Undecidability of the α-degrees

Theodore A. Slaman
(on joint work with Chong Chi Tat)

University of California, Berkeley

January 2007
Overview

- Interpreting models within degree structures
- Techniques and their applications for the Turing degrees
- Joy and woe of trying the same for the α-degrees
Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An *interpretation of \mathcal{N} in \mathcal{M}* consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.

Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An *interpretation of \mathcal{N} in \mathcal{M}* consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.
- A formula ψ_1 in the language of \mathcal{M} defining a subset $N^\mathcal{M}$ of \mathcal{M}.
Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An *interpretation of \mathcal{N} in \mathcal{M}* consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.
 - A formula ψ_1 in the language of \mathcal{M} defining a subset $N^\mathcal{M}$ of M.
 - A formula ψ_2 in the language of \mathcal{M} defining an equivalence relation \equiv on N.
Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An *interpretation of \mathcal{N} in \mathcal{M}* consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.
 - A formula ψ_1 in the language of \mathcal{M} defining a subset $\mathcal{N}^\mathcal{M}$ of \mathcal{M}.
 - A formula ψ_2 in the language of \mathcal{M} defining an equivalence relation \equiv on \mathcal{N}.
- Specifying the constants (c_j), functions (f_j), and relations (R_j) of $\mathcal{N}^\mathcal{M}$.
Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An interpretation of \mathcal{N} in \mathcal{M} consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.
 - A formula ψ_1 in the language of \mathcal{M} defining a subset $N^\mathcal{M}$ of M.
 - A formula ψ_2 in the language of \mathcal{M} defining an equivalence relation \equiv on N.

- Specifying the constants (c_j), functions (f_j), and relations (R_j) of $\mathcal{N}^\mathcal{M}$.
 - Formulas ψ_{c_j}, ψ_{f_j}, and ψ_{R_j} defining \equiv-equivalence classes $c_j^\mathcal{M}$, \equiv-invariant functions $f_j^\mathcal{M}$ on $N^\mathcal{M}$, and \equiv-invariant relations $R_j^\mathcal{M}$ on $N^\mathcal{M}$, respectively.
Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An *interpretation of \mathcal{N} in \mathcal{M}* consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.
 - A formula ψ_1 in the language of \mathcal{M} defining a subset $N^\mathcal{M}$ of \mathcal{M}.
 - A formula ψ_2 in the language of \mathcal{M} defining an equivalence relation \equiv on \mathcal{N}.

- Specifying the constants (c_j), functions (f_j), and relations (R_j) of $\mathcal{N}^\mathcal{M}$.
 - Formulas ψ_{c_j}, ψ_{f_j}, and ψ_{R_j} defining \equiv-equivalence classes $c_j^\mathcal{M}$, \equiv-invariant functions $f_j^\mathcal{M}$ on $N^\mathcal{M}$, and \equiv-invariant relations $R_j^\mathcal{M}$ on $N^\mathcal{M}$, respectively.

- Representing \mathcal{N}.
Interpretations of First Order Structures

Let \mathcal{M} and \mathcal{N} be first order structures with finite signature.

Definition

An *interpretation of \mathcal{N} in \mathcal{M}* consists of the following.

- Specifying the universe of $\mathcal{N}^\mathcal{M}$.
 - A formula ψ_1 in the language of \mathcal{M} defining a subset $N^\mathcal{M}$ of M.
 - A formula ψ_2 in the language of \mathcal{M} defining an equivalence relation \equiv on N.
- Specifying the constants (c_j), functions (f_j), and relations (R_j) of $\mathcal{N}^\mathcal{M}$.
 - Formulas ψ_{c_j}, ψ_{f_j}, and ψ_{R_j} defining \equiv-equivalence classes $c_j^\mathcal{M}$, \equiv-invariant functions $f_j^\mathcal{M}$ on $N^\mathcal{M}$, and \equiv-invariant relations $R_j^\mathcal{M}$ on $N^\mathcal{M}$, respectively.
- Representing \mathcal{N}.
 - With the property that $\mathcal{N} \sim (N/ \equiv, c_j^\mathcal{M}, f_j^\mathcal{M}, R_j^\mathcal{M})$.
Interpretations of First Order Structures

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>If there is an interpretation of (N) in (M), then there is a recursive translation from (\text{Th}(N)), the first order theory of (N), to (\text{Th}(M)).</td>
</tr>
</tbody>
</table>

Proposition

If there is an interpretation of N in M, then there is a recursive translation from $Th(N)$, the first order theory of N, to $Th(M)$.

