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The Motivating Question

Question (Reimann)

For which sequences X ∈ 2ω does there exist (a presentation of) a
measure µ such that X is 1-random for µ?

It is natural to ask the same question with 1-random replaced by
other degrees of randomness and to ask it for measures with
particular properties.

We begin with a review of what is known about the 1-random
case, which is now understood reasonably well. Then, we will
discuss the fragmentary results for n-randomness for µ.



Basic Definitions

Definition

A representation m of a probability measure µ on 2ω provides, for
each σ ∈ 2<ω and each k, m1(σ, k) and m2(σ, k) such that
m2(σ, k) − m1(σ, k) < 1/2k and µ([σ]) ∈ [m1,m2](σ, k).

Definition

X ∈ 2ω is n-random relative to a representation m of µ if and only
if X passes every Martin-Löf test relative to m(n−1), in which the
measures of the open sets of the test are evaluated using µ.

In what follows, we will speak of an X ’s being n-random for µ and
leave it as understood that this means relative to a representation
of µ. Similarly, we will speak of computing relative to µ, taking
the Turing jump of µ, and so forth.



1-Randomness
remarks on constructing measures

Definition

For X , Y , and Z in 2ω, we write X ≡T ,Z Y (X ≡tt,Z Y ) to
indicate that there are (total) functionals Φ and Ψ which are
recursive in Z such that Φ(X ) = Y and Ψ(Y ) = X .

Lemma (in the style of of Demuth, Kautz, and Levin-Zvonkin)

For X and Z in 2ω, the following conditions are equivalent.

I There is an R such that R is n-random relative to Z and
X ≡tt,Z R.

I There is a continuous measure µ which is recursive in Z such
that X is n-random for µ.



1-Randomness

Theorem (Reimann and Slaman)

For X ∈ 2ω, the following are equivalent.

I X is not recursive.

I There is a measure µ such that µ(X ) 6= 0 and X is 1-random
relative to µ.

Theorem

I (Reimann and Slaman) If X is not ∆1
1, then there is a

continuous measure µ such that X is 1-random relative to µ.

I (Kjos-Hanssen and Montalban) If X is an element of a
countable Π0

1 subset of 2ω, then X is not 1-random relative
to any continuous µ.



1-Randomness
remarks on constructing measures

To prove X not recursive implies X is 1-random relative to some µ,
we construct the measure as follows.

I Use a theorem of Posner and Robinson to find a G such that
X ⊕ G ≡T G ′.

I Use Kučera’s Theorem to find an R which is 1-random
relative to G for which G ′ ≡T R ⊕ G .

I Now that X ≡T ,G R for R a 1-random relative to G , use a
compactness argument on the space of measures to obtain µ.

Note, µ can be obtained recursively in X ′′.



1-Randomness
remarks on constructing measures

To prove X not ∆1
1 implies X is 1-random relative to some

continuous µ, we construct the measure as follows.

I Use a theorem of Woodin to find a G such that X ⊕G ≡tt G ′.

I Use Kučera’s Theorem again to find an R which is 1-random
relative to G for which G ′ ≡T R ⊕ G .

I Now that X ≡T ,G R for R a 1-random relative to G with a
tt-reduction in the direction from X to R, use the previous
compactness argument to obtain a continuous µ.

In Woodin’s construction, finding G from X requires the Turing
jump of OX , the complete Π1

1(X ) subset of ω. There are examples
in which X 6∈ ∆1

1 yet there is no continuous µ in ∆1
1(X ) such that

X is 1-random for µ.



Higher orders of randomness
basic observations

From this point on, we restrict ourselves to continuous measures.

Fact (Well-known)

Suppose that n > 1 and X is n-random for µ.

I µ ′ is not recursive in X .

I Every function recursive in X is dominated by a function
recursive in µ ′.



Higher orders of randomness
NRn

Definition

Let NRn be the set of X ’s for which there is no (continuous)
measure µ such that X is n-random for µ.

Theorem

For every n, NRn is countable.

As in the analysis of relative 1-randomness, we will show that every
element of NRn is definable. However, and this is a flaw in our
method, as n increases the levels of definability involve
unboundedly many iterations of the power set applied to ω.

Our proof is not sensitive to the value of n, so we take n = 2.



Higher orders of randomness
a cone of Turing degrees disjoint from NR2

Lemma

There is a B ∈ 2ω, such that X >T B implies X 6∈ NR2.

