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Persistent Autormorphisms
review

Definition
An automorphism � of a countable ideal I is persistent if for
every degree x there is a countable ideal I1 such that

I x 2 I1 and I � I1;
I there is an automorphism �1 of I1 such that the restriction

of �1 to I is equal to �.

We have shown that persistent automorphisms are locally
presented and that persistent automorphisms of ideals which
contain 00 have persistent extensions. Thus, given a persistent
automorphism � : I

�
!I, a countable jump ideal J extending I,

and a presentation J of J , we can find an extension of � to J
which is arithmetic in J .



Persistent Autormorphisms
absoluteness

Theorem
The property I is a representation of a countable ideal I,
00 2 I, and R is a presentation of a persistent
automorphism � of I is �1

1.

Proof
� is persistent if and only if for every presentation J of a jump
ideal J extending I, there is an arithmetic in J extension of �
to J . This property is �1

1.

Corollary

The properties R is a presentation of a persistent
automorphism and There is a countable map � : I

�
!I such

that 00 2 I, � is persistent and not equal to the identity are
absolute between well-founded models of ZFC.



Persistent Autormorphisms
model theoretically

Let T be the fragment of ZFC in which we include only the
instances of replacement and comprehension in which the
defining formula is �1.

Definition
Suppose that M = (M;2M) is a model of T .

1. M is an !-model if NM is isomorphic to the standard
model of arithmetic.

2. M is well-founded if the binary relation 2M is
well-founded. That is to say that there is no infinite
sequence (mi : i 2 N) of elements of M such that for all i,
mi+1 2

M mi.



Persistent Autormorphisms
model theoretically

Theorem
Suppose that M is an !-model of T . Let I be an element of
M such that

M j= I is a countable ideal in D such that 00 2 I.

Then, every persistent automorphism of I is also an
element of M.

Proof
M is closed under arithmetic definability.



Persistent Autormorphisms
model theoretically

Corollary

Suppose that M is an !-model of T and that � and I are
elements of M such that 00 2 I; � : I

�
!I; and I is countable

in M. Then,

� is persistent =)M j= � is persistent:

Proof
Persistent automorphisms extend persistently. Hence, their
extensions belong to M.



Generic Persistence

We now extend the notion of persistence to uncountable ideals.
In what follows, V is the universe of sets and G is a V -generic
filter for some partial order in V .

Definition
Suppose that I is an ideal in D and � is an automorphism of I.
We say that � is generically persistent if there is a generic
extension V [G] of V in which I is countable and � is persistent.



Generic Persistence
invariance under partial order

Theorem
Suppose that � : I

�
!I is generically persistent. If V [G] is a

generic extension of V in which I is countable then � is
persistent in V [G].

Proof
Generics for any two forcings can be realized simultaneously.
Apply absoluteness.



Applications to Aut(D)

Theorem
Suppose that � : D

�
!D. Then, � is generically persistent.

Proof
If not, then the failure of � to be generically persistent would
reflect to a countable well-founded model M. Then, we could
add a generic counting of DM to M to obtain M[G] in which
� � DM is not persistent. Contradiction to the persistence of
� � DM and the absoluteness of persistence.



Applications to Aut(D)
definability of automorphisms

Theorem
Suppose that V [G] is a generic extension of V . Suppose that
� is an element of V [G] which maps that Turing degrees in
V automorphically to itself (that is, � : DV �

!DV ). If � is
generically persistent in V [G], then � is an element of
L(RV ). That is, � is constructible from the set of reals in V .

Proof
� is generically persistent, so � is arithmetically definable in
any generic counting of DV . Consequently, � must belong to
the ground model for such countings, namely L(RV ).



Applications to Aut(D)
global extension of persistent automorphisms

Theorem
Suppose that 00 is an element of I and � : I

�
!I is

persistent. Then � can be extended to a global
automorphism � : D

�
!D.

Proof
� can be persistently extended to DV in a generic extension of
V . This extension belongs to L[RV ].

Corollary

The statement There is a non-trivial automorphism of the
Turing degrees is equivalent to a �1

2 statement. It is
therefore absolute between well-founded models of ZFC.



