Higher Orders of μ -Randomness

Theodore A. Slaman

University of California, Berkeley

January, 2006

The Motivating Question

Question (Reimann)

For which sequences $X \in 2^{\omega}$ does there exist (a presentation of) a measure μ such that X is 1-random for μ ?

It is natural to ask the same question with 1-random replaced by other degrees of randomness and to ask it for measures with particular properties.

We begin with a review of what is known about the 1-random case, which is now understood reasonably well. Then, we will discuss the fragmentary results for *n*-randomness for μ .

Basic Definitions

Definition

A representation m of a probability measure μ on 2^{ω} provides, for each $\sigma \in 2^{<\omega}$ and each k, $m_1(\sigma, k)$ and $m_2(\sigma, k)$ such that $m_2(\sigma, k) - m_1(\sigma, k) < 1/2^k$ and $\mu([\sigma]) \in [m_1, m_2](\sigma, k)$.

Definition

 $X \in 2^{\omega}$ is *n*-random relative to a representation *m* of μ if and only if *X* passes every Martin-Löf test relative to $m^{(n-1)}$, in which the measures of the open sets of the test are evaluated using μ .

In what follows, we will speak of an X's being *n*-random for μ and leave it as understood that this means relative to a representation of μ . Similarly, we will speak of computing relative to μ , taking the Turing jump of μ , and so forth.

remarks on constructing measures

Definition

For X, Y, and Z in 2^{ω} , we write $X \equiv_{T,Z} Y$ ($X \equiv_{tt,Z} Y$) to indicate that there are (total) functionals Φ and Ψ which are recursive in Z such that $\Phi(X) = Y$ and $\Psi(Y) = X$.

Lemma (in the style of of Demuth, Kautz, and Levin-Zvonkin)

For X and Z in 2^{ω} , the following conditions are equivalent.

- There is an R such that R is n-random relative to Z and X ≡_{tt,Z} R.
- There is a continuous measure μ which is recursive in Z such that X is n-random for μ.

Theorem (Reimann and Slaman)

For $X \in 2^{\omega}$, the following are equivalent.

- X is not recursive.
- There is a measure μ such that $\mu(X) \neq 0$ and X is 1-random relative to μ .

Theorem

- (Reimann and Slaman) If X is not Δ₁¹, then there is a continuous measure μ such that X is 1-random relative to μ.
- (Kjos-Hanssen and Montalban) If X is an element of a countable Π⁰₁ subset of 2^ω, then X is not 1-random relative to any continuous μ.

remarks on constructing measures

To prove X not recursive implies X is 1-random relative to some μ , we construct the measure as follows.

- Use a theorem of Posner and Robinson to find a G such that $X \oplus G \equiv_T G'$.
- ▶ Use Kučera's Theorem to find an R which is 1-random relative to G for which $G' \equiv_T R \oplus G$.
- Now that $X \equiv_{T,G} R$ for R a 1-random relative to G, use a compactness argument on the space of measures to obtain μ .

Note, μ can be obtained recursively in X''.

remarks on constructing measures

To prove X not Δ_1^1 implies X is 1-random relative to some continuous μ , we construct the measure as follows.

- Use a theorem of Woodin to find a G such that $X \oplus G \equiv_{tt} G'$.
- ▶ Use Kučera's Theorem again to find an R which is 1-random relative to G for which $G' \equiv_T R \oplus G$.
- Now that X ≡_{T,G} R for R a 1-random relative to G with a tt-reduction in the direction from X to R, use the previous compactness argument to obtain a continuous μ.

In Woodin's construction, finding *G* from *X* requires the Turing jump of \mathcal{O}^X , the complete $\Pi_1^1(X)$ subset of ω . There are examples in which $X \notin \Delta_1^1$ yet there is no continuous μ in $\Delta_1^1(X)$ such that *X* is 1-random for μ .

basic observations

From this point on, we restrict ourselves to continuous measures.

Fact (Well-known)

Suppose that n > 1 and X is n-random for μ .

- μ' is not recursive in X.
- Every function recursive in X is dominated by a function recursive in μ'.

Higher orders of randomness *NR*^{*n*}

Definition

Let NR_n be the set of X's for which there is no (continuous) measure μ such that X is *n*-random for μ .

Theorem

For every n, NR_n is countable.

As in the analysis of relative 1-randomness, we will show that every element of NR_n is definable. However, and this is a flaw in our method, as *n* increases the levels of definability involve unboundedly many iterations of the power set applied to ω .

Our proof is not sensitive to the value of n, so we take n = 2.

a cone of Turing degrees disjoint from NR_2

Lemma

There is a $B \in 2^{\omega}$, such that $X \ge_T B$ implies $X \notin NR_2$.

Proof

A Borel subset of $\neg NR_2$. Suppose $Z \in 2^{\omega}$, R is 3-random relative to Z, and $X \equiv_{T,Z} R$. Then, $X \equiv_{tt,Z'} R$, R is 2-random relative to Z', and so X is 2-random relative to some continuous measure.