One can also draw conclusions from the ability to interpret a class of structures within M.
Proposition

If there is an interpretation of N in M, then there is a recursive translation from $\text{Th}(N)$, the first order theory of N, to $\text{Th}(M)$.

One can also draw conclusions from the ability to interpret a class of structures within M.

- Say that N is interpretable in M *using parameters* if the formulas used in the interpretation of the previous frame mention finitely many fixed elements of M.
Interpretations of First Order Structures

Proposition

If there is an interpretation of \(N \) in \(M \), then there is a recursive translation from \(Th(N) \), the first order theory of \(N \), to \(Th(M) \).

One can also draw conclusions from the ability to interpret a class of structures within \(M \).

- Say that \(N \) is interpretable in \(M \) using parameters if the formulas used in the interpretation of the previous frame mention finitely many fixed elements of \(M \).
- Keeping the formulas fixed and varying the parameters, we obtain a family of structures uniformly interpreted in \(M \).
Interpretations of First Order Structures

Proposition

If there is an interpretation of \mathcal{N} in \mathcal{M}, then there is a recursive translation from $Th(\mathcal{N})$, the first order theory of \mathcal{N}, to $Th(\mathcal{M})$.

One can also draw conclusions from the ability to interpret a class of structures within \mathcal{M}.

- Say that \mathcal{N} is interpretable in \mathcal{M} using parameters if the formulas used in the interpretation of the previous frame mention finitely many fixed elements of \mathcal{M}.
- Keeping the formulas fixed and varying the parameters, we obtain a family of structures uniformly interpreted in \mathcal{M}.
- There there is a translation from the common theory of the models in this family to $Th(\mathcal{M})$.
Interpretations of First Order Structures

initial segments
Theorem (Spector)

Every countable initial segment of the Turing degrees is the intersection of two principal ideals, i.e. has an exact pair.
Interpretations of First Order Structures

initial segments

Theorem (Spector)

Every countable initial segment of the Turing degrees is the intersection of two principal ideals, i.e. has an exact pair.

Theorem (Lachlan and Lebeuf)

Every countable upper-semi-lattice is isomorphic to an initial segment of the Turing degrees.

Corollary (Follows from earlier results of Lachlan)

The theory of the Turing degrees is undecidable.
Theorem (Spector)

Every countable initial segment of the Turing degrees is the intersection of two principal ideals, i.e. has an exact pair.

Theorem (Lachlan and Lebeuf)

Every countable upper-semi-lattice is isomorphic to an initial segment of the Turing degrees.

Corollary (Follows from earlier results of Lachlan)

The theory of the Turing degrees is undecidable.
The partial order of the Turing degrees is naturally interpreted in second order arithmetic. Consequently, $Th(D)$ is recursive in the second order theory of arithmetic.
The partial order of the Turing degrees is naturally interpreted in second order arithmetic. Consequently, $Th(\mathcal{D})$ is recursive in the second order theory of arithmetic.

To reverse the comparison and interpret second order arithmetic in \mathcal{D}, we need to interpret second order quantifiers over a countable interpreted model.
The partial order of the Turing degrees is naturally interpreted in second order arithmetic. Consequently, $Th(D)$ is recursive in the second order theory of arithmetic.

To reverse the comparison and interpret second order arithmetic in D, we need to interpret second order quantifiers over a countable interpreted model.

Theorem (Slaman and Woodin)

*Every countable relation on D is uniformly definable from finitely many parameters in D.***
Interpretations of First Order Structures

the degree of the theory of \mathcal{D}

Using the coding theorem for countable relations, the following are available to us.