Applications to Aut(D)
lifting automorphisms to generic extensions

Theorem
Let � be an automorphism of D. Suppose that V [G] is a
generic extension of V . Then, there is an extension of � in
V [G] to an automorphism of DV [G], the Turing degrees in
V [G].

Proof
There is a persistent extension �1 of � in any generic extension
of V [G] in which DV [G] is countable. This �1 belongs to
V [G].



Representing Automorphisms

Definition
Given two functions � : D ! D and t : 2! ! 2!, we say that t
represents � if for every degree x and every set X in x, the
Turing degree of t(X) is equal � (x).

We will analyze the behavior of an automorphism of D in terms
of the action of its extensions on the degrees of the generic reals.



Representing Automorphisms
continuity on sufficiently generic sets

Theorem
Suppose that � : D

�
!D. There is a countable family

�!
D of

dense open subsets of 2<! such that � is represented by a
continuous function f on the set

�!
D-generic reals.

The proof has several steps, which we will sketch. Also, we
introduce the notation �(Z) for a representative of
�(degree(Z)).

1. Let V [G] be a generic extension of V obtained by adding
!1-many Cohen reals and let �1 be an extension of � to DV [G].

2. Since �1 2 L[RV [G]], fix X 2 RV [G] so that �1 is ordinal
definable from X in L[RV [G]]. Work in V [X] and note that V [G]
is a generic extension of V [X] obtained by adding !1-many
Cohen reals. (The forcing factors.)



Representing Automorphisms
continuity on sufficiently generic sets

3. Consider a set G, of degree g, which is Cohen generic over
V [X]. �1(g) is arithmetically definable relative to g and ��1(00).
We can find an e and a k such that it is forced that �1(g) is
represented by feg((G���1(;0))(k)). Since G is Cohen generic,
we can assume that e has the form feg(G� ��1(;0)(k)). Thus,
�1 is continuously represented on the set of V [X]-generic reals.

4. We make an aside to exploit a phenomenon first observed by
Jockusch and Posner, 1981: For any

�!
D , the

�!
D -generic degrees

generate D under meet and join. We fix a mechanism by which
this coding can be realized.



Join Coding
definition

Let G and Y be given. Define C(Y;G) by injecting the values of
Y into Geven at those places where Godd is not zero.

Godd
n0 n1 n2. . .

Geven . . .

Y (0) Y (1) Y (2). . .C(Y;G)



Join Coding
definition

Let G and Y be given. Define C(Y;G) by injecting the values of
Y into Geven at those places where Godd is not zero.

Godd
n0 n1 n2. . .

Geven . . .

Y (0) Y (1) Y (2). . .C(Y;G)



Join Coding
degree equivalence and genericity

Godd
n0 n1 n2. . .

Geven . . .

Y (0) Y (1) Y (2). . .C(Y;G)

Lemma
If Godd is infinite, then C(Y;G)�G �T Y �G.

Lemma
For any dense open subset of 2<!, D, there is a dense open
set D�, such that for all D�-generic G and all Y , C(Y;G) is
D-generic. In particular, for all G, Y , and Z, if G is
generic over V [Z], then so is C(Y;G).



Join Coding
degree equivalence and genericity

Godd
n0 n1 n2. . .

Geven . . .

Y (0) Y (1) Y (2). . .C(Y;G)

Lemma
If Godd is infinite, then C(Y;G)�G �T Y �G.

Lemma
For any dense open subset of 2<!, D, there is a dense open
set D�, such that for all D�-generic G and all Y , C(Y;G) is
D-generic. In particular, for all G, Y , and Z, if G is
generic over V [Z], then so is C(Y;G).



Join Coding
generating D

Definition
For Y 2 2!, let (Y ) denote the set fZ : Z �T Y g.

4. (continued) Let Y be given with Turing degree y, and let G1

and G2 be mutually Cohen generic over V [X�Y ]. We can write
the ideal generated by Y as the meet of joins of generic ideals.

