Turing Degrees and Definability of the Jump

Theodore A. Slaman

University of California, Berkeley

July, 2005

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Outline

Lecture 1

- Forcing in arithmetic
- Coding and decoding theorems
- Automorphisms of countable ideals
- Persistence
- Lecture 2
 - Absoluteness
 - Generic Persistence
 - Definable representations of automorphisms

ション ふゆ マ キャット しょう くしゃ

Persistent Autormorphisms

Definition

An automorphism ρ of a countable ideal \mathcal{I} is persistent if for every degree x there is a countable ideal \mathcal{I}_1 such that

- $\blacktriangleright \ x \in \mathcal{I}_1 \text{ and } \mathcal{I} \subseteq \mathcal{I}_1;$
- ► there is an automorphism ρ₁ of *I*₁ such that the restriction of ρ₁ to *I* is equal to ρ.

We have shown that persistent automorphisms are locally presented and that persistent automorphisms of ideals which contain 0' have persistent extensions. Thus, given a persistent automorphism $\rho: \mathcal{I} \xrightarrow{\sim} \mathcal{I}$, a countable jump ideal \mathcal{J} extending \mathcal{I} , and a presentation J of \mathcal{J} , we can find an extension of ρ to \mathcal{J} which is arithmetic in J.

Persistent Autormorphisms

absoluteness

Theorem

The property I is a representation of a countable ideal \mathcal{I} , $0' \in \mathcal{I}$, and R is a presentation of a persistent automorphism ρ of \mathcal{I} is Π_1^1 .

Proof

 ρ is persistent if and only if for every presentation J of a jump ideal \mathcal{J} extending \mathcal{I} , there is an arithmetic in J extension of ρ to \mathcal{J} . This property is Π_1^1 .

Corollary

The properties R is a presentation of a persistent automorphism and There is a countable map $\rho: \mathcal{I} \xrightarrow{\sim} \mathcal{I}$ such that $0' \in \mathcal{I}$, ρ is persistent and not equal to the identity are absolute between well-founded models of ZFC.

Persistent Autormorphisms model theoretically

Let T be the fragment of ZFC in which we include only the instances of replacement and comprehension in which the defining formula is Σ_1 .

Definition

Suppose that $\mathcal{M} = (M, \in^{\mathcal{M}})$ is a model of T.

- 1. \mathcal{M} is an ω -model if $\mathbb{N}^{\mathcal{M}}$ is isomorphic to the standard model of arithmetic.
- M is well-founded if the binary relation ∈^M is well-founded. That is to say that there is no infinite sequence (m_i : i ∈ N) of elements of M such that for all i, m_{i+1} ∈^M m_i.

(日) (同) (三) (三) (三) (○) (○)

Persistent Autormorphisms model theoretically

Theorem

Suppose that \mathcal{M} is an ω -model of T. Let \mathcal{I} be an element of \mathcal{M} such that

 $\mathcal{M} \models \mathcal{I}$ is a countable ideal in \mathfrak{D} such that $0' \in \mathcal{I}$.

うつん 川川 スポットボット 大型マントロマ

Then, every persistent automorphism of \mathcal{I} is also an element of \mathcal{M} .

Proof

 \mathfrak{M} is closed under arithmetic definability.

Persistent Autormorphisms model theoretically

Corollary

Suppose that \mathcal{M} is an ω -model of T and that ρ and \mathcal{I} are elements of \mathcal{M} such that $0' \in \mathcal{I}, \ \rho : \mathcal{I} \xrightarrow{\sim} \mathcal{I}, \ and \mathcal{I}$ is countable in \mathcal{M} . Then,

$$\rho$$
 is persistent $\Longrightarrow \mathcal{M} \models \rho$ is persistent.

Proof

Persistent automorphisms extend persistently. Hence, their extensions belong to $\mathfrak{M}.$

うつん 川川 スポットボット 大型マントロマ

We now extend the notion of persistence to uncountable ideals. In what follows, V is the universe of sets and G is a V-generic filter for some partial order in V.