- A uniform method with which to interpret the countable structure \mathcal{N} using parameters.
Interpretations of First Order Structures

the degree of the theory of \mathcal{D}

Using the coding theorem for countable relations, the following are available to us.

- A uniform method with which to interpret the countable structure \mathcal{N} using parameters.
- A \mathcal{D}-definable test (well-foundedness) to recognize the standard models so coded.

Theorem (Simpson)
The first order theory of \mathcal{D} is recursively isomorphic to the second order theory of arithmetic.

Earlier proofs by Simpson and Nerode-Shore used interpretations of first order arithmetic by initial segments and Spector's exact pair theorem to interpret set quantifiers.
Interpretations of First Order Structures

the degree of the theory of \(\mathcal{D} \)

Using the coding theorem for countable relations, the following are available to us.

- A uniform method with which to interpret the countable structure \(\mathcal{N} \) using parameters.
- A \(\mathcal{D} \)-definable test (well-foundedness) to recognize the standard models so coded.
- A uniform method with which to interpret set quantifiers over a countable coded model.
Interpretations of First Order Structures
the degree of the theory of D

Using the coding theorem for countable relations, the following are available to us.

- A uniform method with which to interpret the countable structure N using parameters.
- A D-definable test (well-foundedness) to recognize the standard models so coded.
- A uniform method with which to interpret set quantifiers over a countable coded model.

Theorem (Simpson)

The first order theory of D is recursively isomorphic to the second order theory of arithmetic.

Earlier proofs by Simpson and Nerode-Shore used interpretations of first order arithmetic by initial segments and Spector’s exact pair theorem to interpret set quantifiers.
Interpretations of First Order Structures

local structure in \(\mathcal{D} \)

<table>
<thead>
<tr>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information about A is apparent in the structures which are coded by parameters arithmetically definable from A.</td>
</tr>
</tbody>
</table>
Interpretations of First Order Structures
local structure in \mathcal{D}

Observation

*Information about A is apparent in the structures which are coded by parameters arithmetically definable from A.***

Proof

There are parameters \overrightarrow{p} which code (\mathbb{N}, A) such that \overrightarrow{p} is arithmetic in A.
Observation

Information about A is apparent in the structures which are coded by parameters arithmetically definable from A.

Proof

There are parameters \overrightarrow{p} which code (\mathbb{N}, A) such that \overrightarrow{p} is arithmetic in A.

If we can define a reasonable definability-neighbor of a within \mathcal{D}, then we can interpret a countable set of reals which includes a representative of a.
Interpretations of First Order Structures
local structure in \mathcal{D}

Theorem (Jockusch and Shore)

The set of degrees arithmetic in a is definable from a, using the analysis of bases for cones of minimal covers.
Theorem (Jockusch and Shore)

The set of degrees arithmetic in a is definable from a, using the analysis of bases for cones of minimal covers.

Theorem (Shore’s Refutation of Rogers’s Homogeneity Conjecture)

D and $D(\geq_T O)$ are not isomorphic.
Theorem (Jockusch and Shore)

The set of degrees arithmetic in \(a \) is definable from \(a \), using the analysis of bases for cones of minimal covers.

Theorem (Shore’s Refutation of Rogers’s Homogeneity Conjecture)

\(\mathcal{D} \) and \(\mathcal{D} (\geq_T \mathcal{O}) \) are not isomorphic.

Proof

The reals interpreted using parameters arithmetic in \(\mathcal{O} \) and above \(\mathcal{O} \) contains an element which is not arithmetic.
The Bi-interpretability Conjecture

Conjecture (Slaman and Woodin)

The relation

\[R(\overrightarrow{p}, a) \iff \overrightarrow{p} \text{ interprets a representative of } a \]

is definable in \(D \).
The Bi-interpretability Conjecture

Conjecture (Slaman and Woodin)

The relation

\[R(p, a) \iff p \text{ interprets a representative of } a \]

is definable in \(D \).

