Turing Degrees and Definability of the Jump

Theodore A. Slaman

University of California, Berkeley

July, 2005
Outline

▶ Lecture 2
 ▶ Absoluteness
 ▶ Generic Persistence
 ▶ Definable representations of automorphisms

▶ Lecture 3
 ▶ Effective bounds on the values of π
 ▶ Invariance of the double-jump
 ▶ Arithmetic representations of automorphisms
Evaluating relative to a generic degree

Theorem

There is a family of dense open sets \mathcal{D} and an injective continuous function $F(G, X)$ such that for all \mathcal{D}-generic G, if $\Pi(G)$ is a representative of $\pi(\text{degree}(G))$, then

$$(\forall X)[\text{degree}(F(G, X) \oplus \Pi(G)) = \pi(\text{degree}(X \oplus G))]$$

Definition

For F as defined above, let F_G be the function $X \mapsto F(G, X)$.
Theorem

There is a countable family of dense open sets \mathcal{D} such that for all \mathcal{D}-generic reals G the following conditions hold.

1. If P is a perfect set with tree T_P, then the range of F_G on P contains a perfect set Q with tree T_Q such that

$$\deg(T_Q) \leq_T \pi(\deg(G) \lor \deg(T_P)).$$

2. If Q is a perfect subset of the range of F_G with tree T_Q, then there is a perfect set P contained in the range of F_G^{-1} applied to Q with tree T_P such that

$$\deg(T_P) \leq_T (\deg(G) \lor \pi^{-1}(\deg(T_Q))).$$
Proof

Let \overrightarrow{D} be the countable family of dense open sets of the previous theorem. Fix a \overrightarrow{D}-generic G and perfect tree T_P.

$=$

Let \overrightarrow{T}_Q be the tree $f_{\overrightarrow{e}}$ $g_{\overrightarrow{D}}(\overrightarrow{T}_P)(G)$, for $2_{_{2}}<!$. \overrightarrow{T}_Q is the desired perfect tree.
Proof

Let \overrightarrow{D} be the countable family of dense open sets of the previous theorem. Fix a \overrightarrow{D}-generic G and perfect tree T_P.

For all H, $\Pi^{-1}(H) \oplus T_P$ is represented by the join of T_P with a path $X_{\Pi^{-1}(H)}$ in $[T_P]$.

Let T_Q be the tree $f_{\overrightarrow{e}^g(H)}(T_P(G))$. T_Q is the desired perfect tree.
Proof

- Let \(\overrightarrow{D} \) be the countable family of dense open sets of the previous theorem. Fix a \(\overrightarrow{D} \)-generic \(G \) and perfect tree \(T_P \).
- For all \(H \), \(\Pi^{-1}(H) \oplus T_P \) is represented by the join of \(T_P \) with a path \(X_{\Pi^{-1}(H)} \) in \([T_P]\).
- Now, use the representation of \(\Pi \) relative to \(G \). There is an \(e \) such that for generic \(H \),

\[
\{e\}(H \oplus \Pi(T_P) \oplus \Pi(G)) = F_G(X_{\Pi^{-1}(H)}) \oplus \Pi(T_P) \oplus \Pi(G)
\]
Let \mathcal{D} be the countable family of dense open sets of the previous theorem. Fix a \mathcal{D}-generic G and perfect tree T_P.

For all H, $\Pi^{-1}(H) \oplus T_P$ is represented by the join of T_P with a path $X_{\Pi^{-1}(H)}$ in $[T_P]$.

Now, use the representation of Π relative to G. There is an e such that for generic H,

$$\{e\}(H \oplus \Pi(T_P) \oplus \Pi(G)) = F_G(X_{\Pi^{-1}(H)}) \oplus \Pi(T_P) \oplus \Pi(G)$$

Let T_Q be the tree $\{e\}(\sigma \oplus \Pi(T_P) \oplus \Pi(G))$, for $\sigma \in 2^{<\omega}$. T_Q is the desired perfect tree.
Theorem

For every $Z \subseteq \omega$, there is a countable family of dense open sets \mathcal{D} such that for all \mathcal{D}-generic reals G,

$$
\pi(\text{degree}(Z \oplus G))'' \geq_T \text{degree}(Z)
$$

We use a countable forcing to efficiently code Z into the Turing degrees. We argue that there is are generics for this forcing which are recursive in $Z \oplus G$. (Recall the universal property of Cohen forcing.)

We view G as a quadruple of mutually generic reals $G_1, G_2, G_3,$ and G_4.

