Effective Randomness for Continuous Measures

Theodore A. Slaman
(on joint work with Jan Reimann)

University of California, Berkeley

August 2006
Motivation

Question

For which sequences $X \in 2^\omega$ do there exist (representations of) continuous probability measures μ such that X is effectively random for μ?
Representations of Measures

Definition

A *representation* m of a probability measure μ on 2^ω provides, for each $\sigma \in 2^{<\omega}$ and each k, rational numbers $m_1(\sigma, k)$ and $m_2(\sigma, k)$ such that $m_2(\sigma, k) - m_1(\sigma, k) < 1/2^k$ and $\mu([\sigma]) \in [m_1, m_2](\sigma, k)$. That is, m provides rational approximations to $\mu([\sigma])$ meeting any required accuracy.

Definition

$X \in 2^\omega$ is n-random relative to a representation m of μ if and only if X passes every Martin-Löf test relative to $m^{(n-1)}$ (the $n - 1$st Turing jump of m), in which the measures of the open sets of the test are evaluated using μ.
We will speak of an X’s being n-random for μ and mean relative to a representation of μ.

We may include a real parameter Z and speak of X’s being random relative to μ and Z.

We will speak of a set’s being recursive in μ, the jump of μ, etc.
Continuous Measures

degree theoretically characterizing relative randomness

It what follows, we will work not with representations of measures which might make X random, but rather with the random content of X itself.

It is useful to work with a degree theoretic characterization of continuous relative randomness.
Continuous Measures

degree theoretically characterizing relative randomness

Definition

- For X, Y, and Z in 2^ω, we write $X \equiv_{T,Z} Y$ to indicate that there are Turing reductions Φ and Ψ which are recursive in Z such that $\Phi(X) = Y$ and $\Psi(Y) = X$.
- When Φ and Ψ are total, we write $X \equiv_{tt,Z} Y$.

Turing reductions correspond to continuous functions defined on subsets of 2^ω. Truth-table (tt) reductions correspond to continuous functions defined on all of 2^ω.
Proposition

For X and Z in 2^ω, the following conditions are equivalent.

- There is a continuous measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is a continuous dyadic measure μ which is recursive in Z such that X is n-random for μ and Z.
- There is an R such that R is n-random relative to Z and an order preserving homeomorphism $f : 2^\omega \to 2^\omega$ such that f is recursive in Z and $f(R) = X$.
- There is an R such that R is n-random relative to Z and $X \equiv_{tt,Z} R$.
Suppose that $n \geq 2$, $Y \in 2^\omega$, and X is n-random relative to μ.

- If i is less than n, Y is recursive in $(X \oplus \mu)$ and recursive in $\mu^{(i)}$, then Y is recursive in μ.
- If Y is recursive in $X \oplus \mu$ and not recursive in μ, then Y is $(n - 2)$-random for some continuous measure μ_Y recursive in μ'' (relative to μ''). (Apply a theorem of Demuth.)

In general, using arithmetic definitions with fewer than n quantifiers, n-random reals do not accelerate arithmetic definability and nontrivially define only relatively random reals.
Randomness and Well-Foundedness

Definition

A linear order \(\prec \) on \(\omega \) is *well-founded* iff every non-empty subset of \(\omega \) has a least element.

As with arithmetic definability, random reals cannot accelerate the calculation of well-foundedness.

Theorem

Suppose that \(X \) *is 5-random relative to* \(\mu \), \(\prec \) *is recursive in* \(\mu \), *and* \(I \) *is the largest initial segment of* \(\prec \) *which is well-founded. If* \(I \) *is recursive in* \(X \oplus \mu \), *then* \(I \) *is recursive in* \(\mu \).
Randomness and Well-Foundedness

Proof

Suppose $I \leq_T X \oplus \mu$ and $I \not\leq_T \mu$. Then, there is a continuous μ_I recursive in μ'' such that I is 3-random for μ_I relative to μ''.

