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Abstract. We investigate the characterizations of effective randomness in terms of
Martin-Löf covers and martingales. First, we address a question of Ambos-Spies and
Kučera [1], who asked for a characterization of computable randomness in terms of cov-
ers. We argue that computable randomness randomness can be characterized in term of
Martin-Löf covers and effective mass distributions on Cantor space.
Second, we show that the class of Martin-Löf random sets coincides with the class of sets
of reals that are random with respect to computable martingale processes. This improves
on results of Hitchcock and Lutz [14], who showed that the later class is contained in the
class of Martin-Löf random sets and is a strict superset of the class of rec-random sets.
Third, we analyze the sequence of measures of sets in a universal Martin-Löf test. Kučera
and Slaman [17] showed that any set which appears as the component of a universal
Martin-Löf test has measure which is Martin-Löf random. Further, since the sets in a
Martin-Löf test are uniformly computably enumerable, so is their sequence of measures.
We prove an an exact converse and hence a characterization. We show that if α0, α1, . . .
is a uniformly computably enumerable sequence such that for each i, αi is Martin-Löf
random and less than 2−i, then there is a universal Martin-Löf test M0, M1, . . . such that
for each i, Mi has measure αi.

1 Introduction

We investigate into characterizations of effective randomness concepts in terms of
Martin-Löf tests and martingales.

After reviewing concepts of effective randomness and measure in Section 2, we
consider in Section 3 a question of Ambos-Spies and Kučera [1], who ask for a charac-
terization of computable randomness in terms of tests. We give such a characterization
in terms of Martin-Löf tests such that there is an effective probability measure µ where
for any index k and any word w, the Lebesgue measure of the kth component of the
test within the cylinder generated by w is bounded from above by µ(w)/k.

In Section 4, we show that the class of Martin-Löf random sequences coincides with
the class of sequences that are random with respect to computable martingale processes.
This improves on one of the main results of Hitchcock and Lutz [ICALP 2002, pp. 549–
560], who showed that the latter class is contained in the class of Martin-Löf random
sequences and is a strict superclass of the class of rec-random sequences.

Finally, in Section 5, we demonstrate that in the characterization of Martin-Löf ran-
domness by universal Martin-Löf tests, the measure of the individual sets in the univer-
sal test can be chosen according to any given sequence of uniformly c.e. and Martin-Löf
random reals, i.e., for any such sequence r0, r1, . . . there is a universal Martin-Löf test



such that the measure of the kth component is just rk. This assertion complements the
result of Kučera and Slaman [11] that for any universal Martin-Löf test the measure of
every component of the test is a Martin-Löf random real (where, trivially, these reals
form a uniformly c.e. sequence). In summary, a sequence of reals r0, r1, . . . is random
and uniformly c.e. if and only if there is a universal Martin-Löf test U0, U1, . . . such that
the measure of Uk{0, 1}∞ is rk. The latter has a similar flavor as the characterization
of the Martin-Löf random c.e. reals as the reals that are the halting probability of a
universal prefix machine; see Calude [5] for further discussion and references.

1.1 Notation

The notation used in the following is mostly standard, for unexplained notation refer
to the surveys and textbooks cited in the bibliography [2, 3, 14].

We consider words over the binary alphabet {0, 1}, the empty word is denoted by λ.
If not explicitly stated differently, sets are sets of words, sequences are infinite binary
sequences and the term class refers to a set of sequences. For any sequence A, let A be
equal to A(0)A(1) . . ., i.e., A(i) denotes the (i+1)th bit of A. The class of all sequences
is referred to as Cantor space and is denoted by {0, 1}∞. The class of all sequences
that have a word x as common prefix is called the cylinder generated by x and
is denoted by x{0, 1}∞. For a set of words W , let W{0, 1}∞ be the union of all the
cylinders x{0, 1}∞ where the word x is in W .

