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Review

Let NCRn be the set of X 2 2! such that there is no
(representation of a) continuous measure � on 2! such that X
is n-random relative to �.

Last time, we showed that for every n , NCRn is a countable
set. The proof invoked Borel Determinacy in a detailed way.

In this chapter, we will give some examples of elements of
NCRn , for various n and show that the use of
meta-mathematics in the form of iterations of the power set
cannot be eliminiated from the above countability theorem.



NCR1

The case for NCR1 is the best understood.

Theorem
Every element of NCR1 is hyperarithmetic.

Proof.
We optimize the proof of the general theorem so that we can
obtain relative 2-randomness by applying only determinacy for
game whose strategies are recursive in O. Then we apply a join
theorem of Woodin’s, that for every non-hyperarithmetic real
X there is a G such that X +G �T O

G . The conclusion
follows.



NCR1

The previous theorem is optimal.

Theorem (Kjos-Hanssen and Montalbán)

If X is an element of a countable �0
1 class, then X belongs

to NCR1.

Thus, by an early theorem of Kreisel, there is no
hyperarithmetic upper bound on NCR1.

However, the Kjos-Hanssen and Montalbán result does not
characterize NCR1.

Theorem
There is an X in NCR1 which is not in any countable
�0

1-class.



Other Examples

A sequence of results leads to the following.

Theorem (Reimann and Slaman; Barmpalias, Greenberg,
Montalbán, and Slaman)

If X is recursive in an incomplete recursively enumerable
set, then X 2 NCR1.

Consequently, NCR1 contains elements of the following types.
I 1-generic
I packing dimension 1
I recursively enumerable
I of minimal Turing degree



NCRn and the necessity of power sets

The proof that all the NCRn are countable invoked infinitely
many iterates of the power set in the form of Borel
Determinacy. By work of H. Friedman, these are necessary in
the proof of Borel Determinacy.

We will show that the infinitely many iterates of the power set
cannot be removed from the analysis of relative randomness.



Necessity of power sets

Our analysis has some parallels to Friedman’s, in that both
proofs use initial segments of Gödel’s L to exhibit models in
which NCRn is not countable or some Borel game is not
determined, respectively.

However, the two analyses diverge early on. Where Friedman’s
argument could invoke a game which spoke directly about
closure points in L, we must show that new elements of NCRn
are constructed cofinally within the reals of those closure points
and hence that those closure points are insufficient to prove its
countability.

We need to recall a few facts about random sequences from the
first lecture, and to remind ourselves of few more facts from set
theory.



Necessity of power sets
A connection between failure of randomness and definability

In the first lecture, we gave a precise account of the following
heuristic principles.

I If X is �-random then �+X cannot accelerate the
definitions of �-definable sets.

I If X is �-random then �+X cannot accelerate the
definition of the well-founded part of a �-definable linear
order.



Necessity of power sets
A connection between failure of randomness and definability

Example

For all k , 0(k) is not 2-random relative to any �.

Proof.

I Say 0(k) is 2-random relative to �.
I 00 is recursively enumerable in � and recursive in the

supposedly 2-random 0(k). Thus, 00 is recursive in � and,
thereby, 0(2) is recursively enumerable in �.

I Use induction to conclude 0(k) is recursive in �, a
contradiction.



Necessity of power sets
a little more about set theory

Definition
Gödel’s hierarchy of constructible sets L is defined by the
following recursion.

I L0 = ;

I L�+1 = Def (L�), the set of subsets of L� which are first
order definable in parameters over L�.

I L� = [�<�L�.



Necessity of power sets
a little more about set theory

We focus on the least ordinal � such that L� satisfies ZFC�.

I For � < �, L� is a countable structure obtained by
iterating first order definability over smaller L�’s and
taking direct limits.

I There is a sequence M� 2 2!
T

L�, for � < �, of
representations these countable structures. These are a
particular form of Jensen’s Master Codes.

I M� is obtained from smaller M�’s by iterating the Turing
jump and taking arithmetically definable direct limits.

I Every X 2 2!
T

L� is recursive in some M� .



Master Codes and Effective Randomness
failures of continuous randomness

Theorem
There is an n such that for all � 2 LOR, if � < � then there
is no continuous measure � such that M� is n-random
relative to �.

Corollary

ZFC� does not prove the Co-countability Theorem.



Master Codes and Effective Randomness
failures of continuous randomness—outline of proof

Suppose that M� were n-random relative to �.

I Let M be the sequence of possible Master Codes which are
recursive in �.

I The well-founded part ofM is of the form
M<
 = (M� : � < 
) for some 
 � �.

I M<
 is uniformly arithmetically definable from M� and
hence from �. (By increasing the degree of randomness, we
can assume thatM<
 is recursive in �.)

I M
 is obtained by iterating uniformly arithmetically
definable operations on M<
 .

I The results at each step and M
 itself are recursive in M� .
I The results at each step and M
 itself are recursive in �.
I M
 is in the well-founded part of M. Contradiction.



Master Codes and Effective Randomness
failures of continuous randomness

The higher iterates of the power set make it more complicated
formulate the notion of pseudo-Master Code, to define M, and
to define the process of going from M<
 to M
 .

Consequently, the failure of randomness for the M� ’s for these
models is more complicated to describe. By which we mean
that they can exhibit relative k -randomness for k < n , but not
relative n-randomness.

Even so, for each n , the first initial segment of L satisfying
ZFC� and there are n iterates of the power set of R does not
satisfy the Co-countablity Theorem.



Category vs Measure
One can ask these questions about relative genericity in place of
relative randomness.

Definition
X is relatively n-generic iff there is a perfect tree T such that
X is n-generic relative to T as a path through T .

B. Anderson reworked the previous arguments, with properties
of genericity in place of randomness.

Theorem (Anderson)

I For every n, the set of never relatively generic reals is
countable.

I The co-countability theorem for genericity cannot be
proven using only finitely many iterates of the power
set of R.



Category vs Measure

Remark
The two co-countability theorems for measure and category
are provably equivalent over a much weaker base theory
(such as second order arithmetic). However, the only
known proof of the equivalence is to use one to show the
existence of the strategies needed in the application of
determinacy to establish the other.

(There are many sub-plots in this story.)



Final Comments

For each n , NCRn is a countable �1
1 subset of 2!. A reasonably

direct argument shows that it is not �1
1, so any clear

understanding of it should be as a �1
1-set.

Question

Is there a natural �1
1-norm on NCRn which explains the

observed connections between definability and failure of
randomness?
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