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Recursion Theory

Mathematical Logic: That part of mathematics which involves

understanding language, semantics, syntax, proof, etc.

Recursion Theory That part of mathematical logic which is focused on

definability, especially for subsets of the natural numbers (ω) and of

the real numbers (2ω).

We will take a short and mostly nontechnical tour of the subject.
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Desiderata

We want complete understanding of language and meaning.

Including but not limited to:

• A common perspective on definability across mathematical

disciplines.

• Quantitative tools to calibrate the types of definitions and

constructions of various sorts.

• A convincing meta-theory to say that our perspective is correct and

adequate.
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Definability

As logicians, we know how to formalize definability.

A relation R is definable within a structure
�

if and only if there

is a formula ϕ in the language of
�

such that for all −→m in
�

,

−→m ∈ R ⇐⇒
�

|= ϕ[−→m ]

Tarski’s definition of |= seems unassailable. Consequently, we have a

notion of definability once we specify a language and a structure
�

which interprets it.
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Arithmetic

We will limit ourselves to definability within first and second order

arithmetic, though even this is too much to cover in one talk.

Language: Usual operations of arithmetic 0, 1,+,×, exp, . . . on � .

Depending on context: extra unary predicate symbols A, B, . . .

and/or second order variables X, Y, . . . , ε to denote membership

n ∈ A or n ∈ X .

Variations: • Pure definability in the standard model of arithmetic.

• Fix one or several predicates on � and obtain arithmetic relative

definability.

• Vary the scope of the second order variables to either all

countable sets or to a more limited domain.
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Features and Questions

The syntax of arithmetic divides these definable sets into classes

according to the form of their definitions. We have a variety of questions

to consider.

Natural classes: • Do the syntactic classes correspond with naturally

occurring classes?

• Is every naturally occurring class accounted for in this way?

Stratification of particular classes: Fixing a particular syntactic class:

• Can the sets within that class be generated by simple operations?

• Is there a natural hierarchy associated with the generating

process?
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Diagonalizing against a definable class: How does one build a set

which is not in the class?

Basis Questions: Given a set in the class, what sorts of elements does it

have?

• Simple elements.

• Complicated elements.
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Subsets of ω

Recursive limit, recursive in 0′10
2

Recursively enumerable60
1

Recursive10
1

60
2 Recursive limit infimum
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10
1

Church’s thesis: Isolation of the class of 10
1 sets and identification of

that class with the class of computable sets.. Turing, Church, Kleene,

Post, Gödel, etc. (1930’s).

Relativized computability: Define A ≥T B if and only if B is 10
1(A);

obtain the Turing degrees � .

Basis question: “How complicated are the numbers in A?” This question

leads in a step or two to Chaitin-Kolmogorov complexity.
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60
1

Kleene Enumeration Theorem: There is a universal computing

machine. It does not always return a value.

Kleene Fixed Point Theorem: Recursion theoretic manifestation of

Gödel’s diagonal argument.

The halting problem: The natural definable set which is not recursive.

0′ is the Turing degree of the halting problem.

The priority method: A combinatorial tool to build simple (eg.

recursively enumerable) sets while ensuring that they have

complicated properties.
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Non-Recursive

It is not so easy: There is a recursive subtree T of 2<ω as follows.

• Every node in T extends to an infinite path in T .

• T has a perfect subtree.

• If A is an infinite path in T and A is 11
1, then A is recursive.

Hidden aspect of non-recursive: Posner and Robinson (1981) showed

that A is not recursive if and only if there is a G such that

A ⊕ G ≡T G ′. The analogous property holds throughout the

arithmetic hierarchy.
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Recursively Enumerable Turing Degrees

Post’s problem: Friedberg and Mučnik (1956-7) introduced the priority

method when they showed that there are recursively enumerable sets

of incomparable Turing degree. In fact, Harrington and Slaman

showed that the structure is as complicated as possible; it interprets

true arithmetic.

Uniformity? Is there a definable recursively enumerable degree other

than 0 and 0′?
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10
2

Shoenfield limit lemma: The 10
2 sets are those which can be recursively

approximated. They are also characterized as the collection of sets

recursive in 0′.