 $\neg NR_2$ contains a cone in \mathcal{D} . By the above, $\neg NR_2$ contains the cofinal and degree-invariant set

 $\{Y : \exists Z \exists R (R \text{ is } 3\text{-random in } Z \text{ and } Y \equiv_T Z \oplus R).\}$

This set is clearly cofinal in \mathcal{D} . By Borel Determinacy, it contains a cone in \mathcal{D} .

an observation about Borel Determinacy

- Martin's proof of Borel Determinacy starts with a description of a Borel game and produces a winning strategy for one of the players.
- The more complicated the game is in the Borel hierarchy, the more iterates of the power set of the continuum are used in producing the strategy.
- The absoluteness of Π¹₁ sentences between well-founded models and the direct nature of Martin's proof imply that if G is a real parameter used to define a Borel game, then the winning strategy for that game belongs to the smallest L_β[G] such that L_β[G] is a model of a sufficiently large subset of ZFC.

To keep things simple, we will work with models of ZFC and assume that there is a well-founded model of ZFC. Let L_{β} be the smallest well-founded model of ZFC. Note, L_{β} is countable.

a join theorem

Lemma

Suppose that $X \notin L_{\beta}$. Then there is a G such that

- $L_{\beta}[G]$ is a model of ZFC.
- Every element of $2^{\omega} \cap L_{\beta}[G]$ is recursive in $X \oplus G$.

Proof.

Use Kumabe–Slaman forcing P to generically extend L_{β} . This forcing builds a functional Φ_G by finite approximation. The definability of forcing and compactness show that if $D \in L_{\beta}$ is dense and $p \in P$, then there is a q in D extending p such that q makes no additional commitments about $\Phi_G(X)$.

a join theorem

Thus, for each term τ in the forcing language and each $n \in \omega$, it is possible to decide $n \in \tau$ and then extend our commitment on $\Phi_G(X)$ to record this decision.

We construct G in ω -many steps so that G is P-generic for L_{β} and so that $\Phi_G(X)$ records what is forced during our construction. \Box

Kumabe-Slaman forcing in detail

- The elements p of the forcing partial order P are pairs (Φ_p, X
 _p) in which Φ_p is a finite use-monotone functional and X
 _p is a finite subset of 2^ω.
- If p and q are elements of P, then $p \ge q$ if and only if
 - Φ_p ⊆ Φ_q and for all (x_q, y_q, σ_q) ∈ Φ_q \ Φ_p and all (x_p, y_p, σ_p) ∈ Φ_p, the length of σ_q is greater than the length σ_p,
 X_p ⊆ X_q,
 - ▶ for every x, y, and $X \in \overrightarrow{X}_p$, if $\Phi_q(x, X) = y$ then $\Phi_p(x, X) = y$.

Higher orders of randomness $NR_2 \subseteq L_{\beta}$.

Corollary

 $NR_2 \subseteq L_{\beta}$. Hence, NR_2 is countable.

Proof

Suppose $X \notin L_{\beta}$ and apply the previous lemma to obtain a *G* such that $L_{\beta}[G]$ is a model of ZFC and every element of $2^{\omega} \cap L_{\beta}[G]$ is recursive in $X \oplus G$.

Relativize the discussion of NR_2 to G. Relative to G, X belongs to every cone with base in $L_{\beta}[G]$. In particular, X belongs to the cone avoiding NR_2 relative to G.

Thus, there is a continous measure μ such that X is 2-random for μ relative to G.

But then, X is 2-random for a continuous μ , as required.

Higher orders of randomness obtaining μ from X

Given $X \notin L_{\beta}$, we showed that there is a continuous μ such that X is 2-random for μ . We can define such a μ using X and a presentation of the elementary diagram of L_{β} as a countable model.

Question

Is it provable in analysis that for all k, NR_k is countable?

a complicated member of NR_3

Theorem

O, the complete Π_1^1 subset of ω , is an element of NR₃.

Proof.

One representation of O is the following.

 $0 = \{e : \text{The eth recursive subtree } T_e \text{ of } \omega^{<\omega} \text{ is well-founded.}\}$

For a contradiction, suppose that μ is given so that 0 is 3-random for $\mu.$

a complicated member of NR_4

Then, every function recursive in ${\mathfrak O}$ is dominated by one recursive in $\mu'.$

Hence, μ' computes a uniform family of functions $(f_e : e \in \omega)$ such that for each e, f_e dominates the left-most infinite path in T_e .

Then, for each e, compactness implies that the following conditions are equivalent.

- ► *T_e* is well-founded.
- The subtree of T_e to the left of f_e is finite.

The second condition is $\Pi^0_1(\mu').$ But, no 3-random for μ can be $\Pi^0_2(\mu).$

Finis