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Abstract. We show that there is a low T -upper bound for the class of K-

trivial sets, namely those which are weak from the point of view of algorithmic

randomness. This result is a special case of a more general characterization of
ideals in ∆0

2 T -degrees for which there is a low T -upper bound.

1. Introduction

1.1. Background. This paper is motivated by a question concerning the K-trivial
sets, namely those sets which are computationally weak from the point of view of
algorithmic randomness. The collection of K-trivial sets can be defined as consisting
of exactly those sets for which prefix-free Kolmogorov complexity of initial segments
grows as slowly as possible. However, there are at least three conceptually other
ways to come to the same class, which is part of the interest in them.

Another part of the interest in this class lies in its properties when viewed as a
subideal within the ∆0

2 Turing degrees. Here, the K-trivial sets induce a Σ0
3 ideal in

the ω-r.e. T -degrees which is generated by its r.e. members, and the r.e. K-trivial
sets induce a Σ0

3 ideal in the r.e. T -degrees. This was proved by Nies [14] and
partially also by Downey, Hirschfeldt, Nies, and Stephan [5] (see also [3] or [16]).
Nies (unpublished, see [3]) also showed that there is a low2 r.e. T -degree which is
a T -upper bound for the class of K-trivial sets. However, Nies [15] also proved
that there is no low r.e. T -upper bound for this class. Since all K-trivial sets are
low, the latter result shows that the ideal is nonprincipal. Whether there is a low
T -upper bound for the class of K-trivial sets remained unresolved. See, e.g., the
list of open questions in Miller and Nies [12]).

This is the question which motivated this paper. We show that there is a low
T -upper bound on the ideal of the K-trivial T -degrees. The proof applies more
broadly, and we give a general characterization of those ideals in the ∆0

2 T -degrees
for which there is a low T -upper bound.

1.2. Notation. Our computability-theoretic notation generally follows Soare [22]
and Odifreddi [17, 18]. An introduction to algorithmic randomness can be found in
Li and Vitányi [11]. A short survey of it is also given in Ambos-Spies and Kučera
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[1] and a longer one in Downey, Hirschfeldt, Nies, and Terwijn [4]. More recent
progress is described in detail in forthcoming books of Downey and Hirschfeldt [3]
and Nies [16].

We refer to the elements of 2ω as sets or infinite binary sequences. We denote
the collection of strings, i.e. finite initial segments of sets, by 2<ω. The length of a
string σ is denoted by |σ|, for a set X, we denote the string consisting of the first
n bits of X by X � n. We let σ ∗ τ denote the concatenation of σ and τ . We write
σ � τ to indicate that σ is a substring of τ , and similarly σ ≺ τ to indicate that
σ is a proper substring of τ . We further write σ ≺ X to indicate X � |σ| = σ. If
σ ∈ 2<ω, then [σ] denotes {X ∈ 2ω : σ ≺ X}, and Ext(σ) = {τ ∈ 2<ω : σ � τ}.

A Σ0
1 class is a collection of sets that can be effectively enumerated. Such a class

can be represented as
⋃

σ∈W [σ] for some (prefix-free) recursively enumerable (r.e.)
set of strings W . The complements of Σ0

1 classes are called Π0
1 classes. Any Π0

1

class can be represented by the class of all infinite paths through some recursive
tree ⊆ 2<ω. We use also relativized versions, i.e. Π0,X

1 classes.
A string σ is ω-extendable on a tree T if σ ≺ X for some infinite path X through

T . A string σ is h-extendable on a tree T if there is a string τ ∈ T which extends
σ, and |τ | is equal to |σ| + h. By ω-extendability of a string σ ∈ 2<ω in a class
B ⊆ 2ω we mean that there is a function f ∈ B which extends σ.

[Tr] denotes the class of all infinite paths through a tree Tr.
Additionally to binary strings and trees ⊆ 2<ω we will also use both finite se-

quences of elements of {0, 1}×{−1, 0, 1} which we call p-strings and trees of p-strings
(i.e. trees ⊆ ({0, 1} × {−1, 0, 1})<ω). We generalize notation for binary strings to
p-strings in an obvious way.

