
Notre Dame Journal of Formal Logic

Differences Between Resource Bounded Degree
Structures

Michael E. Mytilinaios and Theodore A. Slaman

Abstract We exhibit a structural difference between the truth-table degrees of
the sets which are truth-table above 0′ and thePTIME-Turing degrees of all sets.
Though the structures do not have the same isomorphism type, demonstrating
this fact relies on developing their common theory.

1. Introduction

For setsA andB, A is recursive inB (A ≤T B) if and only if there exists an algo-
rithm to computeA given complete information aboutB. If A and B are recursive
in each other, we say that they have the same Turing degree. The Turing degree of
a set is a measurement of the information which is contained in the diagram of that
set. The Turing degrees are partially ordered by≤T on their representatives.

By restricting the class of allowed algorithms, we obtain finer notions of degree.
For example,A is truth-table reducible toB (A ≤t t B) if and only if there is a
total recursive functiong and an algorithm to computeA from B such that for each
n, the algorithm runs in less thang(n) many steps. The truth-table degrees are the
associated equivalence classes. Similarly,A is PTIME-computable fromB if the
function g is a polynomial, and thePTIME-degrees are the associated equivalence
classes. With sub-exponential time classes, the representation of sets is important;
we will always work with sets of finite binary strings and calculate the run-time of
programs in terms of the lengths of their inputs.

In general, ifu is a collection of total recursive functions, we say thatA ≤u B if
there is ag in u and an algorithm to determine atomic facts aboutA from B such that
the run-time of the algorithm is bounded byg. Typically, u is taken to represent a
natural class of time complexity. We letDt t denote the partial order of the truth-table
degrees,DPTIME thePTIME-degrees, andDu theu-degrees.

Printed January 25, 2003
2001 Mathematics Subject Classification: Primary, 03D28, 68Q15

Keywords: Turing degree, polynomial-time degree, truth-table degree

c©2003 University of Notre Dame

1



2 Michael E. Mytilinaios and Theodore A. Slaman

Dt t is an odd member among the above collection of bounded resource degree
structures. The otheru’s are uniformly recursive; that is to say that there is a single
recursive functionh(n, m) of two variables such that for everyg, g ∈ u if and only if
there is anm such that for alln, g(n) = h(n, m). However, this difference disappears
if we considerDt t (≥t t0′), the truth-table degrees of sets above the halting problem
and leth be recursive in 0′.

Downey raised the question whether moving to the degrees above 0′ removes the
differences betweenDt t and the more complexity theoretic degree structuresDu.

The answer is both no and yes. We will show thatDt t (≥t t0′) is not isomorphic to
DPTIME. However, we come to this conclusion by exploiting the extensive similari-
ties between the two structures.

We will show thatDt t (≥t t0′) andDPTIME are not isomorphic by showing that
Dt t (≥t t0′) is locally more complicated thanDPTIME. For this, we will use finite
sequencesp of degrees to specify infinite sequences. Working inDt t (≥t t0′), we will
show that ifp specifies the sequence〈gi : i ∈ ω〉, then there is another finite sequence
q below the join ofp such thatq specifies the subsequence〈gi : i ∈ 0′′′

〉. However,
in DPTIME, there is ap specifying a sequence〈gi : i ∈ ω〉 such that for every finite
sequenceq below the join ofp, q does not specify the subsequence〈gi : i ∈ 0′′′

〉 (in
the sense of the previous sentence).

2. Isomorphism types

2.1 Defining ω-sequences from parameters

Conventions. In Section 2.1, we develop a common part of the theories of
Dt t (≥t t0′) and DPTIME. The following can be applied equally well in either of
the two, so we will refer simply toD . Similarly, we will let O refer to a representa-
tive of the least element ofD : ∅ whenD = DPTIME and 0′ whenD = Dt t (≥t t0′).
Finally, we will use uppercase Greek letters, such as8 and9, to denote Turing
functionals which corresponds to reductions of typeD and refer to them asD-
functionals. For example, aDPTIME-functional is a Turing functional that runs in
polynomial time. To keep the notation uncluttered, we will not explicitly join our
sets withO, but we will make the convention that anyD-functional can refer to the
oracleO.

Definition 2.1 1. An ideal in D is a setI that is closed under join and closed
downward.

2. Intersection gives an operation of meet on ideals. Union followed by closure
underD ’s join and closure downward gives an operation of join for ideals.

3. Given ak in D , let (k) denote{x : x ≤D k}. Clearly, (k) is an ideal.
Similarly, if K is a set of elements inD , let (K) denote the ideal generated
by the elements ofK.

