_2 
ight) 	ext{ and} \ & ext{ a
```

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ う へ ()・

Theorem

If $(\mathfrak{M}, f, \mathcal{I})$ is an extendable assignment, then there is a $\pi: \mathfrak{D} \stackrel{\sim}{\to} \mathfrak{D}$ such that for all $x \in \mathfrak{D}^{\mathfrak{M}}$, $\pi(x) = f(x)$.

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□ ◆ ○ ◆

Theorem

 $\begin{array}{l} If \left(\mathfrak{M},f,\mathcal{I}\right) \text{ is an extendable assignment, then there is a} \\ \pi:\mathfrak{D} \stackrel{\sim}{\to} \mathfrak{D} \text{ such that for all } x\in\mathfrak{D}^{\mathfrak{M}}, \ \pi(x)=f(x). \end{array}$

Proof

We chase the inclusions between the Turing degrees of the domain models and the range ideals. Sets coded in the range \mathcal{I} belong to the domain \mathfrak{M} . Sets in the range which together with 0' can only code elements of \mathfrak{M} must belong to \mathfrak{M} .

うつん 川川 スポットボット 大臣 くうく

Theorem

 $\begin{array}{l} If \left(\mathfrak{M},f,\mathcal{I}\right) \text{ is an extendable assignment, then there is a} \\ \pi:\mathfrak{D} \stackrel{\sim}{\to} \mathfrak{D} \text{ such that for all } x\in\mathfrak{D}^{\mathfrak{M}}, \ \pi(x)=f(x). \end{array}$

Proof

We chase the inclusions between the Turing degrees of the domain models and the range ideals. Sets coded in the range \mathcal{I} belong to the domain \mathfrak{M} . Sets in the range which together with 0' can only code elements of \mathfrak{M} must belong to \mathfrak{M} .

We conclude that if $(\mathfrak{M}, f, \mathcal{I})$ is an extendable assignment, then $f: \mathfrak{D}^{\mathfrak{M}} \to \mathcal{I}$ extends to a persistent automorphism of a larger ideal. Hence, it extends to an automorphism of \mathfrak{D} .

Defining relative to parameters

Theorem

If g is the Turing degree of an arithmetically definable 5-generic set, then the relation $R(\vec{c}, d)$ given by

 $R(\overrightarrow{c},d) \iff \overrightarrow{c}$ codes a real D and D has degree d

is definable in \mathfrak{D} from g.

This is the internal realization of the previous result that every automorphism is determined by its action on g.

うつん 川川 スポットボット 大臣 くうく

Proof

Use following property of \overrightarrow{c} and d. There are \overrightarrow{m} , \overrightarrow{f} , and \overrightarrow{i} such that all of the following conditions are satisfied.

- \overrightarrow{c} codes \mathbb{N} with a unary predicate for a set D;
- \overrightarrow{m} codes an ω -model \mathfrak{M} of T;
- \overrightarrow{i} codes a countable ideal \mathcal{I} in \mathfrak{D} ;
- \overrightarrow{f} codes a function f from $\mathfrak{D}^{\mathfrak{M}}$ onto \mathcal{I} ;
- $(\mathfrak{M}, f, \mathcal{I})$ is an extendable assignment;
- g∈ I, degree(G)^M is the Turing degree of G as identified in M by G's arithmetic definition, and f(degree(G)^M) = g;
- the set D coded by c is an element of M, degree(D)^M is the Turing degree of D as defined in M, and f(degree(D)^M) = d.

Invariance and Definability

Theorem

Suppose that R is a relation on \mathfrak{D} . The following conditions are equivalent.

- R is induced by a projective, degree invariant relation
 R_{2^ω} on 2^ω.
- R is definable in \mathfrak{D} using parameters.

Proof

 \overrightarrow{x} satisfies R if and only if there is an extendible assignment such that $f(degree(\overrightarrow{Y})) = \overrightarrow{x}$ and \overrightarrow{Y} satisfies $R_{2^{\omega}}$.

うつん 川川 スト・エリ・ 上目・ うみつ

Definability of the double-jump

Theorem

The function $x \mapsto x''$ is definable in \mathfrak{D} .

Proof

We have already shown that the relation y = x'' is invariant under all automorphisms of \mathfrak{D} . It is clearly degree invariant and definable in second order arithmetic. Therefore, it is definable in \mathfrak{D} .

うつん 川川 スポットボット 大臣 くうく

Biinterpretability

Definition

 \mathfrak{D} is biinterpretable with second order arithmetic if and only if the relation on \overrightarrow{c} and d given by

 $R(\overrightarrow{c},d)\iff\overrightarrow{c}$ codes a real D and D has degree d

うつん 川川 スポットボット 大臣 くうく

is definable in \mathfrak{D} .

Biinterpretability

Definition

 \mathfrak{D} is biinterpretable with second order arithmetic if and only if the relation on \overrightarrow{c} and d given by

 $R(\overrightarrow{c},d)\iff\overrightarrow{c}$ codes a real D and D has degree d

is definable in \mathfrak{D} .