Coding Z into $\Pi(Z) \oplus \Pi(G)$
1. coding the integers

Fix a perfect binary tree T_1 such that T_1 is recursive in G_1 and any finite set of infinite paths in T_1 consists of reals which are mutually generic relative to $G_2 \oplus G_3 \oplus G_4$. Let P_1 be the perfect set of infinite paths in T_1.
1. coding the integers

- Fix a perfect binary tree T_1 such that T_1 is recursive in G_1 and any finite set of infinite paths in T_1 consists of reals which are mutually generic relative to $G_2 \oplus G_3 \oplus G_4$. Let P_1 be the perfect set of infinite paths in T_1.
- Let F_{G_2} be the injective continuous function associated with G_2. Fix perfect sets Q and P_2 as in the previous theorem.
Coding \mathbb{Z} into $\Pi(\mathbb{Z}) \oplus \Pi(G)$

1. coding the integers

- Fix a perfect binary tree T_1 such that T_1 is recursive in G_1 and any finite set of infinite paths in T_1 consists of reals which are mutually generic relative to $G_2 \oplus G_3 \oplus G_4$. Let P_1 be the perfect set of infinite paths in T_1.

- Let F_{G_2} be the injective continuous function associated with G_2. Fix perfect sets Q and P_2 as in the previous theorem.

- Let $(H_j : j \in \omega)$ be the sequence of elements of P_2 given by the leftmost branches in P_2 off of the rightmost branch of P_2. We note that any finite subset of $(H_j : j \in \omega)$ consists of reals which are mutually Cohen generic relative to $G_2 \oplus G_3 \oplus G_4$. Note, $(H_j : j \in \omega) \leq_T G_1 \oplus G_2$.
We find A_0 and A_1 recursively in $G_1 \oplus G_2 \oplus G_3$ to satisfy the following properties for all U and for all $j \in \omega$.

\[(U \in P_1 \text{ and } G_1 \oplus G_2 \geq_T U) \rightarrow [A_0 \oplus G_2 \oplus H_{2j} \geq U \iff (U = H_{2j} \text{ or } U = H_{2j+1})] \]

\[(U \in P_1 \text{ and } G_1 \oplus G_2 \geq_T U) \rightarrow [A_1 \oplus G_2 \oplus H_{2j+1} \geq U \iff (U = H_{2j+1} \text{ or } U = H_{2j+2})] \]
We find A_0 and A_1 recursively in $G_1 \oplus G_2 \oplus G_3$ to satisfy the following properties for all U and for all $j \in \omega$.

\[
(U \in P_1 \text{ and } G_1 \oplus G_2 \geq_T U) \rightarrow \\
[A_0 \oplus G_2 \oplus H_{2j} \geq U \iff (U = H_{2j} \text{ or } U = H_{2j+1})]
\]

\[
(U \in P_1 \text{ and } G_1 \oplus G_2 \geq_T U) \rightarrow \\
[A_1 \oplus G_2 \oplus H_{2j+1} \geq U \iff (U = H_{2j+1} \text{ or } U = H_{2j+2})]
\]

The successor operation is obtained by recursion using positive instances of \leq_T and various simpler properties.
Coding Z into $\Pi(Z) \oplus \Pi(G)$

3. coding Z

We find B_0 and B_1 recursively in $G_1 \oplus G_2 \oplus G_3$ to satisfy the following properties for all $j \in \omega$.

\[
B_0 \oplus G_2 \geq_T H_j \iff j \not\in Z
\]

\[
B_1 \oplus G_2 \geq_T H_j \iff j \in Z
\]
The sequence \((F_{G_2}(H_j)) : j \in \omega \) can be generated in order recursively in \(\Pi(G)'' \). For example, \(F_{G_2}(H_1) \) is the unique set such that the following conditions hold.

- \(F_{G_2}(H_1) \in Q \)
- \(F_{G_2}(H_1) \leq_T \Pi(G_1) \oplus \Pi(G_2) \)
- \(F_{G_2}(H_1) \leq_T A_0 \oplus \Pi(G_2) \)
The sequence \((F_{G_2}(H_j) : j \in \omega)\) can be generated in order recursively in \(\Pi(G)''\). For example, \(F_{G_2}(H_1)\) is the unique set such that the following conditions hold.

- \(F_{G_2}(H_1) \in Q\)
- \(F_{G_2}(H_1) \leq_T \Pi(G_1) \oplus \Pi(G_2)\)
- \(F_{G_2}(H_1) \leq_T A_0 \oplus \Pi(G_2)\)

\(Z\) is recursive in \((\Pi(Z) \oplus \Pi(G))''\) by

\[
\begin{align*}
\Pi(B_0) \oplus \Pi(G_2) \geq_T F_{G_2}(H_j) &\iff j \notin Z \\
\Pi(B_1) \oplus \Pi(G_2) \geq_T F_{G_2}(H_j) &\iff j \in Z
\end{align*}
\]
Bounding $\pi(z)$ by z''

Theorem

For every $z \in \mathcal{D}$, $z'' \geq_T \pi(z)$.
Bounding $\pi(z)$ by z''

Theorem

For every $z \in \mathcal{D}$, $z'' \geq_T \pi(z)$.