K denotes prefix-free Kolmogorov complexity. We assume Martin-Löf’s defini-
tion of 1-randomness as well as its relativization to an oracle.

Let f be a total function, i.e. f ∈ ωω, and let g be a (possibly) partial function,
g : ω 7→ ω. We say that f eventually dominates g if there is an n such that for all
x > n, g(x) ↓ implies f(x) ≥ g(x).

Convention. If C is a class of sets, T -degrees of which form an ideal, we often
speak of an ideal C by which we mean an ideal of T -degrees of members of C.

2. Preliminaries

We begin with basic definitions with which one can formulate the various char-
acterizations of K-triviality. However, these characterizations differ in applicability
as will be mentioned later.

Definition 2.1. (1) K denotes the class of K-trivial sets, i.e. the class of sets
A for which there is a constant c such that for all n, K(A � n) ≤ K(0n)+ c.

(2) L denotes the class of sets which are low for 1-randomness, i.e. sets A such
that every 1-random set is also 1-random relative to A.

(3) M denotes the class of sets that are low for K, i.e. the class of sets A for
which there is a constant c such that for all σ, K(σ) ≤ KA(σ) + c.

(4) A set A is a basis for 1-randomness if there is a Z such that A ≤T Z and
Z is 1-random relative to A. The collection of such sets is denoted by BR.

Nies [14] proved that L = M, Hirschfeldt and Nies, see [14], proved that K =
M, and Hirschfeldt, Nies, and Stephan [6] proved that BR = K. Thus, all these
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four classes are equal and we have, remarkably, four different characterizations of
the same class.

Chaitin [2] proved that if a set is K-trivial then it is ∆0
2. By a result of Kučera

[9], low for 1-random sets are GL1 and, thus, every K-trivial set is low. The lowness
of these sets also follows from some recent results on this class of sets, see [14] or
[4].

An interesting result shows that there is an effective listing of all K-trivial sets
in the following way.

Theorem 2.1 (Downey, Hirschfeldt, Nies, and Stephan [5]). There is an effective
sequence {Be, de}e of all the r.e. K-trivial sets and of constants such that each Be

is K-trivial via de.

Nies [14] proved that the class of K-trivial sets is closed downwards under T -
reducibility. Of course, the downward closure is immediate for the equalityK = BR,
but that equality is a deeper fact. In the same paper, Nies also showed that for
any K-trivial set A there is an r.e. K-trivial set B such that A ≤tt B. Downey
et al. [5] proved that the class of K-trivial sets is closed under join. Finally, Nies
[14] showed that the K-trivial sets induce a Σ0

3 ideal in the ω-r.e. T -degrees which
is generated by its r.e. members, and r.e. K-trivial sets induce a Σ0

3 ideal in the r.e.
T -degrees.

On the other hand, the ideal is nonprincipal as the following theorem shows,
since all K-trivials are low.

Theorem 2.2 (Nies [15]). • For each low r.e. set B, there is an r.e. K-
trivial set A such that A �T B.

• For any effective listing {Be, ze}e of low r.e. sets and of their low indices
there is an r.e. K-trivial set A such that A �T Be for all e.

Remark. The proof uses a technique, known as Robinson low guessing method
(introduced for low r.e. sets by Robinson [19]) which is compatible for low r.e. sets
with a technique do what is cheap. Here cheap is defined in terms of a cost function
(see, e.g. [3], [4], [16]). Alternatively, one could construct in the above Theorem
a set which is low for 1-randomness instead of a K-trivial set and define cheap as
having a small measure (see, e.g. Kučera and Terwijn [10] or Downey et al. [4]).
However, the Robinson low guessing technique does not seem to generalize from r.e.
sets to ∆0

2 sets in a way which is compatible with the heuristic do what is cheap.
In fact, it does not as Theorem 3.2 below shows.

An immediate corollary of Theorem 2.2 is that no low r.e. set can be a T -upper
bound for the class K.