Recall the definition of the Lebesgue measure (or uniform measure) λ on
Cantor space, which describes the distribution obtained by choosing the individual bits
of a sequence according to independent tosses of a fair coin.

2 Random sequences

In this section, we review effective random sequences and related concepts that are used
in the following. For more comprehensive accounts of effective random sequences and
effective measure theory, we refer to the surveys cited in the bibliography [1, 2, 14].

Imagine a player who successively places bets on the individual bits of the character-
istic sequence of an unknown sequence A. The betting proceeds in rounds i = 1, 2, . . ..
During round i, the player receives as input the length i − 1 prefix of A and then,
first, decides whether to bet on the i th bit being 0 or 1 and, second, determines the
stake that shall be bet. The stake might be any fraction between 0 and 1 of the capital
accumulated so far, i.e., in particular, the player is not allowed to incur debts. Formally,
a player can be identified with a betting strategy

b : {0, 1}∗ → [−1, 1]

where on input w the absolute value of b(w) is the fraction of the current capital that
shall be at stake and the bet is placed on the next bit being 0 or 1 depending on whether
b(w) is negative or nonnegative.

The player starts with strictly positive, finite capital db(λ). At the end of each round,
in case the current guess has been correct, the capital is increased by this round’s stake
and, otherwise, is decreased by the same amount. So given a betting strategy b and the
initial capital, we can inductively determine the corresponding payoff function, or
martingale, db by applying the equations

db(w0) = db(w)− b(w) · db(w), db(w1) = db(w) + b(w) · db(w) .
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Intuitively speaking, the payoff db(w) is the capital the player accumulates till the end
of round |w| by betting on a sequence that has the word w as a prefix.

Conversely, any function d from words to nonnegative reals that for all words w
satisfies the fairness condition

d(w) =
d(w0) + d(w1)

2
(1)

determines an initial capital d(λ) and a betting function b.

Definition 1. A martingale d succeeds on a sequence A if d is unbounded on the
prefixes of A, i.e., if

lim sup
m→∞

d(A|{0, . . . ,m}) = ∞ .

A martingale d is computable if it is confined to rational values and there is a Turing
machine that on input w outputs an appropriate finite representation of d(w). Com-
putable martingales are considered in recursion-theoretical settings [1, 19, 20, 23], while
in connection with complexity classes one considers martingales that in addition are
computable within appropriate resource-bounds [2, 13, 14, 16].

Definition 2. A sequence is rec-random if no computable martingale succeeds on it.

Definition 3. A martingale d has the effective savings property if there is a
computable function on words such that

(i) f(w) ≤ d(w) for all words w,
(ii) f is nondecreasing, i.e., f(w) ≤ f(v) whenever w is a prefix of v,
(iii) d wins on a sequence iff f is unbounded on the prefixes of the sequence.

Remark 4 For every computable martingale d0 there is a computable martingale d
with initial capital 1 that is equivalent to d, i.e., succeeds on exactly the same sequences
and has the effective savings property via some computable monotonic function f .

The construction of the martingale d is well-known and works, intuitively speaking,
by putting aside one unit of capital every time the capital reaches a certain threshold,
while from then on using the remainder of the capital in order to bet according to the
initial martingale.

Besides rec-random sequences, we consider Martin-Löf random sequences [15]. We
denote by W0,W1, ... the standard enumeration of the computably enumerable sets [21].

Definition 5. A class N is a Martin-Löf null class if there exists a computable
function g : N → N such that for all i

N ⊆ Wg(i){0, 1}∞ and λ(Wg(i){0, 1}∞) ≤ 1
2i

. (2)

A sequence is Martin-Löf random if it is not contained in any Martin-Löf null class.

In the situation of Definition 5, we say that the Wi form a Martin-Löf test that
covers the class N , i.e., a class is covered by a Martin-Löf test if and only if it is a
Martin-Löf null class.