There are many ways by which finitely many parameters can be used to generate an
infinite sequence inD . In Definition 2.2, we specify one such method, with features
motivated by Shore [6] and Nies et al. [4]. This method is well suited to specifying
subsequences from presentation of sequences.

Definition 2.2 A finite sequencep of elements ofD specifies the infinite sequence
〈gi : i ∈ ω〉 if and only if there are setsE1, F1, E2, F2, D1, andD2 which represent
the elements ofp in order, and there are sets〈Gi : i ∈ ω〉 which represent the
elements of〈gi : i ∈ ω〉, in order, and the following conditions hold.



Differences Between Degree Structures 3

1. For any finite setGn1, . . . , Gnk and Gm, if for all j ≤ k, n j 6= m, then
({Gn1, . . . , Gnk}) ∩ (Gm) = (O).

2. (a) D1 6≥D D2, and
(b) for eachn ∈ ω, D1 ⊕ Gn ≥D D2.

3. For eachn ∈ ω,
(a) if n is odd, then(F1 ⊕ Gn) ∩ (E1) = (Gn+1), and
(b) if n is even, then(F2 ⊕ Gn) ∩ (E2) = (Gn+1).

If p specifies a sequence, then the set of elements of that sequence is not necessarily
first order definable fromp, but it is associated withp in a way that is invariant under
isomorphism.

For the next definition, letp specify the sequence〈gi : i ∈ ω〉 and adopt the
notation of Definition 2.2. Further, ifp = 〈p1, . . . , pk〉 andq is a degree, then let
p_

〈q〉 denote the sequence〈p1, . . . , pk, q〉 obtained by appendingq to p.

Definition 2.3 Suppose thatq is a degree inD andQ is a set of degreeq. We say
that the sequencep_

〈q〉 specifies the subsequence〈gi : i ∈ S〉 if and only if, for all
i ,

i ∈ S ⇐⇒ (∃X)[Gi ≥D X andX ⊕ D1 ≥D D2 andQ ≥D X].

The technology to control meets inDPTIME was developed in Ambos-Spies [1]. It
was developed further in Shinoda and Slaman [5] and Shore and Slaman [7]. We
apply some of that technology in the next theorem. But first, we introduce a Skolem-
ized version of Definition 2.2.

Definition 2.4 A verified sequenceis a finite sequence ofD-Turing functionals
〈(21, j , 22, j , 8 j +1) : j < i 〉 with these three conditions, where we identifyX0 with
G0.

1. For all evenj strictly less thani , 21, j (F2 ⊕ X j ) = 22, j (E2) and X j +1 is
their common value.

2. For all odd j strictly less thani , 21, j (F1 ⊕ X j ) = 22, j (E1) and X j +1 is
their common value.

3. For all j strictly less thani , 8 j +1(D1 ⊕ X j +1) = D2.

We can think of a verified sequence as just a finite sequence of numbers, the indices
of the functionals. If〈(21, j , 22, j , 8 j +1) : j < i 〉 is a verified sequence, then each
X j +1 named above is a nontrivial element of(G j +1). In the other direction, for
everyi , Gi is the last element of some verified sequence.

Theorem 2.5 Suppose thatp specifies the sequence〈gi : i ∈ ω〉 in D . Let P be a
representative of the join of representatives ofp. For S⊆ ω, the following conditions
are equivalent.

1. S is60
2(P).

2. There is a Q of degree q such that P≥D Q andp_
〈q〉 specifies the subse-

quence〈gi : i ∈ S〉.

Proof We begin with (1). Let us suppose that there is aQ of degreeq such that
P ≥D Q andp_

〈q〉 specifies the subsequence〈gi : i ∈ S〉. Then,

i ∈ S ⇐⇒ (∃X)[Gi ≥D X andX ⊕ D1 ≥D D2 andQ ≥D X].



4 Michael E. Mytilinaios and Theodore A. Slaman

First, we can expand the right-hand-side of the equivalence so that

i ∈ S ⇐⇒
There are91, 92, and8 such that

92(91(Gi ) ⊕ D1) = D2 and8(Q) = 91(Gi ),

where91, 92, and8 areD-functionals. Second, the ideal belowGi is characterized
by the recursion relations in Definition 2.2. So, saying that there is a91 such that
91(Gi ) has a certain property can also be expressed as follows. We can say that
there is a verified sequence ending withXi such thatXi has the property in question.
Equality betweenD-Turing reductions is50

1 relative toP; the existence of theX j ’s
can be asserted by the existence of a vector of indices forD-Turing reductions; and
so, the reformulation of the right-hand-side is a60

2(P) property.
Part (2) of the proof of Theorem 2.5 is the construction of an appropriateQ. We

will describe the strategies involved and then discuss a construction combining them.
Suppose thatS is 60

2(P), and letR be a bounded formula such that for alli , i ∈ S
if and only if ∃n∀m R(i, n, m, P). For the moment, let us focus on satisfying the
statement, If〈(21, j , 22, j , 8 j +1) : j < i 〉 is a verified sequence, thenQ ≥D Xi if
and only if i ∈ S.

