# Effective Randomness and Continuous Measures

#### Theodore A. Slaman (on joint work with Jan Reimann)

University of California, Berkeley



### Review

Let  $NCR_n$  be the set of  $X \in 2^{\omega}$  such that there is no (representation of a) continuous measure  $\mu$  on  $2^{\omega}$  such that X is *n*-random relative to  $\mu$ .

Last time, we showed that for every n,  $NCR_n$  is a countable set. The proof invoked Borel Determinacy in a detailed way.

In this chapter, we will give some examples of elements of  $NCR_n$ , for various n and show that the use of meta-mathematics in the form of iterations of the power set cannot be eliminiated from the above countability theorem.

### $NCR_1$

The case for  $NCR_1$  is the best understood.

#### Theorem

Every element of  $NCR_1$  is hyperarithmetic.

#### Proof.

We optimize the proof of the general theorem so that we can obtain relative 2-randomness by applying only determinacy for game whose strategies are recursive in  $\mathcal{O}$ . Then we apply a join theorem of Woodin's, that for every non-hyperarithmetic real X there is a G such that  $X + G \geq_T \mathcal{O}^G$ . The conclusion follows.

### $NCR_1$

The previous theorem is optimal.

Theorem (Kjos-Hanssen and Montalbán)

If X is an element of a countable  $\Pi_1^0$  class, then X belongs to  $NCR_1$ .

Thus, by an early theorem of Kreisel, there is no hyperarithmetic upper bound on  $NCR_1$ .

However, the Kjos-Hanssen and Montalbán result does not characterize  $NCR_1$ .

#### Theorem

There is an X in NCR<sub>1</sub> which is not in any countable  $\Pi_1^0$ -class.

### Other Examples

A sequence of results leads to the following.

Theorem (Reimann and Slaman; Barmpalias, Greenberg, Montalbán, and Slaman)

If X is recursive in an incomplete recursively enumerable set, then  $X \in NCR_1$ .

Consequently,  $NCR_1$  contains elements of the following types.

- ▶ 1-generic
- packing dimension 1
- recursively enumerable
- of minimal Turing degree

The proof that all the  $NCR_n$  are countable invoked infinitely many iterates of the power set in the form of Borel Determinacy. By work of H. Friedman, these are necessary in the proof of Borel Determinacy.

We will show that the infinitely many iterates of the power set cannot be removed from the analysis of relative randomness.

Our analysis has some parallels to Friedman's, in that both proofs use initial segments of Gödel's L to exhibit models in which  $NCR_n$  is not countable or some Borel game is not determined, respectively.

However, the two analyses diverge early on. Where Friedman's argument could invoke a game which spoke directly about closure points in L, we must show that new elements of  $NCR_n$  are constructed cofinally within the reals of those closure points and hence that those closure points are insufficient to prove its countability.

We need to recall a few facts about random sequences from the first lecture, and to remind ourselves of few more facts from set theory.

A connection between failure of randomness and definability

In the first lecture, we gave a precise account of the following heuristic principles.

- ► If X is µ-random then µ + X cannot accelerate the definitions of µ-definable sets.
- ► If X is µ-random then µ + X cannot accelerate the definition of the well-founded part of a µ-definable linear order.

A connection between failure of randomness and definability

#### Example

For all k,  $0^{(k)}$  is not 2-random relative to any  $\mu$ .

#### Proof.

- Say  $0^{(k)}$  is 2-random relative to  $\mu$ .
- 0' is recursively enumerable in μ and recursive in the supposedly 2-random 0<sup>(k)</sup>. Thus, 0' is recursive in μ and, thereby, 0<sup>(2)</sup> is recursively enumerable in μ.
- Use induction to conclude 0<sup>(k)</sup> is recursive in μ, a contradiction.

a little more about set theory

#### Definition

Gödel's hierarchy of constructible sets L is defined by the following recursion.

- $L_0 = \emptyset$
- L<sub>α+1</sub> = Def(L<sub>α</sub>), the set of subsets of L<sub>α</sub> which are first order definable in parameters over L<sub>α</sub>.
- $\blacktriangleright L_{\lambda} = \cup_{\alpha < \lambda} L_{\alpha}.$

a little more about set theory

We focus on the least ordinal  $\lambda$  such that  $L_{\lambda}$  satisfies  $ZFC^{-}$ .