Theorem

The following are equivalent.

 \blacktriangleright D is biinterpretable with second order arithmetic.

うつん 川川 スポットボット 大臣 くうく

 \blacktriangleright D is rigid.

Biinterpretability

Definition

 \mathfrak{D} is biinterpretable with second order arithmetic if and only if the relation on \overrightarrow{c} and d given by

 $R(\overrightarrow{c},d)\iff\overrightarrow{c}$ codes a real D and D has degree d

is definable in \mathfrak{D} .

Theorem

The following are equivalent.

- \blacktriangleright D is biinterpretable with second order arithmetic.
- \blacktriangleright D is rigid.

Conjecture

 \mathfrak{D} is biinterpretable with second order arithmetic.

The Turing Jump

It only remains to show that $x \mapsto x'$ is definable in \mathfrak{D} . This is an account of joint work with Richard Shore.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Turing Jump

It only remains to show that $x \mapsto x'$ is definable in \mathfrak{D} . This is an account of joint work with Richard Shore.

We begin by showing that $\mathcal{I}(\Delta_2^0)$, the ideal of Δ_2^0 degrees, is definable in \mathfrak{D} . Our definition is based on the following Join Theorem for the Double-Jump.

Theorem (Shore and Slaman, 1999)

For $A \in 2^{\omega}$, the following conditions are equivalent.

- ▶ A is not recursive in 0′.
- There is a $G \in 2^{\omega}$ such that $A \oplus G \ge_T G''$.

So, $\mathcal{I}(\Delta_2^0)$ is definable in terms of order, join, and the double jump. Consequently, it is definable in \mathfrak{D} .

Join Theorem

The join theorem has precursors.

Theorem (Posner and Robinson, 1981)

For $A \in 2^{\omega}$, the following conditions are equivalent.

- ► A is not recursive.
- There is a $G \in 2^{\omega}$ such that $A \oplus G \ge_T G'$.

In order to determine G', Posner and Robinson constructed G to be 1-generic. They arranged for $A \oplus G$ to compute the way in which G met the relevant dense sets, and thereby compute G'.

うつん 川川 スポットボット 大臣 くうく

Join Theorem

The join theorem has precursors.

Theorem (Posner and Robinson, 1981)

For $A \in 2^{\omega}$, the following conditions are equivalent.

- ► A is not recursive.
- There is a $G \in 2^{\omega}$ such that $A \oplus G \ge_T G'$.

In order to determine G', Posner and Robinson constructed G to be 1-generic. They arranged for $A \oplus G$ to compute the way in which G met the relevant dense sets, and thereby compute G'.

Jockusch and Shore generalized the proof and extended the theorem to operators in the n-r.e. hierarchy.

Given A, we will build a functional Φ to satisfy

$$\Phi(A) = \Phi''$$
.

Note, Φ is a collection of elements (x, y, σ) ; so it makes sense to take its jump.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Given A, we will build a functional Φ to satisfy

$$\Phi(A) = \Phi''.$$

Note, Φ is a collection of elements (x, y, σ) ; so it makes sense to take its jump.

(日) (日) (日) (日) (日) (日) (日) (日)

Our problem will be to determine whether $n \in \Phi''$ without deciding the value of $\Phi(n, A)$.

Kumabe-Slaman Forcing

The following notion of forcing is due to Kumabe and Slaman. We use it to construct a generic functional Φ_G

Definition

Let P be the following partial order.

- The elements p of P are pairs (Φ_p, X
 _p) in which Φ_p is a finite use-monotone Turing functional and X
 _p is a finite collection of subsets of ω.
- ▶ If p and q are elements of P, then $p \ge q$ if and only if
 - Φ_p ⊆ Φ_q and for all (x_q, y_q, σ_q) ∈ Φ_q \ Φ_p and all (x_p, y_p, σ_p) ∈ Φ_p, the length of σ_q is greater than the length
 σ_p,
 X ⊂ X q,
 - for every x, y, and $X \in \overrightarrow{X}_p$, if $\Phi_q(x, X) = y$ then $\Phi_p(x, X) = y$.

Kumabe-Slaman Forcing the single jump

Consider this forcing and the Posner-Robinson Theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\begin{array}{c} Kumabe-Slaman \ Forcing \\ {}_{the \ single \ jump} \end{array}$

Consider this forcing and the Posner-Robinson Theorem.

Suppose that $p = (\Phi_p, \overrightarrow{X}_p)$ is a condition such that $A \notin \overrightarrow{X}_p$ and n is the least number not in the domain of $\Phi_p(A)$.

(日) (日) (日) (日) (日) (日) (日) (日)

Kumabe-Slaman Forcing the single jump

Consider this forcing and the Posner-Robinson Theorem.

Suppose that $p = (\Phi_p, \overrightarrow{X}_p)$ is a condition such that $A \notin \overrightarrow{X}_p$ and n is the least number not in the domain of $\Phi_p(A)$.

Produce a condition q stronger than p such that the following conditions hold.