Theorem (Slaman and Woodin)

- The Bi-interpretability Conjecture is true relative to parameters.
- It is equivalent to \(D \)'s being rigid.
- It implies that a relation is definable in \(D \) iff it is induced by a degree-invariant relation definable in second order arithmetic.
The Bi-interpretability Conjecture is still open. However, some of its consequences are theorems.
The Turing Jump

The Bi-interpretability Conjecture is still open. However, some of its consequences are theorems.

Theorem (Shore and Slaman)

\textit{The Turing jump is definable in }D.\textit{ }
The Bi-interpretability Conjecture is still open. However, some of its consequences are theorems.

Theorem (Shore and Slaman)

The Turing jump is definable in D.

Recently, Shore has given a localized proof of the definability of the jump.
The Joy and Woe of the α-degrees

Definition

An ordinal α is Σ_1-admissible iff L_α satisfies Σ_1-replacement and Δ_1-comprehension.
The Joy and Woe of the α-degrees

Definition

An ordinal α is Σ_1-admissible iff L_α satisfies Σ_1-replacement and Δ_1-comprehension.

Examples of admissible ordinals:

- ω
- $\omega_1, \omega_2, \ldots, \omega_\omega, \ldots$ any cardinal
- ω_1^{CK}, the supremum of the recursive ordinals
Let L_α be fixed and consider definability within L_α.

Definition

- An α-reduction is a Σ_1 (in parameters) subset Φ of L_α consisting of quadruples (P, N, P^*, N^*).
- For A and B contained in α, $\Phi(A) = B$ iff for every disjoint P and N in L_α,

$$
(P \subseteq B \land N \cap B = \emptyset) \iff \\
\exists (P^*, N^*)[P^* \subseteq A \land N^* \cap A = \emptyset \land (P, N, P^*, N^*) \in \Phi]
$$

- $A \geq_\alpha B$ iff there is an α-reduction Φ such that $\Phi(A) = B$.
α-Recursion Theory
deconstructing recursion theory

We have introduced the following analogy between concepts in recursion theory and concepts in α-recursion theory.

▶ \(\omega \) is replaced by \(\alpha \).
We have introduced the following analogy between concepts in recursion theory and concepts in α-recursion theory.

- ω is replaced by α.
- finite sets are replaced by elements of L_α (α-finite)
We have introduced the following analogy between concepts in recursion theory and concepts in α-recursion theory.

- ω is replaced by α.
- Finite sets are replaced by elements of L_α (α-finite)
- Turing reducibility \geq_T is replaced by α-reducibility \geq_α
We have introduced the following analogy between concepts in recursion theory and concepts in α-recursion theory.

- ω is replaced by α.
- finite sets are replaced by elements of L_α (α-finite)
- Turing reducibility \geq_T is replaced by α-reducibility \geq_α
- recursively enumerable is replaced by Σ_1 over L_α
We have introduced the following analogy between concepts in recursion theory and concepts in α-recursion theory.

- ω is replaced by α.
- Finite sets are replaced by elements of L_α (α-finite).
- Turing reducibility \geq_T is replaced by α-reducibility \geq_α.
- Recursively enumerable is replaced by Σ_1 over L_α.
We have introduced the following analogy between concepts in recursion theory and concepts in \(\alpha \)-recursion theory.

- \(\omega \) is replaced by \(\alpha \).
- finite sets are replaced by elements of \(L_\alpha \) (\(\alpha \)-finite)
- Turing reducibility \(\geq_T \) is replaced by \(\alpha \)-reducibility \(\geq_\alpha \)
- recursively enumerable is replaced by \(\Sigma_1 \) over \(L_\alpha \)

Why?
We have introduced the following analogy between concepts in recursion theory and concepts in α-recursion theory.

- $$\omega$$ is replaced by $$\alpha$$.
- finite sets are replaced by elements of $$L_\alpha$$ ($$\alpha$$-finite)
- Turing reducibility $$\geq_T$$ is replaced by $$\alpha$$-reducibility $$\geq_\alpha$$
- recursively enumerable is replaced by $$\Sigma_1$$ over $$L_\alpha$$

Why?

