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Overview

I Interpreting models within degree structures
I Techniques and their applications for the Turing degrees
I Joy and woe of trying the same for the �-degrees



Interpretations of First Order Structures

Let M and N be first order structures with finite signature.

Definition
An interpretation of N in M consists of the following.

I Specifying the universe of NM.

I A formula  1 in the language of M defining a subset NM

of M .
I A formula  2 in the language of M defining an equivalence

relation � on N
I Specifying the constants (cj), functions (fj), and relations

(Rj) of NM.

I Formulas  cj ,  fj , and  Rj
defining �-equivalence classes

cMj , �-invariant functions fMj on NM, and �-invariant
relations RMj on NM, respectively.

I Representing N .

I With the property that N �!(N= �; cMj ; fMj ; RMj ).
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Interpretations of First Order Structures

Proposition

If there is an interpretation of N in M, then there is a
recursive translation from Th(N ), the first order theory of
N , to Th(M).

One can also draw conclusions from the ability to interpret a
class of structures within M.

I Say that N is interpretable in M using parameters if the
formulas used in the interpretation of the previous frame
mention finitely many fixed elements of M .

I Keeping the formulas fixed and varying the parameters, we
obtain a family of structures uniformly interpreted in M.

I There there is a translation from the common theory of the
models in this family to Th(M).
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Interpretations of First Order Structures
initial segments

Theorem (Spector)

Every countable initial segment of the Turing degrees is the
intersection of two principal ideals, i.e. has an exact pair.

Theorem (Lachlan and Lebeuf)

Every countable upper-semi-lattice is isomorphic to an
initial segment of the Turing degrees.

Corollary (Follows from earlier results of Lachlan)

The theory of the Turing degrees is undecidable.
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Interpretations of First Order Structures
second order theories

The partial order of the Turing degrees is naturally interpreted
in second order arithmetic. Consequently, Th(D) is recursive in
the second order theory of arithmetic.

To reverse the comparison and interpret second order
arithmetic in D, we need to interpret second order quantifiers
over a countable interpreted model.

Theorem (Slaman and Woodin)

Every countable relation on D is uniformly definable from
finitely many parameters in D.
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Interpretations of First Order Structures
the degree of the theory of D

Using the coding theorem for countable relations, the following
are available to us.

I A uniform method with which to interpret the countable
structure N using parameters.

I A D-definable test (well-foundedness) to recognize the
standard models so coded.

I A uniform method with which to interpret set quantifiers
over a countable coded model.

Theorem (Simpson)

The first order theory of D is recursively isomorphic to the
second order theory of arithmetic.

Earlier proofs by Simpson and Nerode-Shore used
interpretations of first order arithmetic by initial segments and
Spector’s exact pair theorem to interpret set quantifiers.
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Interpretations of First Order Structures
local structure in D

Observation
Information about A is apparent in the structures which are
coded by parameters arithmetically definable from A.

Proof
There are parameters �!p which code (N; A) such that �!p is
arithmetic in A.

If we can define a reasonable definability-neighbor of a within
D, then we can interpret a countable set of reals which includes
a representative of a.
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Interpretations of First Order Structures
local structure in D

Theorem (Jockusch and Shore)

The set of degrees arithmetic in a is definable from a, using
the analysis of bases for cones of minimal covers.

Theorem (Shore’s Refutation of Rogers’s Homogeneity
Conjecture)

D and D(�T O) are not isomorphic.

Proof
The reals interpreted using parameters arithmetic in O and
above O contains an element which is not arithmetic.
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The Bi-interpretability Conjecture

Conjecture (Slaman and Woodin)

The relation

R(�!p ; a) () �!
p interprets a representative of a

is definable in D.

Theorem (Slaman and Woodin)

I The Bi-interpretability Conjecture is true relative to
parameters.

I It is equivalent to D’s being rigid.
I It implies that a relation is definable in D iff it is

induced by a degree-invariant relation definable in
second order arithmetic.
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The Turing Jump

The Bi-interpretability Conjecture is still open. However, some
of its consequences are theorems.

Theorem (Shore and Slaman)

The Turing jump is definable in D.

Recently, Shore has given a localized proof of the definability of
the jump.



The Turing Jump

The Bi-interpretability Conjecture is still open. However, some
of its consequences are theorems.