For $a \in \omega$, let $\mathcal{I}(a)$ be the set of X’s such that X is an initial segment of \prec and all of X’s elements are bounded by a. Note that $\mathcal{I}(a)$ is $\Pi^0_1(\mu)$. Hence, there is a μ''-effective procedure to go from a to a sequence $\mathcal{U}(a) = (U_n(a) : n \in \omega)$ of clopen sets such that if $\mu_I(\mathcal{I}(a)) = 0$ then $\mathcal{U}(a)$ is a μ_I-Martin-Löf test relative to μ''.

- If $a \in I$, then $\mathcal{I}(a)$ is countable and $\mathcal{U}(a)$ is a μ_I-Martin-Löf test defined relative to μ''.
- If $a \not\in I$, then $I \in \mathcal{I}(a)$, I is 3-random for μ_I relative to μ'', and so $\mathcal{U}(a)$ is not a μ_I-Martin-Löf test.

Thus, I is Π^0_2 relative to μ'', contradiction to I’s being 3-random for μ_I relative to μ''.

Definition

Let NCR_n be the set of X’s for which there is no continuous measure μ such that X is n-random for μ.

By specialized arguments:

- (Reimann and Slaman) $NCR_1 \subseteq \Delta_1^1$
- (Kjos-Hanssen and Montalban) NCR_1 is cofinal in the Turing degrees of the Δ_1^1 sets
Higher Orders of Randomness

NCR_n

For NCR_n, we have the following generalization of $NCR_1 \subset \Delta_1^1$.

Theorem

For every n, NCR_n is countable.

Features of the proof:

- Applies Martin’s theorem that all arithmetic games on 2^ω are determined.
- Concludes that the elements of NCR_n are definable. They belong to the least initial segment of Gödel’s universe of constructible sets L_α such that

$$L_\alpha \models ZFC^- + \text{there are } n \text{ iterates of the power set of } \omega,$$

where ZFC^- is Zermelo-Frankel set theory without the power set axiom.
In the following sense, these features of the proof are necessary.

Theorem

For every k, the statement

$\text{For every } n, \text{NCR}_n \text{ is countable}$

cannot be proven in

$\text{ZFC}^- + \text{There are } k \text{ many iterates of the power set of } \omega.$

We will sketch the proof for $k = 0$ and indicate how to adapt it for $k > 0.$
Gödel’s L

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gödel’s hierarchy of constructible sets L is defined by the following recursion.</td>
</tr>
<tr>
<td>$L_0 = \emptyset$</td>
</tr>
<tr>
<td>$L_{\alpha + 1} = \text{Def}(L_\alpha)$, the set of subsets of L_α which are first order definable in parameters over L_α.</td>
</tr>
<tr>
<td>$L_\lambda = \bigcup_{\alpha < \lambda} L_\alpha$.</td>
</tr>
</tbody>
</table>

We focus on the least ordinal λ such that $L_\lambda \models ZFC^-$. We show that there is an n such that NCR_n is cofinal in the Turing degrees of L_λ.
About L_λ

Let LOR be the set of limit ordinals. Note that LOR is cofinal in λ.

- For any $\beta < \lambda$ with $\beta \in LOR$, there is an $X \subset \omega$ such that $X \in \text{Def}(L_\beta) \setminus L_\beta$.

- (Putnam and Enderton) For any $\beta < \lambda$ with $\beta \in LOR$, there is an $E \subset \omega \times \omega$ such that $E \in L_{\beta+3}$ and (ω, E) is isomorphic to (L_β, ϵ). E is obtained by observing that Gödel’s Condensation Theorem implies that L_β is the Skolem hull of the parameters which define the previous X in L_β.

- (Jensen) For any $\beta < \lambda$ with $\beta \in LOR$, there is a canonical set $M_\beta \in L_{\beta+3} \cap 2^\omega$, called the master code for L_β, such that M_β is the elementary diagram of a canonical counting of L_β.
If $\alpha < \beta < \lambda$ and $\alpha, \beta \in LOR$, then all of X, Y, M_α, and the isomorphism between L_α and M_α’s representation of L_α mentioned earlier are elements of L_β.

For every $X \in 2^\omega \cap L_\lambda$, there is a $\beta \in LOR$ such that $\beta < \lambda$ and X is recursive in some M_β. Hence, the set $\{M_\beta : \beta < \lambda\}$ is not countable in L_λ.