For example, to separate and clarify the roles of these concepts – eliminate the role confusion and role strain that they endure in the standard setting.
Suppose that α is Σ_1-admissible. Is there a set of minimal α-degree?
Suppose that α is Σ_1-admissible. Is there a set of minimal α-degree?

Consider Spector’s construction of a minimal degree. A single step is determined by the Boolean value of a Π_2 condition. Σ_1-admissibility is not sufficient to show that the construction produces a set of minimal degree.
Question

Suppose that α is Σ_1-admissible. Is there a set of minimal α-degree?

Consider Spector’s construction of a minimal degree. A single step is determined by the Boolean value of a Π_2 condition. Σ_1-admissibility is not sufficient to show that the construction produces a set of minimal degree.

In the absence of a solution to the minimal degree problem, interpreting structures using initial segments of the α-degrees is impossible. Gone are the interpretations of Lachlan, Simpson, and Nerode-Shore. Gone, too, is the analysis of cones of minimal covers.
Theorem (S. Friedman)

In L, the ω_{ω_1}-degrees greater than $0'$ are well-ordered.
Theorem (S. Friedman)

In L, the ω_{ω_1}-degrees greater than $0'$ are well-ordered.

Relative to sets A such that α is not Σ_1-admissible relative to A, the analogies between recursive and α-recursive are not helpful. Reveal an uncountable singularity in α and all the similarities between the α-degrees and the Turing degrees are gone.
Theorem (Chong Chi Tat and Slaman)

Suppose that α is Σ_1-admissible. The theory of the α-degrees is not decidable.
Theorem (Chong Chi Tat and Slaman)

Suppose that α is Σ_1-admissible. The theory of the α-degrees is not decidable.

Since the theory of finite structures with one binary relation is hereditarily undecidable, it is sufficient to uniformly interpret every such structure in the α-degrees using parameters.
Theorem (Chong Chi Tat and Slaman)

Suppose that α is Σ_1-admissible. The theory of the α-degrees is not decidable.

Since the theory of finite structures with one binary relation is hereditarily undecidable, it is sufficient to uniformly interpret every such structure in the α-degrees using parameters.

We modify the apparatus of the Slaman-Woodin coding theorem for the Turing degrees.
In both the Turing degrees and the α-degrees, we define an anti-chain $A = \{A_1, \ldots, A_n\}$ from parameters as follows.

- Let B be the join of A.
- Find C_1 and C_2 such that the following conditions hold.
 - For all $A_i \in A$, there is a G such that $G \not\leq A_i$, $G \leq A_i + C_1$, and $G \leq A_i + C_2$, i.e. $C_1 + A_i \land C_2 + A_i \neq A_i$.
 - For all $W \leq B$, either there is an $A_i \in A$ such that $W \geq A_i$ or $C_1 + W \land C_2 + W = W$.
We begin by assuming that each A_i is recursive in any of its infinite subsets. Replace A_i by the set of its initial segments.
Defining Anti-Chains from Parameters

$\alpha = \omega$ (the Turing degrees)

We begin by assuming that each A_i is recursive in any of its infinite subsets. Replace A_i by the set of its initial segments. Obtain C_1 and C_2 by arithmetic forcing relative to B.
We begin by assuming that each A_i is recursive in any of its infinite subsets. Replace A_i by the set of its initial segments. Obtain C_1 and C_2 by arithmetic forcing relative to B.

Look at the blackboard.
We begin by assuming that each A_i is the set of initial segments of a regular and hyper-regular set W_i. That is, for all $\beta < \alpha$, $W_i \cap \beta \in L_\alpha$, and $L_\alpha[W_i]$ is Σ_1-admissible.
We begin by assuming that each A_i is the set of initial segments of a regular and hyper-regular set W_i. That is, for all $\beta < \alpha$, $W_i \cap \beta \in L_\alpha$, and $L_\alpha[W_i]$ is Σ_1-admissible.

Obtain C_1 and C_2 by arithmetic forcing relative to B.
We begin by assuming that each A_i is the set of initial segments of a regular and hyper-regular set W_i. That is, for all $\beta < \alpha$, $W_i \cap \beta \in L_\alpha$, and $L_\alpha[W_i]$ is Σ_1-admissible.