Proof

A Borel subset of ¬NR2. Suppose Z ∈ 2ω, R is 3-random relative
to Z , and X ≡T ,Z R. Then, X ≡tt,Z ′ R, R is 2-random relative to
Z ′, and so X is 2-random relative to some continuous measure.

¬NR2 contains a cone in D. By the above, ¬NR2 contains the
cofinal and degree-invariant set

{Y : ∃Z∃R(R is 3-random in Z and Y ≡T Z ⊕ R).}

This set is clearly cofinal in D. By Borel Determinacy, it contains a
cone in D.



Higher orders of randomness
an observation about Borel Determinacy

I Martin’s proof of Borel Determinacy starts with a description
of a Borel game and produces a winning strategy for one of
the players.

I The more complicated the game is in the Borel hierarchy, the
more iterates of the power set of the continuum are used in
producing the strategy.

I The absoluteness of Π1
1 sentences between well-founded

models and the direct nature of Martin’s proof imply that if G
is a real parameter used to define a Borel game, then the
winning strategy for that game belongs to the smallest Lβ[G ]

such that Lβ[G ] is a model of a sufficiently large subset of
ZFC.

To keep things simple, we will work with models of ZFC and
assume that there is a well-founded model of ZFC. Let Lβ be the
smallest well-founded model of ZFC. Note, Lβ is countable.



Higher orders of randomness
a join theorem

Lemma

Suppose that X 6∈ Lβ. Then there is a G such that

I Lβ[G ] is a model of ZFC.

I Every element of 2ω
⋂

Lβ[G ] is recursive in X ⊕ G.

Proof.

Use Kumabe–Slaman forcing P to generically extend Lβ. This
forcing builds a functional ΦG by finite approximation. The
definability of forcing and compactness show that if D ∈ Lβ is
dense and p ∈ P, then there is a q in D extending p such that q
makes no additional commitments about ΦG (X ).



Higher orders of randomness
a join theorem

Thus, for each term τ in the forcing language and each n ∈ ω, it is
possible to decide n ∈ τ and then extend our commitment on
ΦG (X ) to record this decision.

We construct G in ω-many steps so that G is P-generic for Lβ and
so that ΦG (X ) records what is forced during our construction.



Higher orders of randomness
Kumabe-Slaman forcing in detail

I The elements p of the forcing partial order P are pairs

(Φp,
−→
X p) in which Φp is a finite use-monotone functional and

−→
X p is a finite subset of 2ω.

I If p and q are elements of P, then p > q if and only if

I Φp ⊆ Φq and for all (xq, yq,σq) ∈ Φq \ Φp and all
(xp, yp,σp) ∈ Φp, the length of σq is greater than the length
σp,

I
−→
X p ⊆

−→
X q,

I for every x , y , and X ∈
−→
X p, if Φq(x ,X ) = y then

Φp(x ,X ) = y .



Higher orders of randomness
NR2 ⊆ Lβ.

Corollary

NR2 ⊆ Lβ. Hence, NR2 is countable.

Proof

Suppose X 6∈ Lβ and apply the previous lemma to obtain a G such
that Lβ[G ] is a model of ZFC and every element of 2ω

⋂
Lβ[G ] is

recursive in X ⊕ G .

Relativize the discussion of NR2 to G . Relative to G , X belongs to
every cone with base in Lβ[G ]. In particular, X belongs to the
cone avoiding NR2 relative to G .

Thus, there is a continous measure µ such that X is 2-random for
µ relative to G .

But then, X is 2-random for a continuous µ, as required.



Higher orders of randomness
obtaining µ from X

Given X 6∈ Lβ, we showed that there is a continuous µ such that
X is 2-random for µ. We can define such a µ using X and a
presentation of the elementary diagram of Lβ as a countable
model.

Question

Is it provable in analysis that for all k, NRk is countable?



Higher orders of randomness
a complicated member of NR3

Theorem

O, the complete Π1
1 subset of ω, is an element of NR3.

Proof.

One representation of O is the following.

O = {e : The eth recursive subtree Te of ω<ω is well-founded.}

For a contradiction, suppose that µ is given so that O is 3-random
for µ.



Higher orders of randomness
a complicated member of NR4

Then, every function recursive in O is dominated by one recursive
in µ ′.

Hence, µ ′ computes a uniform family of functions (fe : e ∈ ω)

such that for each e, fe dominates the left-most infinite path in Te .

Then, for each e, compactness implies that the following
conditions are equivalent.

I Te is well-founded.

I The subtree of Te to the left of fe is finite.

The second condition is Π0
1(µ

′). But, no 3-random for µ can be
Π0

2(µ).



Finis