We will show that there is an n such that

$$\{M_\beta : \beta < \lambda\} \subset NCR_n.$$
There is an arithmetic formula φ as follows.

- For every β in LOR less than λ, $\varphi(M_\beta)$.
- For every M and N satisfying φ, either one belongs to the structure coded by the other and embeds its coded structure as an initial segment of the other’s, or there is a $\Pi^0_3(M \oplus N)$ set which exhibits a failure of well-foundedness in one of their coded structures.

In other words, there is an arithmetic φ specifying a collection of pseudo-master codes and an arithmetic method to linearly order the apparently well-founded models they code.
About the Master Codes
obtaining M_β by iterated relative definability.

In the previous frames, we defined L by iterating first order definability from parameters and taking unions. This iteration is reflected by the master codes.

- For $\alpha \in LOR$, $M_{\alpha+\omega}$ can be defined from M_{α} by iterating Σ^0_1-relative definability and taking uniformly arithmetic limits.

- For a limit $\gamma \in LOR$, M_{γ} can be defined from the sequence of smaller M_{α}’s by taking a uniformly arithmetic limit and then iterating Σ^0_1-relative definability.
Theorem

There is an n such that for all $\beta \in LOR$, if $\beta < \lambda$ then $M_\beta \in NCR_n$.

Corollary

There is an n such that $ZFC^- \not\vdash "NCR_n \text{ is countable}"$.
Master Codes and Effective Randomness
failures of continuous randomness (proof)

Let \(n \) be larger by 10 than the complexity of any of the arithmetic operations needed for the following:

- recognition and comparison of pseudo-master codes less than \(\lambda \),
- recognition of those pseudo-master codes recursive in \(\mu \) whose non-well-foundedness is witnessed by a failure of comparison with other pseudo-master codes recursive in \(\mu \)
- iteration to obtain \(M_\gamma \), with \(\gamma \in LOR \) less than \(\lambda \), from the set of \(M_\alpha \)'s, with \(\alpha \in LOR \) and \(\alpha < \gamma \).
For a contradiction, assume that $\beta < \lambda$ and that M_β is n-random for the continuous measure μ.

Let \mathcal{M}^* be the set of M such that

- $M \leq_T \mu$;
- $\varphi(M)$, so M is a pseudo-master code below λ;
- no comparison between pseudo-master codes recursive in μ shows that M is not well-founded.

Let \prec be the ordering on \mathcal{M}^* induced by inclusion between the coded models. By a choice of n, \prec is recursive in $\mu^{(n-10)}$.
By comparing M_β to the elements of M^*, the well-founded initial segment M of \prec is recursive in $(M_\beta \oplus \mu)^{(n-7)}$ (a crude estimate).

Since 5-random reals do not accelerate the calculation of well-foundedness, M is recursive in $\mu^{(n-7)}$.

Now note, M is the set of genuine (well-founded) master codes which are recursive in μ.
Let γ be the least limit ordinal such that M_γ is not recursive in μ (i.e. $M_\gamma \not\in M$). M_γ is obtained by iterating low-level arithmetic operations over M. Here low-level is contained in $\Sigma^0_6(\mu^{(n-7)})$.

The results of these iterative steps are recursive in M_β, since M_β is the master code for L_β and these operations are definable in L_β.

Since M_β cannot accelerate Σ^0_6-definability over $\mu^{(n-7)}$, the result of each iterative step needed to obtain M_γ from M is recursive in $\mu^{(n-7)}$. In particular, M_γ is recursive in $\mu^{(n-7)}$.

Now, $M_\gamma \leq_T M_\beta$ and again M_β cannot accelerate Σ^0_{n-6}-definability relative to μ. So, M_γ is recursive in μ. This contradiction completes the proof.
We can apply the previous argument to the case in which there are finitely many uncountable cardinals.

- More cardinals make for a more complicated collection \mathcal{M} of master codes and a more complicated comparison between coded models.
- This greater arithmetic complexity requires more randomness of M_β in order to conclude that \mathcal{M} is arithmetic in μ and reach a contradiction.
Finis