Further, Theorem 2.2 was used by Nies [15, 14] and by Downey et al. [5] to show
that four different characterizations of the same class, i.e. characterizations yielding
K,L,M,BR respectively, are not equally uniform. Especially, the uniformity in the
characterization by K-triviality sets is weaker than the characterization by low for
K. Unlike the constants by which a set is K-trivial, constants by which a set is low
for K can be uniformly transformed into indices by which that set is low.

Theorem 2.3 (Nies [15], Nies [14], Downey, Hirschfeldt, Nies, and Stephan [5]).
• There is no effective sequence {Be, ce}e of all the r.e. low for K sets with

appropriate constants.
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• There is no effective way to obtain from a pair (B, d), where B is an r.e.
set that is K-trivial via d, a constant c such that B is low for K via c.

• There is no effective listing of all the r.e. K-trivial sets together with their
low indices.

There are several results on Σ0
3 ideals of r.e. sets. One of the first such results is

the following.

Theorem 2.4 (Yates [23]). For any r.e set A <T ∅′ the following conditions are
equivalent.

(1) A′′ ≡T ∅′′.
(2) {x : Wx ≤T A} is a Σ0

3 set.
(3) the class {Wx : Wx ≤T A} is uniformly r.e.

On the other hand Nies (unpublished, see [3]) proved that for any proper Σ0
3

ideal of r.e. sets there is a low2 r.e. T -degree which is a T -upper bound for this
ideal. Thus, together with the above theorem by Yates we have a characterization
of ideals of r.e. sets for which there is a low2 r.e. T -upper bound. An ideal has a
low2 T -upper bound if and only if it is a subideal of a proper Σ0

3 ideal.
A characterization of ideals of r.e. sets (or ideals generated by their r.e. mem-

bers) for which there is a low T -upper bound, not necessarily r.e., was open. We
substantially use properties of {0, 1}-valued DNR functions (and their relativiza-
tions) in our construction of low T -upper bounds for ideals. We give a short review
of basic properties of such functions here.

Definition 2.2. Let PA(B) denote the class of all {0, 1}-valued B-DNR functions,
i.e. the class of functions f ∈ 2ω such that f(x) 6= Φx(B)(x) for all x . If B is ∅ we
simply speak of PA.

Definition 2.3 (Simpson [21]). Write b << a to mean that every infinite tree
T ⊆ 2<ω of T -degree ≤ b has an infinite path of T -degree ≤ a.

Theorem 2.5 (Scott [20], Solovay (unpublished), see [21]). The following condi-
tions are equivalent:

(1) a is a T -degree of a {0, 1}-valued DNR function.
(2) a >> 0.
(3) a is a T -degree of a complete extension of Peano arithmetic.
(4) a is a T -degree of a set separating some effectively inseparable pair of r.e.

sets.

Remark. By the implication from (1) to (2) in Theorem 2.5, PA is a “universal” Π0
1

class. {0, 1}-valued DNR functions are also called PA sets and T -degrees >> 0 are
also called PA degrees. Analogously, the class PA(B) is a “universal” Π0,B

1 class.
Simpson [21] proved that the partial ordering << is dense and a << b implies
a < b.

Definition 2.4. Let M be an infinite set and {mi}i be an increasing list of all
members of M . For f ∈ 2ω by Restr(f,M) we denote a function g defined for all i
by g(i) = f(mi). Similarly, if B ⊆ 2ω then by Restr(B,M) we denote a class of
functions {g : g = Restr(f,M) & f ∈ B}. Further, if σ ∈ 2<ω, then by Restr(σ,M)
we denote a string τ defined by τ(i) = σ(mi) for all i such that |mi| < |σ|.
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Lemma 2.6. (1) For every Π0
1 class B which is a subclass of PA there is an

infinite recursive set M such that if B is nonempty then Restr(B,M) =
2ω, i.e. for every function g ∈ 2ω there is a function f ∈ B such that
Restr(f,M) = g. Moreover, an index of M can be found recursively from
an index of B.

(2) For every Π0,B
1 class B which is a subclass of PA(B) there is an infinite

recursive set M such that if B is nonempty then Restr(B,M) = 2ω, where
an index of M can be found uniformly-recursively from an index of B, i.e.
in a uniform way which does not depend on an oracle B.