Theorem (Shore and Slaman)

The Turing jump is definable in D.

Recently, Shore has given a localized proof of the definability of
the jump.



The Turing Jump

The Bi-interpretability Conjecture is still open. However, some
of its consequences are theorems.

Theorem (Shore and Slaman)

The Turing jump is definable in D.

Recently, Shore has given a localized proof of the definability of
the jump.



The Joy and Woe of the �-degrees

Definition
An ordinal � is �1-admissible iff L� satisfies �1-replacement
and �1-comprehension.

Examples of admissible ordinals:
I !

I !1, !2, . . . , !!, . . . any cardinal
I !CK

1
, the supremum of the recursive ordinals
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�-Recursion Theory (Sacks)

Let L� be fixed and consider definability within L�.

Definition

I An �-reduction is a �1 (in parameters) subset � of L�
consisting of quadruples (P;N; P �; N�).

I For A and B contained in �, �(A) = B iff for every
disjoint P and N in L�,

(P � B & N \B = ;) ()
9(P �; N�)[P � � A & N� \ A = ; & (P;N; P �; N�) 2 �]

I A �� B iff there is an �-reduction � such that �(A) = B.



�-Recursion Theory
deconstructing recursion theory

We have introduced the following analogy between concepts in
recursion theory and concepts in �-recursion theory.

I ! is replaced by �.

I finite sets are replaced by elements of L� (�-finite)
I Turing reducibility �T is replaced by �-reducibility ��

I recursively enumerable is replaced by �1 over L�

Why?

For example, to separate and clarify the roles of these concepts
– eliminate the role confusion and role strain that they endure
in the standard setting.
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�-Recursion Theory
immediate differences

Question

Suppose that � is �1-admissible. Is there a set of minimal
�-degree?

Consider Spector’s construction of a minimal degree. A
single step is determined by the Boolean value of a �2

condition. �1-admissibility is not sufficient to show that the
construction produces a set of minimal degree.

In the absence of a solution to the minimal degree problem,
interpreting structures using initial segments of the �-degrees is
impossible. Gone are the interpretations of Lachlan, Simpson,
and Nerode-Shore. Gone, too, is the analysis of cones of
minimal covers.
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�-Recursion Theory
Friedman’s analysis of !!1

Theorem (S. Friedman)

In L, the !!1-degrees greater than 00 are well-ordered.

Relative to sets A such that � is not �1-admissible relative to A,
the analogies between recursive and �-recursive are not helpful.
Reveal an uncountable singularity in � and all the similarities
between the �-degrees and the Turing degrees are gone.
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�-Recursion Theory
undecidability

Theorem (Chong Chi Tat and Slaman)

Suppose that � is �1-admissible. The theory of the
�-degrees is not decidable.

Since the theory of finite structures with one binary relation is
hereditarily undecidable, it is sufficient to uniformly interpret
every such structure in the �-degrees using parameters.

We modify the apparatus of the Slaman-Woodin coding
theorem for the Turing degrees.
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�-Recursion Theory
defining anti-chains from parameters

In both the Turing degrees and the �-degrees, we define an
anti-chain A = fA1; : : : ; Ang from parameters as follows.

I Let B be the join of A.
I Find C1 and C2 such that the following conditions hold.

I For all Ai 2 A, there is a G such that G 6� Ai, G � Ai +C1,
and G � Ai + C2, i.e. C1 + Ai ^ C2 + Ai 6= Ai.

I For all W � B, either there is an Ai 2 A such that W � Ai

or C1 +W ^ C2 +W =W .



Defining Anti-Chains from Parameters
� = ! (the Turing degrees)

We begin by assuming that each Ai is recursive in any of its
infinite subsets. Replace Ai by the set of its initial segments.

Obtain C1 and C2 by arithmetic forcing relative to B.

Look at the blackboard.
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Defining Anti-Chains from Parameters
general �

We begin by assuming that each Ai is the set of initial segments
of a regular and hyper-regular set Wi. That is, for all � < �,
Wi

T
� 2 L�, and L�[Wi] is �1-admissible.

Obtain C1 and C2 by arithmetic forcing relative to B.

Look at the blackboard.

Explicit use of regularity replaces the original implicit use of
finiteness.
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