By definition, a classN has uniform measure 0 if there is a sequence of sets V0, V1, . . .
such that (2) is satisfied with Wg(i) replaced by Vi. Thus the concept of a Martin-Löf
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null class is indeed an effective variant of the classical concept of a class that has
uniform measure 0 and, in particular, any Martin-Löf null class has uniform measure 0.
By σ-additivity and since there are only countably many computable functions, also
the union of all Martin-Löf null classes has uniform measure 0, hence the class of
Martin-Löf random sequences has uniform measure 1. In fact, it can be shown that
the union of all Martin-Löf null classes is again a Martin-Löf null class [5, Section 6.2].
Equivalently, there is a universal Martin-Löf test U0, U1, . . . that covers the class
of all sequences that are not Martin-Löf random.

3 Characterizing computable randomness by tests

By definition, a sequence is Martin-Löf random if it cannot be covered by a Martin-Löf
test U0, U1, . . ., i.e., is not contained in the intersection of the classes Uk{0, 1}∞. For
such a test, for given index k and word w the value

mw
k = λ(w{0, 1}∞ ∩ Uk{0, 1}∞) (3)

can be effectively approximated from below by simply enumerating the words in Uk

that extend w. In fact, by a result of Kučera [9, 10, Lemma 8.1 and Lemma 2], we can
compute a nontrivial upper bound on mw

k , i.e., one that is strictly less than 1/2|w|, in
case mw

k is indeed strictly smaller than the latter number. On the other hand, it is known
that in case one requires in addition that the mw

k can be effectively approximated to any
given precision, one obtains a characterization of the concept of Schnorr randomness,
where the Schnorr random sequences are a strict superclass of the computable random
sequences [1, 20, 24].

We show in this section that the concepts of computable random sequence and of
computable null class can be characterized by Martin-Löf tests where the mw

k can be
appropriately bounded from above by means of a computable mass distribution on
Cantor space. This gives a positive answer to a question of Ambos-Spies and Kučera,
who have asked whether computable randomness can be characterized in terms of
Martin-Löf tests [1, Open Problem 2.6].

Definition 6. A mass distribution on Cantor space is a mapping µ from words to
reals such that for any word w holds µ(w) = µ(w0)+µ(w1). A probability measure
(on Cantor space) is a mass distribution µ where µ(λ) = 1. A mass distribution µ is
computable if µ is rational-valued and there is an effective procedure that on input w
computes µ(w).

Mass distributions and martingales are essentially the same concept [8] where, in par-
ticular, the additivity condition µ(w) = µ(w0) + µ(w1) corresponds to the fairness
condition (1). More precisely, given a mass distribution µ, the function w 7→ 2|w|µ(w)
is a martingale with initial capital µ(λ) and conversely, given a martingale d, the func-
tion w 7→ d(w)/2|w| is a mass distribution.

Proposition 7. A class C has computable measure 0 if and only if there is a Martin-
Löf test U0, U1, . . . and a computable probability measure µ such that

(i) C is contained in the intersection of the classes Uk{0, 1}∞,

4



(ii) for any k and any word w, the Lebesgue measure of the intersection of the cylinder
generated by w with Uk{0, 1}∞ is at most µ(w)/k, i.e.,

λ(w{0, 1}∞ ∩ Uk{0, 1}∞) ≤ µ(w)
k

. (4)

Proof. First, assume that we are given a class C that has computable measure 0. By
Remark 4, pick a computable martingale d that succeeds on every sequence in C and
has the effective savings property via some computable, nondecreasing function f . In
order to obtain a Martin-Löf test U0, U1, . . . and a probability distribution µ as required,
let

Uk = {w|f(w) ≥ k, while f(v) < k for all proper prefixes v of w}, µ(w) =
d(w)
2|w|

.

In order to prove assertion (i), fix any sequence X in C. Then d succeeds on X and,
in particular, f is unbounded on the prefixes of X; hence for all k there is some prefix
of X in Uk and X is contained in the intersection of the Uk{0, 1}∞.