(C(Y;G1)�G1) \ (C(Y;G2)�G2) = (Y �G1) \ (Y �G2)

= (Y )



Join Coding
generating D

Definition
For Y 2 2!, let (Y ) denote the set fZ : Z �T Y g.

4. (continued) Let Y be given with Turing degree y, and let G1

and G2 be mutually Cohen generic over V [X�Y ]. We can write
the ideal generated by Y as the meet of joins of generic ideals.

(C(Y;G1)�G1) \ (C(Y;G2)�G2) = (Y �G1) \ (Y �G2)

= (Y )



Representing Automorphisms
pulling back to arithmetic generics

5. The previous equality is preserved by �1, as represented on
generic reals.

fZ : the degree of Z belongs to (��(y))g =�
feg(C(Y;G1)� ��1(;0)(k))� feg(G1 � ��1(;0)(k))

�

\�
feg(C(Y;G2)� ��1(;0)(k))� feg(G2 � ��1(;0)(k))

�

When Y is also generic:

�
feg(Y � ��1(;0)(k))

�
=

�
feg(C(Y;G1)� ��1(;0)(k))� feg(G1 � ��1(;0)(k))

�

\�
feg(C(Y;G2)� ��1(;0)(k))� feg(G2 � ��1(;0)(k))

�



Representing Automorphisms
pulling back to arithmetic generics
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Representing Automorphisms
pulling back to arithmetic generics

5. (continued) The previous equation

�
feg(Y � ��1(;0)(k))

�
=

�
feg(C(Y;G1)� ��1(;0)(k))� feg(G1 � ��1(;0)(k))

�

\�
feg(C(Y;G2)� ��1(;0)(k))� feg(G2 � ��1(;0)(k))

�

expresses an arithmetic identity between generic reals. It holds
when Y is arithmetically generic in V and G1 and G2 are
V [X]-generic. In this case, the right-hand-side represents
(�(degree(Y ))). Thus, we have an arithmetic (hence
continuous) representation of � on all arithmetically generic
reals.

Corollary

If � : D
�
!D then � has a Borel representation.



Representing Automorphisms
pulling back to arithmetic generics
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Arithmetic Representations
images of generic degrees

Theorem
Suppose that � : D

�
!D and that

�!
D� is a countable collection

of dense open subsets of 2<!. There is a countable
collection of dense open subsets of 2<!,

�!
D , such that for all

�!
D-generic reals G there is a G� such that G� is

�!
D
�

-generic
and the degree of G� is less than or equal to �(degree(G))

I We chose
�!
D0 as above so that we have a continuous

representation of � on the collection of
�!
D0-generic reals.

I We show that for any sufficiently generic real G,
�(degree(G)) computes a function which has no a priori
bound on its rate of growth. This reflects the fact that
arbitrarily much of C(Y;G) can be specified between
injecting values of Y .



Arithmetic Representations
images of generic degrees

Theorem
Suppose that � : D

�
!D and that
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Arithmetic Representations
images of generic degrees

I We define a real G� by comparing the values of several of
these functions. Hence, for any sufficiently generic G, G�

will be defined at every argument and will be recursive in
any representative of �(degree(G)).

I We show that for any dense open set D� and any finite
condition p, there is an extension q of p such that for any
G extending q, G� meets D�.

I At the end of the analysis, we calculate the genericity
needed on G to ensure that G� is

�!
D -generic.



Evaluating relative to a generic degree

Theorem
There is a family of dense open sets

�!
D and a continuous

function F (G;X) such that for all
�!
D-generic G,

(8X)[�(degree(X �G)) = degree(F (G;X)� �(G))]

Proof
Apply the continuous representation on generic reals to
C(X;G).



Evaluating relative to a generic degree

Theorem
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Proof
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Evaluating relative to a generic degree

Theorem
There is a family of dense open sets

�!
D and an injective

continuous function F (G;X) such that for all
�!
D-generic G,

if �(G) is a representative of �(degree(G)), then

(8X)[�(degree(X �G)) = degree(F (G;X)� �(G))]

Proof
Use Godd to obtain a perfect tree of mutually generic reals. Let
X pick a path T (X). Use the previous F on Geven and
C(T (X); Geven)).
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