Our strategy to satisfy this statement will have two types of substrategies, which
we will describe in isolation. Before we describe these, we discuss some mechanical
preliminaries.

In the first type of substrategy, we will work with a numbern and approximate
whether∀m R(i, n, m, P). For this, we will do the firsts-many computational steps
of the process to check whetherR(i, n, 0, P), R(i, n, 1, P), R(i, n, 2, P), etc. We
say that∀m R(i, n, m, P) is verified up to stages if and only if this s-step process
does not reveal anm such thatR(i, n, m, P) is not true.

In both types of substrategy, we will approximate verified sequences. We letX0
denoteG0. We say that a sequence〈(21, j , 22, j , 8 j +1) : j < i 〉 is verified up tos
provided that all of the equalities in the list

1. For all evenj strictly less thani , 21, j (F2 ⊕ X j ) = 22, j (E2) and we let
X j +1 denote common value.

2. For all oddj strictly less thani , 21, j (F1 ⊕ X j ) = 22, j (E1) and we letX j +1
denote their common value.

3. For all j strictly less thani , 8 j +1(D1 ⊕ X j +1) = D2).

hold on the set of computations that can be verified ins many steps. Clearly,
〈(21, j , 22, j , 8 j +1) : j < i 〉 defines a verified sequence if and only if for every
s it is verified up tos.

We are not being specific about what we mean by the set of computations that can
be verified ins many steps. Out construction is not sensitive on this point. Fix any
recursive method to eventually check through all the above identities at all possible
arguments, no matter how inefficient. Then take “the firsts many steps” to mean the
first s many steps in this recursive process.

We will describe our construction as occurring in stages. Stages will consist of
calculating for allσ of lengths, whetherσ is an element ofQ. For each suchσ , this
calculation will have length a constant multiple ofs2. We note that membership in
Q has been decided for strings of length less thans, and that we can use information
aboutQ on short strings provided that we can compute that information within our
s2 time bound.



Differences Between Degree Structures 5

Coding. Fix the sequence〈(21, j , 22, j , 8 j +1) : j < i 〉 and a numbern. The
coding substrategy acts as follows to ensure that if〈(21, j , 22, j , 8 j +1) : j < i 〉 is a
verified sequence and(∀m)R(i, n, m, P) thenQ ≥D Xi .

It chooses a finite binary stringσ , unused by any other substrategy. Looking
across all stages, it’s action breaks into two states.
State 1. If 〈(21, j , 22, j , 8 j +1) : j < i 〉 is verified up tos and no counter-example
(m) to (∀m)R(i, n, m, P) is discovered within a search ofs steps, then the coding
substrategy acts as follows. Given a stringσ_τ ∗ of lengths, it checks whetherτ ∗ is
the concatenation of a sequence of 0’s of length the run time of the computation rel-
ative to the appropriate (depending on the parity ofi ) Ek used to determine whether
τ ∈ Xi , 1, and thenτ . If this is the case, then it sets

σ_τ ∗
∈ Q ⇐⇒ τ ∈ Xi .

Otherwise, it setsσ_τ ∗
6∈ Q. Note thatτ and Xi (τ ) can be computed a constant

multiple ofs many steps fromτ ∗ and the appropriateEk.
State 2. If during stages 〈(21, j , 22, j , 8 j +1) : j < i 〉 is not verified up tos or
in less thans we discover anm such thatR(i, n, m, P), then the coding substrategy
imposes the constraint that for allσ_τ ∗ of lengths, σ_τ ∗

6∈ Q.
Effect. If 〈(21, j , 22, j , 8 j +1) : j < i 〉 is a verified sequence, then the coding
substrategy ensures thatXi is D-computable fromQ. Otherwise, it’s effect on the
construction ofQ is to ensure that there are only finitely many extensions ofσ that
belong toQ.
Diagonalization. Our substrategy here is analogous to similar strategies found in
Ladner [3].