In order to prove assertion (ii), fix any index k and word w. First assume that w
has some prefix w0 in Uk. In this case assertion (ii) holds because by construction and
assumption on f , we have

k ≤ f(w0) ≤ f(w) ≤ d(w), hence
1

2|w|
≤ µ(w)

k
. (5)

Next consider any word w that does not have a prefix in Uk and let Uw
k be the set of

all words in Uk that extend w. Then assertion (ii) holds because we have

λ(w{0, 1}∞ ∩ Uk{0, 1}∞) ≤
∑

v∈Uw
k

1
2|v|

≤
∑

v∈Uw
k

µ(v)
k

≤ µ(w)
k

,

where the inequalities hold, from left to right, because Uk and hence Uw
k is prefix-free,

by (5), and by additivity of probability measures.
Next assume that we are given a Martin-Löf test U0, U1, . . . and a probability

measure µ as in the proposition. By the discussion following Definition 6, the func-
tion w 7→ µ(w)2|w| is a computable martingale, which succeeds on any sequence in C be-
cause by assumption any such sequence is contained in the intersection of the Uk{0, 1}∞,
i.e., has prefixes in all the Uk, where for all words w in Uk we have µ(w)2|w| ≥ k ac-
cording to (4). ut

4 The power of martingale processes

Hitchcock and Lutz [7] remark that the term martingale has different meanings in prob-
ability theory and theoretical computer science. In order to compare the two notions,
consider Lebesgue measure on Cantor space and for a given function d from words to the
real numbers, let ξd

m be the random variable defined by ξd
m(X) = d(X(0) . . . X(m− 1),

i.e., for a a martingale d and a random sequence X chosen uniformly at random,
ξd
0(X), ξd

1(X), . . . is just the sequence of capital values that are reached on the prefixes
of X when betting according to d. The martingale concept from Section 2, which the
one usually considered in theoretical computer, can then be equivalently characterized
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by reformulating the fairness condition (1) as follows. A function d from words to reals
is a martingale iff for any word w, the conditional expectation of ξd

|w|+1, given that X

extends w, is equal to ξd
|w|, i.e.,

E[ξd
|w|+1 | w{0, 1}∞] = ξd

|w| (6)

On the other hand, in probability theory, a sequence ξ0, ξ1, . . . of random variables is
called a martingale if for all m, the expectation of ξm is finite and

E[ξd
m+1 | ξd

0 = c0, . . . , ξ
d
m = cm] = ξd

m for all reals c0, . . . , cm−1. (7)

Hitchcock and Lutz call a function d from words to reals a martingale process iff
the sequence ξd

0 , ξd
1 , . . . is a martingale in the sense of probability theory; they remark

that in the fairness conditions (6) and (7) for martingales and martingale processes,
the average is taken over all sequences with the same bit history and the same capital
history, respectively. Two words have the same bit history if they are identical. With
a martingale d understood, two words v and w have the same capital history, v ≈d w
for short, if both words have the same length and we have d(v′) = d(w′) for any
two prefixes v′ of v and w′ of w that have the same length. The relation ≈d is an
equivalence relation on words and will be called d-equivalence. Condition (8) is an
equivalent reformulation of the fairness condition (7) for martingale processes in terms
of d-equivalence [7].

2
∑

{v : v≈dw}

d(v) =
∑

{v : v≈dw}

[d(v0) + d(v1)] for all words w . (8)