Proof

- Fix Z and fix \vec{D} as in the previous theorem relative to $\Pi(Z)$ and the automorphism π^{-1}.
Bounding $\pi(z)$ by z''

Theorem

For every $z \in \mathcal{D}$, $z'' \geq_T \pi(z)$.

Proof

- Fix Z and fix \vec{D} as in the previous theorem relative to $\Pi(Z)$ and the automorphism π^{-1}.
- Fix \vec{D}^* so that if G^* is \vec{D}^*-generic, then $\Pi(G^*)$ computes a \vec{D}-generic.
Bounding $\pi(z)$ by z''

Theorem

For every $z \in \mathcal{D}$, $z'' \geq_T \pi(z)$.

Proof

- Fix Z and fix \overrightarrow{D} as in the previous theorem relative to $\Pi(Z)$ and the automorphism π^{-1}.
- Fix \overrightarrow{D}^* so that if G^* is \overrightarrow{D}^*-generic, then $\Pi(G^*)$ computes a \overrightarrow{D}-generic.
- Let G^* be \overrightarrow{D}^*-generic and let G be a \overrightarrow{D}-generic recursive in $\Pi(G^*)$.

□
Bounding $\pi(z)$ by z''

Theorem

For every $z \in \mathcal{O}$, $z'' \geq_T \pi(z)$.

Proof

- Fix \mathcal{Z} and fix \mathcal{D} as in the previous theorem relative to $\Pi(\mathcal{Z})$ and the automorphism π^{-1}.
- Fix \mathcal{D}^* so that if G^* is \mathcal{D}^*-generic, then $\Pi(G^*)$ computes a \mathcal{D}-generic.
- Let G^* be \mathcal{D}^*-generic and let G be a \mathcal{D}-generic recursive in $\Pi(G^*)$.
- Conclude that $\Pi(\mathcal{Z}) \leq (\mathcal{Z} \oplus G)''$ and so $\Pi(\mathcal{Z}) \leq Z'' \oplus G$.

\square
Bounding $\pi(z)$ by z''

Theorem

For every $z \in \mathcal{D}$, $z'' \geq_T \pi(z)$.

Proof

- Fix Z and fix \vec{D} as in the previous theorem relative to $
\Pi(Z)$ and the automorphism π^{-1}.
- Fix \vec{D}^* so that if G^* is \vec{D}^*-generic, then $\Pi(G^*)$ computes a \vec{D}-generic.
- Let G^* be \vec{D}^*-generic and let G be a \vec{D}-generic recursive in $\Pi(G^*)$.
- Conclude that $\Pi(Z) \leq (Z \oplus G)''$ and so $\Pi(Z) \leq Z'' \oplus G$.
- G was any generic, so $\Pi(Z) \leq Z''$.

The cone above $0''$

Corollary

For any 2-generic set G,

$$\text{degree}(G) \vee 0'' \geq_T \pi(\text{degree}(G)).$$

Theorem

Suppose that $\pi : \mathcal{D} \overset{\sim}{\rightarrow} \mathcal{D}$.

- For all $x \in \mathcal{D}$, $x \vee 0'' \geq_T \pi(x)$.
- For all $x \in \mathcal{D}$, if $x \geq 0''$ then $x = \pi(x)$.

Proof

Degrees above $0''$ can be written as a join of 2-generic degrees.
Coding Z'' into $\Pi(Z) \oplus \Pi(G)$

Theorem

For every $Z \subseteq \omega$, there is a countable family of dense open sets \vec{D} such that for all \vec{D}-generic G,\
$\pi(\text{degree}(Z \oplus G))'' \geq_T \text{degree}(Z'')$

Proof

- Use $(H_j : j \in \omega)$ for \mathbb{N} and A_0 and A_1 for the successor.
Coding Z'' into $\Pi(Z) \oplus \Pi(G)$

Theorem

For every $Z \subseteq \omega$, there is a countable family of dense open sets \overrightarrow{D} such that for all \overrightarrow{D}-generic G, $\pi(\text{degree}(Z \oplus G))'' \geq_T \text{degree}(Z'')$

Proof

- Use $(H_j : j \in \omega)$ for \mathbb{N} and A_0 and A_1 for the successor.
- Find B_0 and B_1 to represent Z'':

 \[
 \Pi(B_0) \oplus \Pi(G_2) \geq_T F_{G_2}(H_j) \iff j \notin Z'' \\
 \Pi(B_1) \oplus \Pi(G_2) \geq_T F_{G_2}(H_j) \iff j \in Z''
 \]

 Modulate the potential codings of H_j into B_0 and B_1 using the Skolem functions for $j \in Z''$.
Invariance of the double-jump

Theorem

Suppose that $\pi : \mathcal{D} \to \mathcal{D}$. For all $z \in \mathcal{D}$, $z'' = \pi(z)''.