Definition

Suppose that \mathcal{I} is an ideal in \mathfrak{D} and ρ is an automorphism of \mathcal{I} . We say that ρ is generically persistent if there is a generic extension V[G] of V in which \mathcal{I} is countable and ρ is persistent.

Generic Persistence invariance under partial order

Theorem

Suppose that $\rho: \mathcal{I} \xrightarrow{\sim} \mathcal{I}$ is generically persistent. If V[G] is a generic extension of V in which I is countable then ρ is persistent in V[G].

Proof

Generics for any two forcings can be realized simultaneously. Apply absoluteness.

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□ ◆ ○ ◆

Applications to $Aut(\mathfrak{D})$

Theorem

Suppose that $\pi: \mathfrak{D} \xrightarrow{\sim} \mathfrak{D}$. Then, π is generically persistent.

Proof

If not, then the failure of π to be generically persistent would reflect to a countable well-founded model \mathfrak{M} . Then, we could add a generic counting of $\mathfrak{D}^{\mathfrak{M}}$ to \mathfrak{M} to obtain $\mathfrak{M}[G]$ in which $\pi \upharpoonright \mathfrak{D}^{\mathfrak{M}}$ is not persistent. Contradiction to the persistence of $\pi \upharpoonright \mathfrak{D}^{\mathfrak{M}}$ and the absoluteness of persistence.

うつん 川川 スト・エリ・ 上目・ うみつ

Applications to $Aut(\mathfrak{D})$

Theorem

Suppose that V[G] is a generic extension of V. Suppose that π is an element of V[G] which maps that Turing degrees in V automorphically to itself (that is, $\pi : \mathfrak{D}^V \xrightarrow{\sim} \mathfrak{D}^V$). If π is generically persistent in V[G], then π is an element of $L(\mathbb{R}^V)$. That is, π is constructible from the set of reals in V.

Proof

 π is generically persistent, so π is arithmetically definable in any generic counting of \mathfrak{D}^V . Consequently, π must belong to the ground model for such countings, namely $L(\mathbb{R}^V)$.

Applications to $Aut(\mathfrak{D})$ global extension of persistent automorphisms

Theorem

Suppose that 0' is an element of \mathcal{I} and $\rho : \mathcal{I} \xrightarrow{\sim} \mathcal{I}$ is persistent. Then ρ can be extended to a global automorphism $\pi : \mathfrak{D} \xrightarrow{\sim} \mathfrak{D}$.

Proof

 ρ can be persistently extended to \mathfrak{D}^V in a generic extension of V. This extension belongs to $L[\mathbb{R}^V]$.

Corollary

The statement There is a non-trivial automorphism of the Turing degrees is equivalent to a Σ_2^1 statement. It is therefore absolute between well-founded models of ZFC.

Applications to $Aut(\mathfrak{D})$ lifting automorphisms to generic extensions

Theorem

Let π be an automorphism of \mathfrak{D} . Suppose that V[G] is a generic extension of V. Then, there is an extension of π in V[G] to an automorphism of $\mathfrak{D}^{V[G]}$, the Turing degrees in V[G].

Proof

There is a persistent extension π_1 of π in any generic extension of V[G] in which $\mathfrak{D}^{V[G]}$ is countable. This π_1 belongs to V[G].

うつん 川川 スポットボット 大型マントロマ

Representing Automorphisms

Definition

Given two functions $\tau : \mathfrak{D} \to \mathfrak{D}$ and $t : 2^{\omega} \to 2^{\omega}$, we say that t represents τ if for every degree x and every set X in x, the Turing degree of t(X) is equal $\tau(x)$.

We will analyze the behavior of an automorphism of \mathfrak{D} in terms of the action of its extensions on the degrees of the generic reals.

うつん 川川 スポットボット 大型マントロマ

Representing Automorphisms

continuity on sufficiently generic sets

Theorem

Suppose that $\pi: \mathfrak{D} \xrightarrow{\sim} \mathfrak{D}$. There is a countable family \overrightarrow{D} of dense open subsets of $2^{<\omega}$ such that π is represented by a continuous function f on the set \overrightarrow{D} -generic reals.