Among other results, Hitchcock and Lutz derive the following facts about martingale
processes. Every class that can be covered by a martingale processes is also a Martin-
Löf null class. On the other hand, every computable martingale is by definition also a
martingale process, and there is a rec-random sequence on which a computable mar-
tingale process succeeds. The latter assertion is obtained by proving that the following
result of An. A. Muchnik [17, Theorem 9.1] remains true with computable martingale
processes in place of nonmonotonic partial computable martingales. If almost all pre-
fixes w of a sequence have Kolmogorov complexity of at most |w| − log |w|, then some
nonmonotonic partial computable martingale succeeds on the sequence. These results
of Lutz and Hitchcock show that computable martingales are strictly less powerful than
computable martingale processes where in turn the latter are at most as powerful as
Martin-Löf tests, and that accordingly the concepts of random sequence and of class
of measure zero defined in terms of martingale processes are intermediate between the
corresponding concepts for computable martingales and Martin-Löf tests. We state in
Theorem 9 that martingale processes are in fact as powerful as Martin-Löf tests, hence
the corresponding concepts of randomness and measure are the same. In the proof
of this theorem, we use a construction of martingale processes that is described in
Remark 8.

Remark 8 Given a computably enumerable set U such that U{0, 1}∞ has Lebesgue
measure at most 1/2, there is a computable martingale process d that doubles its initial
capital d(λ) = 1 on every sequence in U{0, 1}∞, i.e., every such sequence has a prefix w
where d(w) = 2. Furthermore, an index for d can be computed from a c.e. index for U .
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In order to construct a martingale process d as required, let w1, w2, . . . be an effective
enumeration of U and let Ũ be the set of all words w such that some prefix of w is
enumerated into U within at most |w| steps of this enumeration. The set Ũ is computable
and closed under extensions, and U{0, 1}∞ coincides with Ũ{0, 1}∞. The martingale
process d is defined inductively for words of length m = 0, 1, . . ., where d(λ) = 1. For any
word w of length m that is in Ũ , let d(w) = 2, while all other words w of length m are
assigned identical values d(w) in such a way that the fairness condition for martingale
processes is not violated. The latter is alway possible because the Lebesgue measure
of U{0, 1}∞ is at most 1/2, details are left to the reader.

It remains to show that d is a martingale process, which amounts to show for any
given word w that the equation in the fairness condition (7) is satisfied. By construction,
first, we have d(v) = 2 for all extensions of v of any word w where d(w) = 2, hence
if d(w) = 2, then d(w0) = d(w1) = 2 and the same holds for all words v that are d-
equivalent to w; the equation in the fairness condition follows. Second, an easy induction
shows that all strings w of the same length such that d(w) differs from 2 are d-equivalent.
But for the words w in such an equivalence class, the values d(w0) and d(w1) are simply
chosen such that the fairness condition is not violated.

Theorem 9. A class can be covered by a martingale process if and only if it is Martin-
Löf null class. In particular, a sequence is random with respect to martingale processes
if and only if it is Martin-Löf random.

Proof. The second assertion in the theorem follows from the first one because for both
concepts of randomness involved, a sequence R is random iff the singleton class {R} can
be covered by an admissible martingale. Concerning the first assertion, recall that Lutz
and Hitchcock [7] have shown that any class on which a martingale process succeeds is
a Martin-Löf null class. So it suffices to show that there is a martingale process d that
succeeds on the class covered by some universal Martin-Löf test U0, U1, . . ..

For any word w, let

Vw = {u ∈ U|w|+1 : u = wv for some v} , V −
w = {v : wv ∈ Vw} . (9)

The Lebesgue measure of U|w|+1{0, 1}∞ is at most 1/2|w|+1, thus the Lebesgue measure
of V −

w is at most 1/2 and similar to the construction in Remark 8 we obtain a martingale
process d−w that doubles its initial capital 2k on all words in V −

w . Then

dk
w(u) =

{
d−w(v) in case u = wv,

2k in case w is not a prefix of w.

is a computable martingale process that attains on λ, as well as on w the value 2k and
which doubles the latter capital on any sequence in Vw{0, 1}∞. In fact attains d−w(v)
attains the value 2k+1 on any sequence in U|w|+1{0, 1}∞ that extends w because U|w|+1

cannot contain words of length less than |w|+ 1.
The martingale process d we are looking for can be viewed as working in phases s =