Generic behavior: The 10
2 sets include examples of various almost

everywhere behavior: 1-generic, Martin-Löf random, paths through

infinite recursive binary trees (Kleene Basis Theorem).

Difference hierarchy: Fix a system of notations for the recursive

ordinals (such as from Kleene’s � ). Ershov (1968) showed that the

class of 10
2 sets can be generated relative to this representation of

ωCK
1 by transfinitely iterating set difference.
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From ω to 2ω

We have just discussed various arithmetic classes of subsets of ω.

If we consider the language of first order arithmetic with a unary predicate

symbol X , we obtain the classes of arithmetically definable subsets of 2ω:

{X : ( � , X) |= ϕ}

So we have a direct route from recursion theory on ω to effective

descriptive set theory on 2ω.
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10
1

Subsets of 2ω

Clopen sets, continuous functions

50
1 Closed sets

Continue to arithmetic

15

10
1

Sets: By compactness, these subsets of 2ω are just the finite unions of

intervals.

Functions: If f : 2ω → 2ω is 10
1 or even 10

1 in a real parameter, then f

is continuous. Every continuous function is obtained in this way.
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50
1

Closed sets: The closed sets are exactly those which are 50
1 in a real

parameter.

Trees: A 50
1 set is represented as the collection of infinite paths through

a recursive subtree of 2<ω. It’s leftmost infinite path has recursively

enumerable degree.

Low Basis Theorem: Jockusch and Soare (1972) showed that for every

infinite recursive subtree T of 2<ω there is a path G in T such that

G ′ ≤T 0′.

Question: Suppose that T is a nonrecursive perfect subtree of 2<ω. Is

there a branch A through T such that T ≥T A >T 0?
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Connections with models of second order arithmetic

There is a close connection between

• what can be constructed using a particular resource (recursion theory)

• and what can be proven assuming that resource is available (reverse

math).

By adapting the proof of the low basis theorem, Harrington showed that

any countable model of recursive comprehension (RCA0) can be extended

to a model of WKL0 by adding reals. Consequently, every 51
1

consequence of WKL0 follows from RCA0.
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Subsets of ω

11
1

51
1

Hyperarithmetic

Kleene’s �

Absolute to L

61
3

61
2

0#
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The Hyperarithmetic Hierarchy

Davis (1950) extended the arithmetic hierarchy into the transfinite by

iterating the jump along recursive well-orderings of ω. At limits λ, he

used the recursive presentation of λ to form the recursive join of the sets

associated (by that presentation) to ordinals less than λ.

Spector (1955) showed that any two sets associated with the same ordinal

have the same Turing degree. So we have robust notions of 60
α , 50

α , and

10
α .

For example, {(n, m) : m ∈ ∅(n)} (the first order theory of arithmetic)

represents the ωth iteration of the jump.
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11
1

Kleene (1955) showed that a subset of ω appears in the hyperarithmetic

hierarchy if and only if it is 11
1. So the hyperarithmetic hierarchy, based

on iteration of the jump, resolves the class of 11
1 subsets of ω.

One of the most interesting aspects of this theory is the use of the fixed

point theorem to define recursive functions as if by transfinite recursion.
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51
1

The canonical 51
1 subset of ω is � , Kleene’s system of notations for the

recursive ordinals. It is complete among all 51
1 sets.

To really understand � , one need only understand L
ωC K

1
. � is equivalent

to the existential theory of this structure.
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61
2 and 11

3

61
2: In analyzing the 61

2 sets, we are almost but not quite set theorists.

Shoenfield (1961) showed that every 61
2 relation is absolute to

Gödel’s L, in fact whether A belongs to a 61
2 set can be determine by

examining Lω1(A).

11
3: Silver’s 0#, the unique well-founded remarkable

Ehrenfeucht-Mostowski set for L, is a 11
3 set. It’s existence is tied to

the existence of large cardinals and is the recursion theorist’s passport

to set theory.
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11
1

51
1

Subsets of 2ω

Borel sets

Co-analytic

Projective hierarchy
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Classical Descriptive Set Theory

The sets of reals definable in second order arithmetic relative to real

parameters were well known to the classical descriptive set theorists: 11
1

in a real is equivalent to Borel, 61
1 in a real is equivalent to analytic.