Suppose that we are given a sequence〈(21, j , 22, j , 8 j +1) : j < i 〉. The diago-
nalization substrategy acts to ensure that if the sequence is a verified sequence then
2(Q) 6= Xi . It affects the construction as follows.
State 1. First, it checks whether〈(21, j , 22, j , 8 j +1) : j < i 〉 is verified up to
s. If so then it runs the firsts many steps to check whether there is a counter-
example to2(Q) = Xi . (Note, we restrictP’s simulating queries toQ so that those
queries are on arguments of length less thans.) If no counter-example is found,
then the diagonalization substrategy requires that for allσ of lengths, σ ∈ Q if and
only if σ is required to be inQ by virtue of a coding substrategy which has higher
priority than it does. (We will organize our construction so that there are only finitely
many strategies of higher priority than this one. We will also ensure that none of the
strategies of higher priority code nontrivial setsD-belowGi .)
State 2. If either 〈(21, j , 22, j , 8 j +1) : j < i 〉 is not verified up tos or the diago-
nalization discovers a counter-example to2(Q) = Xi , then it imposes no constraint
on the construction during stages.
Effect. The diagonalization substrategy starts by imposing a constraint that, if per-
manent, would ensure thatQ is in the ideal generated from the sets coded by the
higher priority coding substrategies. Further, if this constraint were permanent, then
the verified sequence forXi would ensure thatXi is a nontrivial element of(Gi ) and
the substrategy’s never finding a counter-example to2(Q) = Xi would ensure that
Xi is in the ideal generated by these coded sets. Consequently, ifXi is not below the
join of the sets coded intoQ by the action of higher priority coding substrategies,
then the diagonalization strategy cannot stay in State 1 indefinitely.



6 Michael E. Mytilinaios and Theodore A. Slaman

The global strategy for 〈(21, j , 22, j , 8 j +1) : j < i 〉. Now, we discuss the global
strategyG to ensure that if〈(21, j , 22, j , 8 j +1) : j < i 〉 is a verified sequence, then
Q ≥D Xi if and only if i ∈ S. (Recall thatR is a bounded formula such that for all
i , i ∈ S if and only if ∃n∀m R(i, n, m, P).)

The first action ofG is to compute what we will call itsstate, as follows.G first
computes whether〈(21, j , 22, j , 8 j +1) : j < i 〉 is verified up tos. If the sequence is
not verified up tos, then we say thatG is cancelled during stages and letcancelled
be its state during stages. If it is not cancelled,then beginning withn equal to 0,G
performs the firsts computational steps in the following recursion. (Below, we refer
to a standard recursive enumeration of theD-functionals〈2n : n ∈ ω〉.)

1. If there anm less thans such that¬R(i, n, m, P) then(n, 1) is not the state
of G.

2. If there is anx lesss such that2n(x, Q) 6= Xi (n) then the state ofG is not
(n, 2).

If G rules out both states(n, 1) and(n, 2) then it increases the value ofn by one and
repeats the process.

If G is not cancelled, the state ofG during stages is the first pair(n, j ) not ruled
out above. It points to the substrategy that we should use for the sake ofG during
stages.

If G is not cancelled, then it does not impose any constraints on the construction.
Otherwise, let(n, j ) denote the state ofG during stages. If j is equal to 1, thenG acts
to enforce the state-1 constraints of the coding strategy on all stringsτ of lengths.
If j is equal to 2, thenG acts to enforce the state-1 constraints of the diagonalization
strategy on all stringsτ of lengths.

Now, we describe our full construction ofQ.
Assigning priority. Fix a recursive enumeration of all sequences of indices for pos-
sible verified sequences〈(21, j , 22, j , 8 j +1) : j < i 〉. Of course, some of these may
not actually denote verified sequences as they may fail to satisfy one of the appropri-
ate equalities between terms. We letGe denote the strategy associated with theeth
such sequence (denoted〈(2e,1, j , 2e,2, j , 8e, j +1, Xe, j +1) : j < ie〉).

For distinct strategiesGe1 andGe2, we say thatGe1 in state(n1, k1) hashigher pri-
ority thanGe2 in state(n2, k2) if and only either the maximum of{e1, n1} is less than
the maximum of{e2, n2} or their maxima are equal ande1 is less thane2. Clearly,
for eachGe1 and state(n1, k1), there are only finitely manyGe2’s and states(n2, k2)

which have higher priority.
Defining Q on sequences of length s. During each stages of our construction, we
work through the following steps in order.

1. For eachi less thans, we compute the state ofGi during stages.
2. We order the strategies in their stage-s states according to the priority given

above. LetGe in stage-s state(ne, 2) have the highest priority among all of
these whose states have the form(n j , 2) and for which there is no higher
priority Ge1 in stage-s state(ne1, 1) for which ie = ie1. In other words,Ge

in stage-s state(ne, 2) has the highest priority among those strategies/states
Ge1/(ne1, 2) for which there is no higher priority strategy/state which would
code a nontrivial element of(Gie1

) into Q.