- q forces that $\Phi_G'(n) = i$

(日) (日) (日) (日) (日) (日) (日) (日)

$$\blacktriangleright A \not\in \overline{X}_p$$

Kumabe-Slaman Forcing

The easy case occurs when there is a Φ_q extending Φ_p such that

• $n \in \Phi'_G$ based on a witness verified by Φ_q ,

• for each
$$X \in \overrightarrow{X}_p, \, \Phi_q(X) = \Phi_p(X),$$

▶ and $\Phi_q(A) = \Phi_p(A)$.

Since $A \not\in \overrightarrow{X}_p$, we can extend Φ_q to Φ_r so that $\Phi_r(n, A) = 1$ and for each $X \in \overrightarrow{X}_p$, $\Phi_r(X) = \Phi_p(X)$. Then, $r = (\Phi_r, \overrightarrow{X}_p)$ is the desired extension of p.

うつん 川川 スポットボット 大臣 くうく

Otherwise, for every Φ_q extending Φ_p , if $n \in \Phi'_G$ based on a witness verified by Φ_q then Φ_q adds a computation relative to A or to an element of \overrightarrow{X}_p .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Otherwise, for every Φ_q extending Φ_p , if $n \in \Phi'_G$ based on a witness verified by Φ_q then Φ_q adds a computation relative to A or to an element of \overrightarrow{X}_p .

Definition

Suppose $n \in \omega$ and Φ_p is a finite use-monotone Turing functional. For $\overrightarrow{\tau} = (\tau_1, \ldots, \tau_k)$ a sequence of elements of $2^{<\omega}$ all of the same length, we say that $\overrightarrow{\tau}$ is essential to $n \in \Phi'_G$ over Φ_p iff for all Φ_q extending Φ_p , if $n \in \Phi'_G$ based on Φ_q , then $\Phi_q \setminus \Phi_p$ includes a triple (x, y, σ) such that σ is compatible with at least one component of $\overrightarrow{\tau}$.

(日) (同) (三) (三) (三) (○) (○)

For each k, the set of essential sequences of length k forms a Π_1^0 -tree T. (T can be replaced by a recursive tree.)

ション ふゆ マ キャット しょう くりく

For each k, the set of essential sequences of length k forms a Π_1^0 -tree T. (T can be replaced by a recursive tree.)

In the hard case under consideration, $\overrightarrow{X} \cup \{A\}$ determines an infinite path in some T_k .

(日) (日) (日) (日) (日) (日) (日) (日)

For each k, the set of essential sequences of length k forms a Π_1^0 -tree T. (T can be replaced by a recursive tree.)

In the hard case under consideration, $\overrightarrow{X} \cup \{A\}$ determines an infinite path in some T_k .

But then, since A is not recursive, a theorem of Jockusch and Soare applies and we can conclude to there is another infinite path \overrightarrow{Y} in that T_k such that $A \notin \overrightarrow{Y}$.

(日) (日) (日) (日) (日) (日) (日) (日)

For each k, the set of essential sequences of length k forms a Π_1^0 -tree T. (T can be replaced by a recursive tree.)

In the hard case under consideration, $\overrightarrow{X} \cup \{A\}$ determines an infinite path in some T_k .

But then, since A is not recursive, a theorem of Jockusch and Soare applies and we can conclude to there is another infinite path \overrightarrow{Y} in that T_k such that $A \notin \overrightarrow{Y}$.

Then, $q = (\Phi_p, \overrightarrow{X}_p \cup \overrightarrow{Y})$ forces $n \notin \Phi'_G$. We can then obtain the desired extension of p by extending q to r so as to define $\Phi_r(n, A) = 0$.

The argument generalizes in the following way.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The argument generalizes in the following way.

 Relate the forcing relation for Π⁰₁-sentences to the unboundedness of recursive trees of essential sequences.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The argument generalizes in the following way.

- Relate the forcing relation for Π⁰₁-sentences to the unboundedness of recursive trees of essential sequences.
- Show that being essential to forcing a Σ_2^0 sentence is Π_2^0 .

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

The argument generalizes in the following way.

- Relate the forcing relation for Π⁰₁-sentences to the unboundedness of recursive trees of essential sequences.
- Show that being essential to forcing a Σ_2^0 sentence is Π_2^0 .
- Apply the previous argument using the hypothesis that A is not ∆⁰₂.

(日) (同) (三) (三) (三) (○) (○)

Defining the Jump

Theorem

The functions $a \mapsto \mathcal{I}(\Delta_2^0(a))$ and $a \mapsto a'$ are definable in \mathfrak{D} .

Proof

By relativizing the previous theorem. For each degree a and each d greater than or equal to a, d is not Δ_2^0 relative to a if and only if there is an x greater than or equal to a such that $d + x \ge_T x''$. Again, the double jump is definable in \mathfrak{D} , and this equivalence provides first order definitions as required.

うつん 川川 スポットボット 大臣 くうく

Defining Recursively Enumerable?

Question

Is the relation y is recursively enumerable relative to x definable in \mathfrak{D} ?

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - のく⊙

A positive answer would follow from a proof of the Biinterpretability Conjecture.

Finis