The classical descriptive set theorists established a variety of topological

regularity properties for the analytic sets: property of Baire, Lebesgue

measurable, perfect set property.
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Basis Theorems for 61
1 sets

• Gandy showed that every nonempty 61
1 subset of 2ω has an element

G such that � G ≡T � .

• Dually, Groszek and Slaman (1998) showed that if there is a

nonconstructible real then every perfect set has a nonconstructible

element, hence every uncountable analytic set does also.
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61
2

We are now well into descriptive set theory,

The basis question for 61
2 has a uniform answer which implies that every

61
2 subset of 2ω has a 11

2 element.

The Kondô-Addison theorem asserts that for every 61
2 relation R(X, Y )

on 2ω × 2ω, there is a 61
2 function f such that for all X , if there is a Y

such that R(X, Y ), then R(X, f (X)).
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The Wadge Hierarchy

Suppose that A and B are subsets of 2ω. B is Wadge reducible to A

(A ≥ B) if and only if there is a continuous function f such that for all

X ∈ 2ω, X ∈ B ⇐⇒ f (X) ∈ A.

Wadge’s lemma: (AD) For every pair of sets A and B, either A ≥ B or

2ω \ B ≥ A.

Martin’s theorem: (AD) Let the Wadge degree of A be the equivalence

class generated from A and 2ω \ A under ≤. The Wadge degrees are

well-ordered by Wadge reducibility.
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Meta-theories of Definability

We have concentrated on the syntactic hierarchy for the definable subsets

of ω and 2ω.

Now we will look at attempts to represent aspects of definability

abstractly.

• Degree structures

• Degree invariant functions
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Degree Structures

The Turing degrees � provide an algebraic representation of relative

computability.

Surprisingly, the syntactic hierarchy is an invariant of � .

Defining the jump: Slaman and Shore (1999) showed that the function

x 7→ x ′ is first order definable in � . The proof uses Slaman and

Woodin’s analysis of the automorphism group of � .

Defining relative recursive enumerability: Is the relation y is

recursively enumerable relative to x definable in � ?
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The Spectrum of Degree Structures

�
m

many automorphisms

homogeneous

�
t t

� �
A

�
11

1

rigid

While the extreme points are well understood, the ones in the center and

the transition from left to right are still mysterious.
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Variations on the Martin Conjecture

We have been cataloging syntactic forms and investigating the properties

of the sets so defined. How can we know that this syntactic hierarchy is

complete?

Martin’s conjecture Consider the collection of functions from reals to

reals which are invariant on Turing degree. Order these functions by

pointwise domination on all sufficiently complicated reals.

Conjecture: The Axiom of Determinacy implies that the nonconstant

functions are pre-well-ordered with successor the Turing jump.

Steel’s theorem: The Martin conjecture holds for uniformly degree

invariant functions.
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Definable Closure Operators

A closure operator is a map M : 2ω → 22ω
with the following

properties.

1. For all X ∈ 2ω, X ∈ M(X).

2. For all X and for all Z , if Z is recursive in finitely many

elements of M(X) then Z ∈ M(X). M(X) is closed under

relative computation.

3. For all X and Y in 2ω, if X is recursive in Y then

M(X) ⊆ M(Y ). M is monotone.

As in the Martin Conjecture, closure operators can be compared by

eventual pointwise inclusion.
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The Borel Case

If M is a closure operator such that the relation Y ∈ M(X) is

Borel, then one of the following conditions holds.

1. There is a countable ordinal α such that M is equivalent to

the map X 7→ {Y : Y is recursive in X (α)}.

2. There is a countable ordinal α such that M is equivalent to

the map X 7→ {Y : (∃β < α)[Y is recursive in X (β)]}.

3. M is equivalent to the map X 7→ 2ω.

Question: Is something similar true under AD for those functions f

such that for all X , f (X) ⊂ L(X)?
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