Differences Between Degree Structures 7

3. Finally, ifσ has lengths, thenσ is an element ofQ if and only if some coding
strategyGe1 in a stage-s state of higher than or equal priority than that ofGe

requires thatσ belong toQ.

To summarize, we find the highest priority strategy/diagonalization-state pair
Ge/(ne, 2) which is working on a value ofi for which there is no higher priority
active coding strategy, and we restrict ourselves to using only those strategy/coding-
state pairs of higher priority thanGe/(ne, 2). We say thatGe/(ne, 2) and these
strategies in their coding states are active during stages.
Verifying that Q has the requisite properties. First, we observe thatP ≥D Q.
Suppose thatσ is a string of lengths. For eachi less thans, we calculate the stage-s
state ofGi by simulating twos-step computations, one to test whether to cancelGi

and one to determine its(n, j ) state. Thus, the calculation of the strategy/state pairs
which are active during stages is done in a constant multiple ofs2 many steps. We
then determine whetherσ is an element ofQ by checking whether it is put intoQ to
for a strategy which is active during stages. As we indicated earlier, whetherσ is to
be put intoQ by an active coding strategy can be determined in linear time relative
to E1 and E2. Consequently, whetherσ belongs toQ is computable fromP in a
constant multiple ofs2 many steps, and soP ≥D Q.

We now have a finite injury argument to show thatQ satisfies a sufficient set
of requirements. To begin, for each strategy and each state which that strategy can
achieve, there are only finitely many strategy/state pairs of higher priority. Further,
for all strategiesGe and states(n, j ), if (n, j ) is ruled out forGe during stages, then
it is ruled out during every subsequent stage (for the same reason that it was ruled
out during stages).

We claim that no strategyGe can reach a state(ne, 2) and remain actively in that
state during all subsequent stages. For the sake of a contradiction, suppose that the
claim is false. LetGe and state(ne, 2) be the highest priority counter-example. Since
Ge remains in state(ne, 2), its sequence〈(2e,1, j , 2e,2, j , 8e, j +1, Xe, j +1) : j < ie〉)
must be verified up tos during ever stages, and so be a verified sequence. In par-
ticular, Xe,ie is a nontrivial member of(Gie). Choose a stages so thatGe is in state
(ne, 2) during stages and so that every strategy in a stage-s state(n, 2) with no
active, higher priority, coding strategy has lower priority thanGe/(ne, 2) does. By
the choice ofGe, (ne, 2), ands, if t is greater than or equal tos and if Ge1 is in
a coding state of higher priority thanGe in state(ne, 2) then ie1 is not equal toie.
Consequently, the join of the sets being coded intoQ by strategies of higher priority
is below a finite join ofGi ’s such thati is not equal toie. Since the degrees of the
setsGi are part of the sequence specified byp (see Definition 2.2), any set below the
finite join aboveGie has trivialD-degree. SinceXe,ie is the last element of a verified
sequence,Xe,ie is not trivial andXe,ie ∈ (Gie). Thus,Xe,ie is not below the join of
the coded sets. Once the construction computes the witness to this effect and rules
out the state(ne, 2) for Ge, as claimed.

By the previous paragraph, no strategy can remain in an active diagonalization
state indefinitely. Suppose that〈(2e,1, j , 2e,2, j , 8e, j +1) : j < ie〉 is a verified
sequence such thatie = i and that(∀n)(∃m)¬R(i, n, m). By the first assumption,Ge

will have a state of the form(n, j ) during every stage of the construction greater than
or equal toe. We letn∗ be fixed for the moment, and we show that2n∗(Q) 6= Xi .
Since the(n, 1) states of anyGe1 with ie1 = i are discarded when the construction
finds that(∃m)¬R(ie, n, m), no suchGe1 can be in one of these states indefinitely:



8 Michael E. Mytilinaios and Theodore A. Slaman

either the construction discovers that〈(2e1,1, j , 2e1,2, j , 8e1, j +1) : j < ie1〉 fails to
be verified up to the current stage or it discovers that(∃m)¬R(ie, n, m). So, there
is a staget after which everyGe1 with ie1 = ie rules out all of the states(n1, 1)

of higher priority than that ofGe in state(n∗, 2). Since no strategy can remain in
an active diagonalization state indefinitely and no state can be repeated once it is
ruled out, there is an even larger stage such that for all later stages, ifGe is in state
(n∗, 2) then it will be active. Since it cannot be active indefinitely, there must be a
stage during which we rule out the state(n∗, 2) for Ge and this can only happen by
finding a stringσ and a computation showing that2n∗(σ, Q) is not equal toXe,i (σ ).
Consequently, if(∀n)(∃m)¬R(i, n, m) and〈(2e,1, j , 2e,2, j , 8e, j +1) : j < ie〉 is a
verified sequence such thatie = i , then2n∗(Q) 6= Xi . Sincen∗ was arbitrary, if
(∀n)(∃m)¬R(i, n, m) and〈(2e,1, j , 2e,2, j , 8e, j +1) : j < ie〉 is a verified sequence
such thatie = i thenQ 6≥D Xi , as required.

Dually, suppose that〈(2e,1, j , 2e,2, j , 8e, j +1) : j < ie〉 is a verified sequence
such thatie = i and that(∃n)(∀m)¬R(i, n, m). Let ni be the smallest numbern
such that(∀m)¬R(i, n, m). Arguing as above, either there is a stages such that all
of the higher priority states ofGe are ruled out during every stage afters or there is
a higher priority strategy/coding-stateGe1 which is active indefinitely and for which
ie1 = i . All of the strategy/diagonalization-states of higher priority thanGe in state
(ni , 1) which are ever active are eventually ruled out. IfGe is ever made active in
state(ni , 1) it will be active during every subsequent stage. Consequently, eitherGe

in state(ni , 1) is active indefinitely or there is a higher priority strategy/coding-state
Ge1 which is active indefinitely and for whichie1 = i . (Note, the coding ofXe1 into
Q could keepGe in an earlier diagonalization state. However, in this case, we need
not argue thatGe codesXe,i into Q.)

Consequently, there is ane∗ and a verified sequence ending withXe∗,i such that
Q ≥D Xie∗ , as required in this case.

Thus, Q satisfies the requirements necessary to verify the second part of Theo-
rem 2.5. �

Next, we show that it is possible for parameters to specify sequences. The following
theorem is not the best possible, in fact stronger results appear in Shore and Slaman
[8], but it is sufficient for our application. We include a direct proof of Theorem 2.6
here, since it is relatively short and avoids the complexities of [8] that are not relevant
here.

Theorem 2.6 There are sets E1, F1, E2, F2, D1, and D2 such that the following
conditions hold.

1. The degrees of E1, F1, E2, F2, D1, and D2 specify a sequence.
2. The Turing jump of the join of all of these sets is recursive in the Turing jump

of the least element ofD .

Proof Recall our notation,O is a representative of the least element ofD .
We build E1, F1, E2, F2, D1, andD2 by an effective forcing construction so that

the Turing jump of their join is recursive inO′.
We partition the set of finite binary strings with at least one nonzero value into

an infinite set of isomorphic copies of the set of all binary strings. Let〈0i 1〉 be the
binary sequence withi -many 0’s followed by a 1. For a setX, we let Xi denote
the set of stringsσ such thatσ is in X andσ is an extension of〈0i 1〉. We will let



Differences Between Degree Structures 9

G2 j = E2 j
1 andG2 j +1 = E2 j +1

2 , and so by specifyingE1 andE2 we will implicitly
specify all of the elements of{Gi : i ∈ ω}, as well. Note that we have ensured that
distinct Gi ’s have empty intersection, and that the set theoretic union of any set of
Gi ’s is aPTIME-upper bound for the ideal that they generate.
The forcing partial order. A condition p in P specifies finitely much about the sets
E1, F1, E2, F2, D1, andD2. The information specified must satisfy the following
conditions.

1. (a) If p specifiesD2(σ ), Gi (〈0i 1〉
_

σ), andD1(〈0i 1〉
_

σ), then

D2(σ ) =

{
0, if D1(〈0i 1〉

_
σ) = Gi (〈0i 1〉

_
σ);

1, otherwise.

(b) Further, ifp specifies two of the above three values, then it specifies the
remaining one.

2. (a) If i > 0 is odd andp specifiesGi (〈0i 1〉
_

σ), F1(〈0i 1〉
_

σ), and
Gi +1(〈0i +11〉

_
σ), then

Gi +1(〈0
i 1〉

_
σ) =

{
0, if F1(〈0i 1〉

_
σ) = Gi (〈0i 1〉

_
σ);

1, otherwise.

(b) If i > 0 is even andp specifiesGi (〈0i 1〉
_

σ), F2(〈0i 1〉
_

σ), and
Gi +1(〈0i +11〉

_
σ), then

Gi +1(〈0
i +11〉

_
σ) =

{
0, if F2(〈0i 1〉

_
σ) = Gi (〈0i 1〉

_
σ);

1, otherwise.