Proof

- Fix Z and a sufficiently generic G^* so that $\Pi^{-1}(G^*)$ bounds a G which is itself sufficiently generic for the previous theorem to apply.
Theorem

Suppose that \(\pi : \mathcal{D} \sim \to \mathcal{D} \). For all \(z \in \mathcal{D} \), \(z'' = \pi(z)'' \).

Proof

- Fix \(Z \) and a sufficiently generic \(G^* \) so that \(\Pi^{-1}(G^*) \) bounds a \(G \) which is itself sufficiently generic for the previous theorem to apply.
- Then, \(\Pi(Z \oplus G)'' \geq_T Z'' \).
Invariance of the double-jump

Theorem

Suppose that \(\pi : \mathcal{D} \sim \mathcal{D} \). For all \(z \in \mathcal{D} \), \(z'' = \pi(z)'' \).

Proof

- Fix \(Z \) and a sufficiently generic \(G^* \) so that \(\Pi^{-1}(G^*) \) bounds a \(G \) which is itself sufficiently generic for the previous theorem to apply.
- Then, \(\Pi(Z \oplus G)'' \preceq_T \Pi(Z)'' \).
- Observe, \(\Pi(Z \oplus G)'' \preceq_T \Pi(Z)'' \oplus G^* \).
Invariance of the double-jump

Theorem

Suppose that $\pi : \mathcal{D} \xrightarrow{\sim} \mathcal{D}$. For all $z \in \mathcal{D}$, $z'' = \pi(z)''$.

Proof

- Fix Z and a sufficiently generic G^* so that $\Pi^{-1}(G^*)$ bounds a G which is itself sufficiently generic for the previous theorem to apply.
- Then, $\Pi(Z \oplus G)'' \succeq_T Z''$.
- Observe, $\Pi(Z \oplus G)'' \preceq_T (\Pi(Z) \oplus G^*)'' \preceq_T \Pi(Z)'' \oplus G^*$.
- Since G^* was any sufficiently generic, $\Pi(Z)'' \succeq_T Z''$. Similarly, $Z'' \succeq_T \Pi(Z)''$.
Theorem

The relation $y = x''$ is invariant under π.

Proof

Suppose that $y = x''$.

- Since $y \geq_T 0''$, $\pi(y) = y$.
Invariance of the double-jump

Theorem

The relation $y = x''$ is invariant under π.

Proof

Suppose that $y = x''$.

- Since $y \geq_T 0''$, $\pi(y) = y$.
- By the previous theorem, $x'' = \pi(x)''$.
Invariance of the double-jump

Theorem

The relation $y = x''$ is invariant under π.

Proof

Suppose that $y = x''$.

- Since $y \geq_T 0''$, $\pi(y) = y$.
- By the previous theorem, $x'' = \pi(x)''$.
- Consequently, $\pi(y) = \pi(x)''$.
Invariance of the double-jump

Theorem

The relation $y = x''$ is invariant under π.

Proof

Suppose that $y = x''$.

- Since $y \geq_T 0''$, $\pi(y) = y$.
- By the previous theorem, $x'' = \pi(x)''$.
- Consequently, $\pi(y) = \pi(x)''$.

By the same argument, if $\pi(y) = \pi(x)''$ then $y = x''$.

□
Representing $Aut(\mathfrak{D})$ by arithmetic functions

Theorem

Suppose that $\pi: \mathfrak{D} \sim \mathfrak{D}$.

- There is a recursive function $\{e\}(X,Y)$ such that for all G, if G is 5-generic, then $\pi(\text{degree}(G))$ is represented by $\{e\}(G \oplus \emptyset'')$.

- There is an arithmetic function $F: 2^\omega \rightarrow 2^\omega$ such that for all $X \in 2^\omega$, $\pi(\text{degree}(X))$ is represented by $F(X)$.

Proof

Replay the proof that π is continuously represented using the new information that $\pi(\text{degree}(G)) \leq G''$. There is a fixed reduction which works for all 5-generic G's.

Since the 5-generics generate \mathfrak{D}, the representation on 5-generic propagates to a representation everywhere.
Consequences

Theorem

\(\text{AUT}(\mathcal{D}) \) is countable.
Consequences

Theorem

\ \textit{\textit{AUT}(D) is countable.}

Theorem

\textit{If g is 5-generic and }\pi : D \sim D, \textit{ then }\pi \textit{ is determined by its action on } g.