The proof has several steps, which we will sketch. Also, we introduce the notation $\Pi(Z)$ for a representative of $\pi(degree(Z))$.

 Let V[G] be a generic extension of V obtained by adding ω₁-many Cohen reals and let π₁ be an extension of π to D^{V[G]}.
 Since π₁ ∈ L[ℝ^{V[G]}], fix X ∈ ℝ^{V[G]} so that π₁ is ordinal definable from X in L[ℝ^{V[G]}]. Work in V[X] and note that V[G] is a generic extension of V[X] obtained by adding ω₁-many Cohen reals. (The forcing factors.)

Representing Automorphisms continuity on sufficiently generic sets

Consider a set G, of degree g, which is Cohen generic over V[X]. π₁(g) is arithmetically definable relative to g and π⁻¹(0'). We can find an e and a k such that it is forced that π₁(g) is represented by {e}((G ⊕ Π⁻¹(Ø'))^(k)). Since G is Cohen generic, we can assume that e has the form {e}(G ⊕ Π⁻¹(Ø')^(k)). Thus, π₁ is continuously represented on the set of V[X]-generic reals.
 We make an aside to exploit a phenomenon first observed by Jockusch and Posner, 1981: For any D, the D-generic degrees

generate \mathfrak{D} under meet and join. We fix a mechanism by which this coding can be realized.

(日) (同) (三) (三) (三) (○) (○)

Join Coding definition

Let G and Y be given. Define $\mathbb{C}(Y,G)$ by injecting the values of Y into G_{even} at those places where G_{odd} is not zero.

ション ふゆ マ キャット しょう くしゃ

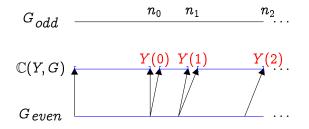
 G_{odd} ______ n_0 n_1 n_2 ...

*G*even

Join Coding definition

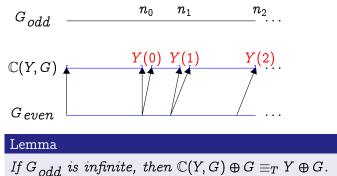
Let G and Y be given. Define $\mathbb{C}(Y,G)$ by injecting the values of Y into G_{even} at those places where G_{odd} is not zero.

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - のく⊙



Join Coding

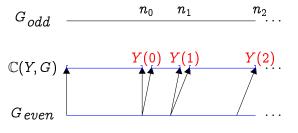
degree equivalence and genericity



▲ロト ▲圖ト ▲画ト ▲画ト 三連 - のへで

Join Coding

degree equivalence and genericity



Lemma

If G_{odd} is infinite, then $\mathbb{C}(Y,G) \oplus G \equiv_T Y \oplus G$.

Lemma

For any dense open subset of $2^{<\omega}$, D, there is a dense open set D^* , such that for all D^* -generic G and all Y, $\mathbb{C}(Y,G)$ is D-generic. In particular, for all G, Y, and Z, if G is generic over V[Z], then so is $\mathbb{C}(Y,G)$. $\underset{\text{generating }\mathfrak{D}}{\text{Join Coding}}$

Definition

For $Y \in 2^{\omega}$, let (Y) denote the set $\{Z : Z \leq_T Y\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\underset{\text{generating }\mathfrak{D}}{\text{Join Coding}}$

Definition

For $Y \in 2^{\omega}$, let (Y) denote the set $\{Z : Z \leq_T Y\}$.

4. (continued) Let Y be given with Turing degree y, and let G_1 and G_2 be mutually Cohen generic over $V[X \oplus Y]$. We can write the ideal generated by Y as the meet of joins of generic ideals.