(c) In each of the above cases, ifp specifies two of the above three values,
then it specifies the remaining one.

Conditions are ordered by inclusion.
Properties of a generic set. The instances of comparability required to specify a
sequence are built into the partial order. Additionally, there is enough flexibility
in the partial order so that the other properties required by Definition 2.2 can be
ensured by deciding60

1(O) sentences about the sets constructed. Specifically, we
must satisfy the following requirements.

D-requirements: For eachD-functional2, 2(D1) 6= D2.
FE-requirements: For each pair ofD-functionals81 and82 and eachi ,

• if i is odd and81(F1 ⊕ Gi ) = 82(E1), then there is aD-functional1
such that1(Gi +1) = 82(E1), and

• if i is even and81(F2 ⊕ Gi ) = 82(E2), then there is aD-functional1
such that1(Gi +1) = 82(E1).

D-requirements. Consider the first of these requirements. Suppose thatp is a con-
dition. Choseσ so thatp does not specifyD2(σ ), and for alli , p does not specify
Gi (〈0i 1〉

_
σ) or D1(〈0i 1〉

_
σ). We first extendp’s specification ofD1 so as to deter-

mine the value of2(σ, D1). Then we extendp’s specification ofD2 so thatD2(σ )

is different from the value of2(σ, D1). We extend the specification of theGi ’s to
ensure thatD1 ⊕ Gi codesD2 in the manner prescribed in 1(a). Finally, we extend
F1 andF2 so as to respect 2(a) and 2(b). Givenp, we can find the desired extension
recursively inO.



10 Michael E. Mytilinaios and Theodore A. Slaman

FE-requirements. Now consider the first instance of the second requirement, when
i is odd. Suppose thatp is a condition. By making a finite extension ofp, we may
assume that for allσ and alli , if either of F1(〈0i 1〉

_
σ) or F2(〈0i 1〉

_
σ) is specified

by p, then so areGi (σ ), andGi +1(σ ). We consider two cases.
Case 1. For any stringσ and any two conditionsq1 andq2 which extendp and
agree on the values specified forGi +1, the values of82(σ, E1) determined by the
conditions are equal.

But then, for any way to extend the values ofp on theG j ’s, there is an extension
of the values ofF1 F2, D1, and D2 which produces a condition. Consequentlyp
forces thatGi +1 can compute the value of82(σ, E1): the value of82(σ, E1) is
equal to that of82(σ, Ep), whereEp is the set whose only elements are the union
of Gi +1 with the set of elements specified to belong toE1 by p.
Case 2. There is a stringσ and two conditionsq1 andq2 which extendp and agree
on the values specified forGi +1, such that the values of82(σ, E1) determined by
the conditions are not equal, and we fix such.

By making a finite extension ofq1, we may assume thatq1 specifies enough of
F1 andGi to determine the value of81(σ, F1 ⊕ Gi ). If this value is different from
82(E1), then our requirement is satisfied. Otherwise, we proceed as follows to con-
struct a conditionr such thatr specifies the same values forF1 andGi asq1 does,
andr specifies the values forE1 thatq2 does. We start withq1. We change the values
specified forE1 so as to agree with those specified byq2; sinceq1 andq2 specify the
same values forGi +1, this does not change the specification ofGi +1. Thus, we have
changed the specification of some of theG j ’s with j even. We change the values of
theG j ’s for j odd in order to makeF1 ⊕ G j correctly code the new values ofG j +1.
Note that though we may change some of theG j ’s for j even, we do not change
Gi , sinceF1 ⊕ Gi already codesGi +1. We change the values ofF2 in order to make
F2⊕G j correctly code then new values of theG j +1’s for j even. Finally, we change
D1 so that for all j , D1 ⊕ G j correctly codesD2. In short, we can change all of the
evenG j ’s with j 6= i + 1 and shunt the feedback away forF1 ⊕ Gi . The condition
r ensures that81(σ, F1 ⊕ Gi ) 6= 82(σ, E1).

In either case, the requirement is satisfied. The split into cases is60
1(O); and in

the second case, we can find the conditionr uniformly recursively inO′.
Turing jump requirements. Controlling the jump is a standard feature of construc-
tions of this sort; see Jockusch [2]. We can ensure that the join of the sets that we
produce has Turing jump recursive inO′ be ensuring that every60

1 sentence about
these sets is decided by an element of our partial order.
The construction. For each of our requirements, we can go from a conditionp to
a conditionq such that the requirement is satisfied for any sets extendingq. Further,
we can findq from p and the requirement recursively relative toO′. Consequently,
we can use recursion to construct sets of the desired sort, satisfying the requirements
one after the other. �

2.2 Comparing Dt t(≥t t0′) and DPTIME

Theorem 2.7 Dt t (≥t t0′) and DPTIME are not isomorphic.