Proof. Lemma 2.6 is an application of Gödel’s incompleteness phenomenon in the
context of Π0

1 classes of {0, 1}-valued B-DNR functions. Under a slight modification
it was proved by Kučera [8]. For the convenience of the reader we first sketch the
proof of the original version from [8], which is slightly technically easier. Then we
show how to modify it to get the desired result stated in Lemma 2.6.
1. The original version from [8].

Let G0 denote the class of all {0, 1}-valued GNR functions, i.e. functions f ∈ 2ω

such that f(< x, y >) 6= ϕx(y) for all x, y. Theorem 2 from [8] states the following.
For every nonempty Π0

1 class B, B ⊆ G0, there is x0 such that for every set C there
is a function g ∈ B such that g(< x0, y >) = C(y) for all y (and such x0 can be
found effectively from an index of B).
Proof of this theorem.
Suppose B is a Π0

1 subclass of G0. Observe that B ∩ {f ∈ 2ω : f(< x, j >) =
σ(j), j < |σ|} = ∅ is a Σ0

1 condition (with variables x and σ ∈ 2<ω). Thus, there
is a total recursive function β such that ϕβ(x)(y) is defined for all y if and only if
there is a string σ ∈ 2<ω for which B ∩ {f ∈ 2ω : f(< x, j >) = σ(j), j < |σ|} = ∅,
and if there is such a string, then the first such found under a standard search, say
σ0, is used to define ϕβ(x)(y) = 1 − σ0(y) for all y < |σ0| and ϕβ(x)(y) = 0 for all
y ≥ |σ0|. By the recursion theorem there is x0 such that ϕx0 = ϕβ(x0).
It is easy to prove that if B is nonempty, then both B ∩ {f ∈ 2ω : f(< x0, j >) =
σ(j), j < |σ|} 6= ∅ for any σ ∈ 2<ω and ϕx0(y) is not defined for any y. Really, it
there were such a string σ for which B∩{f ∈ 2ω : f(< x0, j >) = σ(j), j < |σ|} = ∅
and σ0 were the first such found (as mentioned above) then every function g ∈ G0

would satisfy g(< x0, j >) = σ0(j) for j < |σ0|, which would immediately imply
B = ∅, a contradiction. Thus, for every string σ ∈ 2<ω we have B ∩ {f ∈ 2ω : f(<
x0, j >) = σ(j), j < |σ|} 6= ∅. Using the compactness of the Cantor space 2ω we
have the required property, i.e. B ∩ {f ∈ 2ω : f(< x0, y >) = C(y), y ∈ ω} 6= ∅ for
any set C.
2. Proof of the version stated in Lemma 2.6, part 1.

We easily modify the above proof by an additional use of the s-m-n theorem.
Suppose a Π0