 $(\mathbb{C}(Y,G_1) \oplus G_1) \cap (\mathbb{C}(Y,G_2) \oplus G_2) = (Y \oplus G_1) \cap (Y \oplus G_2)$ = (Y)

うつん 川川 スポットボット 大型マントロマ

Representing Automorphisms pulling back to arithmetic generics

5. The previous equality is preserved by π_1 , as represented on generic reals.

$$egin{aligned} \{Z: ext{the degree of } Z ext{ belongs to } (\pi^*(y))\} = \ & \left(\{e\}(\mathbb{C}(Y,G_1)\oplus\Pi^{-1}(\emptyset')^{(k)})\oplus\{e\}(G_1\oplus\Pi^{-1}(\emptyset')^{(k)})
ight) \ & igcap_{} \left(\{e\}(\mathbb{C}(Y,G_2)\oplus\Pi^{-1}(\emptyset')^{(k)})\oplus\{e\}(G_2\oplus\Pi^{-1}(\emptyset')^{(k)})
ight) \end{aligned}$$

Representing Automorphisms pulling back to arithmetic generics

5. The previous equality is preserved by π_1 , as represented on generic reals.

$$\begin{aligned} \{Z: \text{the degree of } Z \text{ belongs to } (\pi^*(y))\} &= \\ \left(\{e\}(\mathbb{C}(Y,G_1)\oplus\Pi^{-1}(\emptyset')^{(k)})\oplus\{e\}(G_1\oplus\Pi^{-1}(\emptyset')^{(k)})\right) \\ &\bigcap \left(\{e\}(\mathbb{C}(Y,G_2)\oplus\Pi^{-1}(\emptyset')^{(k)})\oplus\{e\}(G_2\oplus\Pi^{-1}(\emptyset')^{(k)})\right) \end{aligned}$$

When Y is also generic:

$$\begin{split} \left(\{e\}(Y \oplus \Pi^{-1}(\emptyset')^{(k)})\right) &= \\ \left(\{e\}(\mathbb{C}(Y,G_1) \oplus \Pi^{-1}(\emptyset')^{(k)}) \oplus \{e\}(G_1 \oplus \Pi^{-1}(\emptyset')^{(k)})\right) \\ & \bigcap \left(\{e\}(\mathbb{C}(Y,G_2) \oplus \Pi^{-1}(\emptyset')^{(k)}) \oplus \{e\}(G_2 \oplus \Pi^{-1}(\emptyset')^{(k)})\right) \end{split}$$

Representing Automorphisms pulling back to arithmetic generics

5. (continued) The previous equation

$$\begin{split} \{e\}(Y \oplus \Pi^{-1}(\emptyset')^{(k)}) &= \\ & \left(\{e\}(\mathbb{C}(Y,G_1) \oplus \Pi^{-1}(\emptyset')^{(k)}) \oplus \{e\}(G_1 \oplus \Pi^{-1}(\emptyset')^{(k)})\right) \\ & \bigcap \left(\{e\}(\mathbb{C}(Y,G_2) \oplus \Pi^{-1}(\emptyset')^{(k)}) \oplus \{e\}(G_2 \oplus \Pi^{-1}(\emptyset')^{(k)})\right) \end{split}$$

expresses an arithmetic identity between generic reals. It holds when Y is arithmetically generic in V and G_1 and G_2 are V[X]-generic. In this case, the right-hand-side represents $(\pi(degree(Y)))$. Thus, we have an arithmetic (hence continuous) representation of π on all arithmetically generic reals.

(日) (日) (日) (日) (日) (日) (日) (日)

Representing Automorphisms pulling back to arithmetic generics

5. (continued) The previous equation

$$\begin{split} \{e\}(Y \oplus \Pi^{-1}(\emptyset')^{(k)}) &= \\ & \left(\{e\}(\mathbb{C}(Y,G_1) \oplus \Pi^{-1}(\emptyset')^{(k)}) \oplus \{e\}(G_1 \oplus \Pi^{-1}(\emptyset')^{(k)})\right) \\ & \bigcap \left(\{e\}(\mathbb{C}(Y,G_2) \oplus \Pi^{-1}(\emptyset')^{(k)}) \oplus \{e\}(G_2 \oplus \Pi^{-1}(\emptyset')^{(k)})\right) \end{split}$$

expresses an arithmetic identity between generic reals. It holds when Y is arithmetically generic in V and G_1 and G_2 are V[X]-generic. In this case, the right-hand-side represents $(\pi(degree(Y)))$. Thus, we have an arithmetic (hence continuous) representation of π on all arithmetically generic reals.