1, 2, . . ., where during phase k it copies the values of some martingale process of the
form d(w, k). For a given sequence X, the phases are as follows. During the first phase, d
agrees with d(0, λ), this phase lasts up to and including the least prefix w2 of X such
that the latter martingale attains the value 2, i.e., has doubled its initial capital. The
second phase starts at w1, there overlapping with the first phase; the second phase lasts
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up to and including the least prefix w2 of X on which d(w1, 1) has doubled. The further
phases are similar, i.e., during phase k, the martingale process d agrees with d(wk, k),
and phase k ends and phase k + 1 starts as soon as the capital has reached 2k+1 at
word wk+1. By construction, d is computable and is unbounded on any sequence that
is contained in all the Uk{0, 1}∞.

It remains to show that d is a martingale process. Any d-equivalence class is the
disjoint union of finitely many d(wk, k)-equivalence classes where d agrees on each such
class with the corresponding martingale process d(wk, k); hence d satisfies the fairness
condition for martingale processes because all these d(wk, k) satisfy this condition. ut

5 Universal Martin-Löf tests

Definition 10. A computably enumerable real, c.e. real for short, is a real
which is the limit of a nondecreasing computable sequence of rational numbers.

A real is Martin-Löf random, random for short, if its binary expansion has the
form 0.R(0)R(1) . . . for some Martin-Löf random sequence R.

A real is a Chaitin Ω real if it is the halting probability of some universal prefix-
free Turing machine.

Definition 11 (Solovay [22]). Let (as : s ≥ 0) and (bs : s ≥ 0) be computable
sequences of rationals which converge nondecreasingly to α and β, respectively.

1. (as : s ≥ 0) dominates (bs : s ≥ 0) if there is a positive constant c such that for
all s ≥ 0, c(α− as) > (β − bs).

2. (as : s ≥ 0) is universal if it dominates every computable nondecreasing sequence
of rationals.

3. α is Ω-like if it is the limit of a universal nondecreasing computable sequence if
rationals.

By a celebrated result, which Calude [5] attributes to work of Calude, Hertling,
Khoussainov, and Wang, of Chaitin, of Kučera and Slaman, and of Solovay, a c.e. real
is random iff it is Chaitin Ω real iff it is Ω-like; for proofs and references see Calude [5].

Among other results, Kučera and Slaman [11] show, first, that for any universal
Martin-Löf test U0, U1, . . ., the Lebesgue measure of the classes Uk{0, 1}∞ are Martin-
Löf random reals and, second, that given any c.e. Martin-Löf random real r there is
a universal Martin-Löf test such that the sum of the measures Uk{0, 1}∞ is r. These
results are complemented by Theorem 15 below, the main result of this section, which
states that for any sequence r0, r1, . . . of reals that are random and uniformly c.e., there
is a universal Martin-Löf test U0, U1, . . . such that the Lebesgue measure of Uk{0, 1}∞
is just rk. Furthermore, the proof of Theorem 15 can be adapted to yield a simplified
proof of the second mentioned result by Kučera and Slaman.

Remark 12. In their proof that every c.e. random real is Ω-like, Kučera and Slaman [11,
Theorem 2.1] actually show that for any real r that is random and c.e. there is not just
some computable universal sequence that converges nondecreasingly to r but in fact
any computable universal sequence that converges nondecreasingly to r is universal.

With an enumeration of a computably enumerable set U understood, we write U s

for the set of words that enter U during the first U steps of the enumeration, and we
write u and us for the Lebesgue measure of λ(U{0, 1}∞) and λ(U s{0, 1}∞), respectively.
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Lemma 13. Let r be a c.e. random real and let (rs : s ≥ 0) be any universal sequence
that converges to r. Let (Uj : j ≥ 1) be a universal Martin-Löf test with uniform
computable enumerations (U s

j : j ≥ 1) such that U s
j is empty in case s ≤ j. Then there

is an index k such that for every stage s,

r − rs >
∑
j≥k

(uj − us
j).