1 class B is a subclass of PA.
Let α be a partial recursive function such that α(z, y, w) is defined if and only if
there is a string σ ∈ 2<ω such that ϕz(j) is defined for all j < |σ| and B∩{f ∈ 2ω :
f(ϕz(j)) = σ(j), j < |σ|} = ∅, and if such string exists then the first such found
under a standard search, say σ0, is used to define α(z, y, w) = 1− σ0(y) for all y <
|σ0| and α(z, y, w) = 0 for y ≥ |σ0|. By the s-m-n theorem there are total recursive
functions γ and δ (even primitive recursive) such that α(z, y, w) = ϕγ(z,y)(w) and
γ(z, y) = ϕδ(z)(y), for all z, y, w.
By the recursion theorem there is z0 such that ϕz0(y) = ϕδ(z0)(y) = γ(z0, y) for all
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y. By properties of s-m-n functions we may assume that the function γ is increasing
in both variables. Let h denote ϕz0 . Then h is a total increasing recursive function,
and α(z0, y, w) = ϕh(y)(w), for all y, w. A straightforward modification of the
above proof of the original version shows that if B is nonempty then B ∩ {f ∈
2ω : f(h(j)) = σ(j), j < |σ|} 6= ∅ for every string σ ∈ 2<ω. To verify that
in details, suppose for a contradiction that there is a string σ ∈ 2<ω for which
B ∩ {f ∈ 2ω : f(h(j)) = σ(j), j < |σ|} = ∅ and let σ0 denote the first such
string found by a search realized to define values of the function α, namely values
α(z0, y, w). Then α(z0, y, w) is defined and α(z0, y, w) = ϕh(y)(w) = ϕh(y)(h(y)) for
all y, w, and, further, ϕh(y)(h(y)) = 1−σ0(y) for all y < |σ0|. Then, by the definition
of the class PA, i.e. the class of {0, 1}-valued DNR functions , every function
f ∈ PA has to satisfy f(h(y)) 6= ϕh(y)(h(y)) and, thus, f(h(y)) = σ0(y) for all
y < |σ0|. This immediately yields that B = B∩{f ∈ 2ω : f(h(j)) = σ0(j), j < |σ0|}
and, therefore, this proves that the class B is empty, a contradiction.
Thus, for every string σ ∈ 2<ω we have B ∩ {f ∈ 2ω : f(h(j)) = σ(j), j < |σ|} 6= ∅.
Using the compactness of the Cantor space 2ω we have the required property, i.e.
B ∩ {f ∈ 2ω : f(h(y)) = C(y), y ∈ ω} 6= ∅ for any set C. Let M denote the
recursive set which is the range of h. Obviously M has all required properties.
3. Part 2 of Lemma 2.6.

It is just a relativized version of part 1 and it is proved analogously.
�

By Lemma 2.6, we can code arbitrary sets into members of Π0,B
1 subclasses of

PA(B). We illustrate it for an unrelativized case. Suppose that B is a nonempty
Π0

1 subclass of PA and M an infinite recursive set such that Restr(B,M) = 2ω.
Let a set C be given. If we take a class E = {f : f ∈ B & Restr(f,M) = C}, then
by our assumption E is nonempty. It is a Π0,C

1 class and obviously any member
B of E is T -above C. In a more general way, we may nest into a Π0

1 subclass of
PA not only a singleton {C} as above, but even a given Π0,C

1 class. Namely, with
the above assumptions if C is a nonempty Π0,C

1 class then a class E = {f : f ∈
B & Restr(f,M) ∈ C} is nonempty, it is a Π0,C

1 class and obviously any member
of E is T -above some member of C. A relativization of these tricks to Π0,B

1 classes
which are subclasses of PA(B) is straightforward. When combined with Low Basis
Theorem of Jockusch and Soare [7] we easily get the following.

Example 2.1. For any low set A there is a low PA set B such that A ≤T B. We
may even require that additionally a << b where a,b are T -degrees of sets A,B
respectively. A relativization of this fact to an oracle is straightforward.

3. Constructing low upper bounds for ideals

We show that there is a low T -upper bound for the class of K-trivial sets and
give also a more general result about low T -upper bounds for ideals in the ∆0

2

T -degrees.

Theorem 3.1. Let C be a Σ0
3 ideal of r.e. sets. Then the following conditions are

equivalent.
(1) There is a function F recursive in ∅′ which eventually dominates all partial

functions recursive in any member of C.
(2) There is a low T -upper bound for C.
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Theorem 3.1 follows from the next more general result.

Theorem 3.2. Let C be an ideal in ∆0
2 T -degrees. The following conditions (1)

and (2) are equivalent.
(1) (a) C is contained in an ideal A which is generated by a sequence of sets

{An}n such that the sequence is uniformly recursive in ∅′ and
(b) there is a function F recursive in ∅′ which eventually dominates any

partial function recursive in any set with T -degree in A.
(2) There is a low T -upper bound for C.

Remark. We may equivalently require that a low T -upper bound (mentioned in
Theorems 3.1 and 3.2) is PA since, as we saw, every low set has a low PA set
T -above it. Thus, T -upper bounds which are PA are the most general case in this
characterization.

Corollary 3.3. There is a low set which is a T -upper bound for the class K, i.e.
for the ideal of K-trivial sets.