Obtain C_1 and C_2 by arithmetic forcing relative to B.

Look at the blackboard.
We begin by assuming that each A_i is the set of initial segments of a regular and hyper-regular set W_i. That is, for all $\beta < \alpha$, $W_i \cap \beta \in L_\alpha$, and $L_\alpha[W_i]$ is Σ_1-admissible.

Obtain C_1 and C_2 by arithmetic forcing relative to B.

Look at the blackboard.

Explicit use of regularity replaces the original implicit use of finiteness.
Defining Anti-Chains from Parameters
existence of generic sets

Having adapted the forcing notion of the countable coding theorem to α, we still face the problem of exhibiting generic sets.
Having adapted the forcing notion of the countable coding theorem to α, we still face the problem of exhibiting generic sets.

Aspects of the forcing:

▶ The forcing is a variation on Cohen forcing. Σ_1-properties of the generic are determined by α-finite conditions.

▶ It is sufficient to meet a family of dense sets analogous to those ensuring 1-genericity.
Defining Anti-Chains from Parameters

existence of generic sets

Having adapted the forcing notion of the countable coding theorem to α, we still face the problem of exhibiting generic sets.

Aspects of the forcing:

- The forcing is a variation on Cohen forcing. Σ_1-properties of the generic are determined by α-finite conditions.
- It is sufficient to meet a family of dense sets analogous to those ensuring 1-genericity.

We construct the desired generic sets by means of an implementation of the Sacks-Simpson α-finite priority method.
Having adapted the forcing notion of the countable coding theorem to α, we still face the problem of exhibiting generic sets.

Aspects of the forcing:

- The forcing is a variation on Cohen forcing. Σ_1-properties of the generic are determined by α-finite conditions.
- It is sufficient to meet a family of dense sets analogous to those ensuring 1-genericity.

We construct the desired generic sets by means of an implementation of the Sacks-Simpson α-finite priority method.

Analysis of the forcing relation and effective approximation replace the ω-length recursion to build generic sets.
Questions

Undecidability for the α-degrees is small progress toward establishing parallels between the Turing degrees and the α-degrees. It is unclear whether this parallel is reliable.
Questions

Undecidability for the α-degrees is small progress toward establishing parallels between the Turing degrees and the α-degrees. It is unclear whether this parallel is reliable.

Question

Suppose that α is Σ_1-admissible.

▶ What is the appropriate paradigm for understanding the α-degrees?
Questions

Undecidability for the α-degrees is small progress toward establishing parallels between the Turing degrees and the α-degrees. It is unclear whether this parallel is reliable.

Question

Suppose that α is Σ_1-admissible.

- What is the appropriate paradigm for understanding the α-degrees?
- Technical test questions
Questions

Undecidability for the α-degrees is small progress toward establishing parallels between the Turing degrees and the α-degrees. It is unclear whether this parallel is reliable.

Question

Suppose that α is Σ_1-admissible.

- What is the appropriate paradigm for understanding the α-degrees?
- Technical test questions
 - Characterize the first order theory of the α-degrees in terms of the qualitative properties of α.
Undecidability for the α-degrees is small progress toward establishing parallels between the Turing degrees and the α-degrees. It is unclear whether this parallel is reliable.

Question

Suppose that α is Σ_1-admissible.

- What is the appropriate paradigm for understanding the α-degrees?
- **Technical test questions**
 - Characterize the first order theory of the α-degrees in terms of the qualitative properties of α.
 - Is there an interpretation of the second order theory of L_{α} within the α-degrees?
Undecidability for the α-degrees is small progress toward establishing parallels between the Turing degrees and the α-degrees. It is unclear whether this parallel is reliable.

Question

Suppose that α is Σ_1-admissible.

- **What is the appropriate paradigm for understanding the α-degrees?**
- **Technical test questions**
 - Characterize the first order theory of the α-degrees in terms of the qualitative properties of α.
 - Is there an interpretation of the second order theory of L_α within the α-degrees?
 - Is there an automorphism of the α-degrees?
Finis