Proof. Choose a computable, nondecreasing, and unbounded sequence (cj : j ≥ 1) of
positive rationals such that∑

j≥1

cj2−j < ∞ , hence
∑
j≥1

cjuj < ∞

by the measure condition on the components of a Martin-Löf test. We then have
that ũ =

∑
j cjuj is finite and thus is a c.e. real with approximation

ũs =
s∑

j=1

cju
s
j =

∞∑
j=1

cju
s
j .

Accordingly, by Remark 12 and assumption on r and the rs, there is a nonzero constant c
such that for every stage s,

c(r − rs) > u− ũs =
∞∑

j=1

cjuj −
∞∑

j=1

cju
s
j =

∞∑
j=1

cj(uj − us
j)

Since the sequence (cj : j ≥ 1) is unbounded, we may let k be the minimal index such
that c < ck. Then we have

r − rs >
1
c

∑
j≥k

cj(uj − us
j) >

ck

c

∑
j≥k

(uj − us
j) >

∑
j≥k

(uj − us
j),

and the lemma is proved. ut

Remark 14 The assertion of Lemma 13 does not depend on the special bounds 1/2k

on the measure uk of the sets Uk{0, 1}∞; indeed, the Lemma holds by essentially the
same proof for any uniformly c.e. sequence (Uk : k ≥ 0) of sets such that there are
computable sequences (qk : k ≥ 1) and (ck : k ≥ 1) such that the ck are nondecreasing
and unbounded,

uk < qk for all k , and
∑
k≥1

ckqk < ∞ .

Theorem 15. Let (rn : n ≥ 1) be a uniformly c.e. sequence of random reals with
rn < 2−n for every n. Then there is a universal Martin-Löf test (An : n ≥ 1) such that
for each n, λ(An{0, 1}∞) = rn.

Proof. We enumerate the components of the universal test (An : n ≥ 1) by recursion
such that the enumeration is uniform in the enumeration of the given random reals
(rn : r ≥ 1). Hence, for the sake of notational simplicity, in the construction of a
component An we drop the index n and just write A. Also rn is abbreviated to r.
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By Remark 12, we may let (rs : s ≥ 0) be a universal nondecreasing computable
sequence of rationals that converges to r. Fix a universal Martin-Löf test (Uk : k ≥ 0).
It may be assumed that for all k and s, if s < k, then U s

k is empty.
We enumerate A by recursion on stages s. The construction can be roughly described

as follows. At each stage s, we try to enumerate as many words from U into A as possible
such that the measure of A{0, 1}∞ does not become greater than rs. More precisely, try
to enumerate all of U s

s , then all of U s
s−1 etc. into A. Consider the case in which m ≥ 1

is the greatest index such that the measure of the union of A{0, 1}∞ and U s
m{0, 1}∞

is greater than rs. Then we compute a subclass of U s
m{0, 1}∞ that, after entering A,

increases the measure of A{0, 1}∞ to rs.
At stage s, let m ≤ s be the minimal index such that

ls := λ

((
As−1 ∪

⋃
j≥0

U s
m+j

)
{0, 1}∞

)
≤ rs.

Enumerate U s
m, U s

m+1, . . . , U
s
s into A. If ls = rs, then we are done. Now suppose other-

wise. Then we have to make the set A bigger in order to make the measure of As{0, 1}∞
equal to rs.

We first handle the case in which m = 1. Choose any set F (s) of measure rs − ls

such that each word contained in it is incomparable with any word enumerated into A
so far. We enumerate F (s) into A.