Proof. As we already mentioned (see [14]) the class of r.e. K-trivial sets induces a
Σ0

3 ideal in the r.e. T -degrees, and the ideal K is induced by its r.e. members. Kučera
and Terwijn [10] proved that there is a function F recursive in ∅′ which eventually
dominates all partial functions recursive in any set which is low for 1-randomness.
Since L = K, the corollary follows. �

Remark. We explain the main obstacles of proving Theorem 3.2.
The implication from (2) to (1) is direct. If L is a low set, then ∅′ can compute

the function f : n 7→ m, where m is the strict supremum of the set

{{e}L(n) : e ≤ n & {e}L(n) converges}.

This function eventually dominates every function recursive in L. Similarly, ∅′ can
uniformly-recursively compute a sequence of sets consisting of exactly those sets
which are recursive in L. For example, take the sequence Xe such that Xe = {n :
{e}L(n) = 1 & {e}L(j) converges for all j ≤ n}.

The implication from (1) to (2) is more subtle. Assume that C is generated
by the uniformly recursive in ∅′ sequence of sets {An}n and there is a function F
recursive in ∅′ which eventually dominates any partial function recursive in any set
with T -degree in C. (We identify C with the ideal A described in (1).)

We want to construct recursively in ∅′ a low set A for which A ≥T An for all
n. The obstacle is that we do not have low indices of sets An, but we have to
effectively decide facts about A′. A solution consists in using relativized Π0

1 classes.
Once we commit ourselves to A’s satisfying a Π0

1 sentence, we must ensure that
sentence to be true in the limit. In other words, our commitment is that A should
belong to the Π0

1 class of reals for which the Π0
1 sentence is true. Our next problem

is coding the given sets An into the members of (relativized) Π0
1 classes to which

we have committed ourselves. Here a solution consists in using ”rich” Π0
1 classes or

relativized Π0
1 classes, like PA or PA(An). Finally, we come to the technical finesse

in the construction. We use the given function F recursive in ∅′ which eventually
dominates every partial function recursive in any An to replace missing low indices
of An. More precisely, we replace questions about ω-extendability of a string on
an An-recursive tree by questions about its finite-extendability where the depth to
which extendability is required is computed by F . By a finite injury construction,
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we can guarantee that eventually the answers to our questions about appropriate
finite-extendability (of a string on a given An-recursive tree) computed by F are,
in fact, correct answers to questions about ω-extendability.

Before presenting the whole (global) construction of the desired set A we first
explain the main idea on a simple case, where we deal with just one given set An

individually (in an isolated way). Later we describe how to combine all individual
cases together to provide one global construction.

We give a simpler version for the case of K-trivial sets first and then give a more
general version which is needed to prove Theorem 3.2.

Lemma 3.4. There is a recursive procedure which given an index of an r.e. K-
trivial set A produces a low set A∗ and the lowness index for A∗ such that A ≤T A∗.
That is, there are recursive functions f, g such that if We is K-trivial then Φf(e)(∅′)
is a low set, g(e) is its lowness index and We ≤T Φf(e)(∅′).

Remark. We do not claim that A ≤T A∗ uniformly in an index of A. In fact,
this uniformity would immediately provide uniformity for low indices of all r.e. K-
trivial sets. But this contradicts the result of Nies [15] described in Theorem 2.2
or, equivalently, it contradicts Theorem 2.3. Also, by Theorem 2.2, the sets A∗

mentioned in Lemma 3.4 cannot be obtained uniformly as r.e. sets (i.e. presented
by their r.e. indices).

The previous lemma follows immediately from the more general result stated in
Lemma 3.5.

Lemma 3.5. Given a function F recursive in ∅′, there is a uniform way to obtain
from a ∅′-index of a set A with the property that any partial function recursive in
A is eventually dominated by F both a low set A∗ and an index of lowness of A∗

such that A ≤T A∗. That is to say that there are recursive functions f, g such that
if Φe(∅′) is total and equal to some set A so that any partial function recursive in
A is eventually dominated by F then Φf(e)(∅′) is a low set, g(e) is its lowness index
and A ≤T Φf(e)(∅′).

Proof. Lemma 3.5 is the heart of the matter and its proof is the most technically
involved section in our analysis.