Corollary

If $\pi : \mathfrak{D} \xrightarrow{\sim} \mathfrak{D}$ then π has a Borel representation.

Arithmetic Representations

images of generic degrees

Theorem

Suppose that $\pi: \mathfrak{D} \xrightarrow{\sim} \mathfrak{D}$ and that \overrightarrow{D}^* is a countable collection of dense open subsets of $2^{<\omega}$. There is a countable collection of dense open subsets of $2^{<\omega}$, \overrightarrow{D} , such that for all \overrightarrow{D} -generic reals G there is a G^* such that G^* is \overrightarrow{D}^* -generic and the degree of G^* is less than or equal to $\pi(degree(G))$

・ロト ・個ト ・ヨト ・ヨト 三星

Arithmetic Representations

images of generic degrees

Theorem

Suppose that $\pi: \mathfrak{D} \xrightarrow{\sim} \mathfrak{D}$ and that \overrightarrow{D}^* is a countable collection of dense open subsets of $2^{<\omega}$. There is a countable collection of dense open subsets of $2^{<\omega}$, \overrightarrow{D} , such that for all \overrightarrow{D} -generic reals G there is a G^{*} such that G^{*} is \overrightarrow{D}^* -generic and the degree of G^{*} is less than or equal to $\pi(degree(G))$

- We chose \overrightarrow{D}_0 as above so that we have a continuous representation of π on the collection of \overrightarrow{D}_0 -generic reals.
- We show that for any sufficiently generic real G, π(degree(G)) computes a function which has no a priori bound on its rate of growth. This reflects the fact that arbitrarily much of C(Y, G) can be specified between injecting values of Y.

Arithmetic Representations images of generic degrees

- ▶ We define a real G* by comparing the values of several of these functions. Hence, for any sufficiently generic G, G* will be defined at every argument and will be recursive in any representative of π(degree(G)).
- We show that for any dense open set D* and any finite condition p, there is an extension q of p such that for any G extending q, G* meets D*.

(日) (日) (日) (日) (日) (日) (日) (日)

► At the end of the analysis, we calculate the genericity needed on G to ensure that G^{*} is D⁻generic.

Theorem

There is a family of dense open sets \overrightarrow{D} and a continuous function F(G, X) such that for all \overrightarrow{D} -generic G,

 $(\forall X)[\pi(\mathit{degree}(X \oplus G)) = \mathit{degree}(F(G, X) \oplus \Pi(G))]$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うらう

Theorem

There is a family of dense open sets \overrightarrow{D} and a continuous function F(G, X) such that for all \overrightarrow{D} -generic G,

 $(\forall X)[\pi(\mathit{degree}(X\oplus G)) = \mathit{degree}(F(G,X)\oplus \Pi(G))]$

うつん 川川 スト・エリ・ 上目・ うみつ

Proof

Apply the continuous representation on generic reals to $\mathbb{C}(X, G)$.

Theorem

There is a family of dense open sets \overrightarrow{D} and an injective continuous function F(G, X) such that for all \overrightarrow{D} -generic G, if $\Pi(G)$ is a representative of $\pi(\text{degree}(G))$, then

 $(orall X)[\pi(\mathit{degree}(X\oplus G))=\mathit{degree}(F(G,X)\oplus\Pi(G))]$

Theorem

There is a family of dense open sets \overrightarrow{D} and an *injective* continuous function F(G, X) such that for all \overrightarrow{D} -generic G, if $\Pi(G)$ is a representative of $\pi(\text{degree}(G))$, then

 $(orall X)[\pi(\mathit{degree}(X\oplus G)) = \mathit{degree}(F(G,X)\oplus \Pi(G))]$

Proof

Use G_{odd} to obtain a perfect tree of mutually generic reals. Let X pick a path T(X). Use the previous F on G_{even} and $\mathbb{C}(T(X), G_{even})$.

うつん 川川 スト・エリ・ 上目・ うみつ