Proof First considerDt t (≥t t0′). Every element ofDt t (≥t t0′) can compute 0′, and
so 0′′′ is 60

2 in every representative of an element ofDt t (≥t t0′). By Theorem 2.5 , if



Differences Between Degree Structures 11

p specifies a sequence〈gi : i ∈ ω〉 in Dt t (≥t t0′), then there is aq below the join of
p such thatp_

〈q〉 specifies the subsequence〈gi : i ∈ 0′′′
〉.

Now considerDPTIME. Let p be the sequence of parameters produced in Theo-
rem 2.6. By the first clause of Theorem 2.6,p specifies a sequence〈gi : i ∈ ω〉 in
DPTIME. By the second clause, the Turing jump of join of the representatives ofp is
recursive in 0′. Consequently, ifq is below the join ofp in DPTIME andQ is a repre-
sentative ofQ, then any set60

2(Q) is 60
2. But then, since 0′′′ is not60

2, Theorem 2.5
implies that the subsequence〈gi : i ∈ 0′′′

〉 is not represented by anyq below the join
of the elements ofp. �

3. Conclusion

We have shown thatDt t (≥t t0′) andDPTIME are not isomorphic. We firmly believe
that these structures have different first order theories. We believe that one could
find a difference between their theories by extending the apparatus of specifying se-
quences to an apparatus of specifying standard models of arithmetic. The structural
difference between the two structures would then be expressed in the first order lan-
guage of these structures.DPTIME would have a sequence of parameters specifying a
standard model of arithmetic such that noq below the parameters specifies the com-
plete60

3 predicate on that model. InDt t (≥t t0′), the opposite would be true. One
could attempt to apply the techniques in [5] in order to carry out this proposal.

The difference found betweenDt t (≥t t0′) andDPTIME comes from the large dif-
ference in the Turing degrees of their least elements. Our methods do not answer the
following question.

Question 3.1 Let DELEM be the elementary-time Turing degrees. IsDPTIME iso-
morphic toDELEM?

References

[1] Ambos-Spies, K., “Minimal pairs for polynomial time reducibilities,” pp. 1–13 inCom-
putation theory and logic, volume 270 ofLecture Notes in Comput. Sci., Springer, Berlin,
1987. MR 88j:03025. 3

[2] Jockusch, C. G., Jr., “Degrees of generic sets,” pp. 110–139 inRecursion theory: its
generalisation and applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979), vol-
ume 45 ofLondon Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge,
1980. MR 83i:03070. 10

[3] Ladner, R., “On the structure of polynomial time reducibility,”J. Assoc. Comput. Mach.,
vol. 22 (1975), pp. 155–171. MR 57 #4623. 5

[4] Nies, A., R. A. Shore, and T. A. Slaman, “Interpretability and definability in the recur-
sively enumerable degrees,”Proc. London Math. Soc. (3), vol. 77 (1998), pp. 241–291.
MR 99m:03083. 2

[5] Shinoda, J., and T. A. Slaman, “On the theory of the PTIME degrees of the recursive
sets,”J. Comput. System Sci., vol. 41 (1990), pp. 321–366. MR 92b:03049. 3, 11



12 Michael E. Mytilinaios and Theodore A. Slaman

[6] Shore, R. A., “The theory of the degrees below 0′,” J. London Math. Soc., vol. 24 (1981),
pp. 1–14. MR 83m:03051. 2

[7] Shore, R. A., and T. A. Slaman, “The p-T-degrees of the recursive sets: lattice embed-
dings, extensions of embeddings and the two-quantifier theory,”Theoret. Comput. Sci.,
vol. 97 (1992), pp. 263–284. MR 93e:03061. 3

[8] Shore, R. A., and T. A. Slaman, “TheP-T-degrees of the recursive sets: lattice embed-
dings, extensions of embeddings, and the two quantifier theory,”Theoretical Computer
Science, vol. 97 (1992), pp. 263–282. 8

Acknowledgments

During the preparation of this paper, Slaman was partially supported by the Alexander
von Humboldt Foundation and by National Science Foundation Grant DMS-9988644.

Athens University of Economics and Business
Athens, Greece
xar@aueb.gr

University of California, Berkeley
Berkeley, CA 94720-3840 USA
slaman@math.berkeley.edu