Next consider the case where m > 1. If possible, let w be a word in U s
m−1 such

that the measure of the union of A{0, 1}∞ and w{0, 1}∞ is greater than rs. If there is
no such word w, we can easily enlarge A in a finite number of steps such that there is
one. Namely, successively enumerate words from U s

m−1 into A such that the measure
of A{0, 1}∞ is increased but never exceeds rs. Now fix a word w in U s

m−1 such that
the measure of the union of A{0, 1}∞ and w{0, 1}∞ is greater than rs. Let d denote
the difference between rs and the measure of (the enlarged set) A{0, 1}∞. We may
suppose that the rational d is given by its dyadic representation, in which there are
only finitely many digits different from zero. Now it is easy to see that there is a set E
of words of equal length which extend w such that for a suitable subset E′ of E, the
measure of (A∪E′){0, 1}∞ is rs. Note that it suffices to choose the set E such that the
words contained in it are longer than any word in A and longer than t, where 2t is the
denominator of the dyadic representation of d. Enumerate E′ into A. This concludes
the construction of the set A, and hence of (An : n ≥ 1).

By the hypothesis above, the construction of A is based on a universal nondecreasing
computable sequence (rs : s ≥ 0) of rationals that converges to r. By construction, the
measure of A{0, 1}∞ is increased at every stage s by rs − rs−1, hence we have

λ(A{0, 1}∞) = r. (10)

We now argue that there is an index k such that

A{0, 1}∞ ⊇
⋃
j≥0

Uk+j{0, 1}∞. (11)

Observe that it is enough to show that there are an index k and infinitely many stages s
such that

As{0, 1}∞ ⊇
⋃
j≥0

U s
k+j{0, 1}∞. (12)

10



Since (Uk : k ≥ 0) is a universal Martin-Löf test and (rs : s ≥ 0) is a universal sequence
of rationals, we may apply Lemma 13. Hence, let k be an index such that at every
stage s,

r − rs >
∑
j≥k

(
λ
(
Uj{0, 1}∞

)
− λ

(
U s

j {0, 1}∞
))

. (13)

Certainly s = k − 1 is a number such that (12) is satisfied. Now let s be any such
number. Then there is a t > s such that (12) with s replaced by t is also true. Namely,
let v > s be minimal such that

rv − rs >
∑
j≥k

(
λ
(
Uv

j {0, 1}∞
)
− λ

(
U s

j {0, 1}∞
))

.

Note that such a number v exists by (13) and because the sequence (rs : s ≥ 0)
converges to r. Then either for t = v we have

At{0, 1}∞ ⊇
⋃
j≥0

U t
k+j{0, 1}∞, (14)

or there is an index j ≥ k such that Av{0, 1}∞ 6⊇ Uv
j {0, 1}∞. But then there must be a

stage t between s and v such that a word not in any of the sets U t
k{0, 1}∗, U t

k+1{0, 1}∗, . . .
is enumerated into A during stage t. This can only be the case if also all components
U t

k, U
t
k+1, . . . are enumerated into A during stage t, i.e., (14) is satisfied again. This

shows that there are infinitely many stages s such that (12) is satisfied, which in turn
shows that (11) is true.

In summary, a uniformly c.e. sequence (An : n ≥ 1) was constructed such that for
each set A = An and for the corresponding random real r = rn, the conditions (10)
and (11) are satisfied. By (11), the intersection of all Uk{0, 1}∞ is a subclass of the
intersection of all An{0, 1}∞. Since (Uk : k ≥ 1) is a universal test by hypothesis, we
thus have that (An : n ≥ 1) is a universal Martin-Löf test, too. By (10), the measure
of each An{0, 1}∞ is equal to rn. ut

Remark 16 From the proof of Theorem 15, we obtain a somewhat simpler proof of the
result of Kučera and Slaman [11] that given any c.e. Martin-Löf random real r there
is a universal Martin-Löf test such that the sum of the measures Uk{0, 1}∞ is r. Such
a test can be constructed similar to the construction of the set A in in the proof of
Theorem 15, except that now words that correspond to different components Uk are put
into different components of the constructed test and that we can assume that we know
the index k, hence we never have to add words corresponding to components with an
index less than k.
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