- For β < λ, L<sub>β</sub> is a countable structure obtained by iterating first order definability over smaller L<sub>α</sub>'s and taking direct limits.
- There is a sequence M<sub>β</sub> ∈ 2<sup>ω</sup> ∩ L<sub>λ</sub>, for β < λ, of representations these countable structures. These are a particular form of Jensen's Master Codes.
  - M<sub>β</sub> is obtained from smaller M<sub>α</sub>'s by iterating the Turing jump and taking arithmetically definable direct limits.
  - Every  $X \in 2^{\omega} \cap L_{\lambda}$  is recursive in some  $M_{\beta}$ .

### Master Codes and Effective Randomness

failures of continuous randomness

#### Theorem

There is an n such that for all  $\beta \in LOR$ , if  $\beta < \lambda$  then there is no continuous measure  $\mu$  such that  $M_{\beta}$  is n-random relative to  $\mu$ .

Corollary

ZFC<sup>-</sup> does not prove the Co-countability Theorem.

### Master Codes and Effective Randomness

failures of continuous randomness—outline of proof

Suppose that  $M_{\beta}$  were *n*-random relative to  $\mu$ .

- Let *M* be the sequence of possible Master Codes which are recursive in μ.
  - The well-founded part of  $\mathcal{M}$  is of the form  $\mathcal{M}_{<\gamma} = (M_{\alpha} : \alpha < \gamma)$  for some  $\gamma \leq \beta$ .
  - *M*<sub><γ</sub> is uniformly arithmetically definable from *M*<sub>β</sub> and hence from μ. (By increasing the degree of randomness, we can assume that *M*<sub><γ</sub> is recursive in μ.)
- M<sub>γ</sub> is obtained by iterating uniformly arithmetically definable operations on M<sub><γ</sub>.
- The results at each step and  $M_{\gamma}$  itself are recursive in  $M_{\beta}$ .
- The results at each step and  $M_{\gamma}$  itself are recursive in  $\mu$ .
- $M_{\gamma}$  is in the well-founded part of  $\mathcal{M}$ . Contradiction.

## Master Codes and Effective Randomness

failures of continuous randomness

The higher iterates of the power set make it more complicated formulate the notion of pseudo-Master Code, to define  $\mathcal{M}$ , and to define the process of going from  $\mathcal{M}_{<\gamma}$  to  $M_{\gamma}$ .

Consequently, the failure of randomness for the  $M_{\beta}$ 's for these models is more complicated to describe. By which we mean that they can exhibit relative k-randomness for k < n, but not relative n-randomness.

Even so, for each n, the first initial segment of L satisfying  $ZFC^{-}$  and there are n iterates of the power set of  $\mathbb{R}$  does not satisfy the Co-countablity Theorem.

### Category vs Measure

One can ask these questions about relative genericity in place of relative randomness.

#### Definition

X is relatively n-generic iff there is a perfect tree T such that X is n-generic relative to T as a path through T.

B. Anderson reworked the previous arguments, with properties of genericity in place of randomness.

#### Theorem (Anderson)

- ► For every n, the set of never relatively generic reals is countable.
- ► The co-countability theorem for genericity cannot be proven using only finitely many iterates of the power set of ℝ.

### Category vs Measure

#### Remark

The two co-countability theorems for measure and category are provably equivalent over a much weaker base theory (such as second order arithmetic). However, the only known proof of the equivalence is to use one to show the existence of the strategies needed in the application of determinacy to establish the other.

(There are many sub-plots in this story.)

For each n,  $NCR_n$  is a countable  $\Pi_1^1$  subset of  $2^{\omega}$ . A reasonably direct argument shows that it is not  $\Delta_1^1$ , so any clear understanding of it should be as a  $\Pi_1^1$ -set.

#### Question

Is there a natural  $\Pi_1^1$ -norm on  $NCR_n$  which explains the observed connections between definability and failure of randomness?

# Finis