The idea behind the proof is to combine forcing with Π0
1 classes (as in the

Jockusch and Soare [7] Low Basis Theorem) with coding sets into members of
nonempty Π0

1 subclasses of the class PA. The given function F is used to approxi-
mate the answers to A′-questions. If A satisfies the given assumptions, our method
will guarantee that the approximation will be correct from some point on. For the
reader who is steeped in the priority methods of the recursively enumerable Turing
degrees, our construction is the implementation of a Σ0

2-strategy (like those in the
Sacks Splitting Theorem) in which each action by the strategy restricts the con-
struction to a yet smaller Π0

1-class. Note, that (A∗)′ has to be uniformly recursive
in ∅′. Thus, our ∅′-construction cannot change any decision about (A∗)′(x) that it
has already made.

We now describe our construction for one given A . So, let A be recursive in
∅′, let F be recursive in ∅′, and assume that any partial function recursive in A is
eventually dominated by F .

Let PR denote {0, 1} × {−1, 0, 1} and let PR<ω denote the set of all finite
sequences of elements of PR. We call such sequences as p-strings. We use standard
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notation associated with binary strings also for p-strings in an obvious way. Any
p-string ρ may be viewed as a pair (σ, α) of a binary string σ ∈ 2<ω and a sequence
α ∈ {−1, 0, 1}<ω both of lengths equal to |ρ|, for which ρ(j) = (σ(j), α(j)) for all
j < |ρ|.

Further, for any finite sequence β from {−1, 0, 1}<ω let β≥0 denote a binary
string α which arises by deleting all (−1)’s from β. Similarly, for any infinite
sequence X from {−1, 0, 1}ω, X≥0 denote (finite or infinite) binary sequence arising
by deleting all (−1)’s from X.

Working recursively in ∅′, we construct an infinite perfect tree PT , a subtree of
PR<ω. An infinite path P in PT consists of a set X in which A is recursive and
a coding of X ′. Since ∅′ can compute a path in PT uniformly, ∅′ can uniformly
compute a low set T -above A together with the lowness index for that set.

Trying to keep our presentation simple, we view the function F as defined not
on ω but on PR<ω, i.e. on p-strings. Define

F ∗(k) = max{F (ρ) : ρ ∈ PR<ω & |ρ| = k}.

Let G be a total recursive function such that the sequence {G(x, s)}s has the limit
F ∗(x), for all x. By replacing functions F ∗ and G with possibly larger functions
we may assume the following:

• the sequence {G(x, s)}s is nondecreasing
• F ∗(x) is greater or equal than the modulus of this limit, for all x, i.e.

j ≥ F ∗(x) implies G(x, j) = F ∗(x) for all j, x
• the function F ∗ is increasing.

With any p-string ρ = (σ, α) we will effectively associate a recursive tree Trρ ⊆
2<ω (see below). We may assume, without loss of generality, that F ∗ is growing
sufficiently fast so that if such tree is finite then the value of F ∗(|ρ|) is greater than
the maximal d such that σ is d-extendable on this tree Trρ. That is to say that if
Trρ is a finite tree, then F ∗(|ρ|) is at least as large as the height of Trρ above σ.

We now build, recursively in ∅′, an infinite perfect tree PT of p-strings. We
ensure that for any infinite path Z = (X, Y ) on PT , X ∈ 2ω, Y ∈ {−1, 0, 1}ω, and
if Z is recursive in ∅′, then

X is low, Y ≥0 = X ′ and A ≤T X.

We will build tree PT inductively by stages. Let S0 consists of the empty p-string
(denoted by Λ). At stage e > 0, we will produce a finite collection of p-strings Se

by extending p-strings from Se−1 and we will restrict our tree PT , at stage e, to
those p-strings compatible with p-strings from Se. Thus, we define a sequence of
finite trees, ordered under end-extension, and let PT be their union.

At stage e + 1, we will simultaneously and continuously in PT decide the e-th
instance of the jump operator on the first coordinates X of the infinite paths (X, Y )
through PT .

We fix some notation. Let DTre, the divergence tree for Φe, denote the recursive
tree

DTre = {σ ∈ 2<ω : Φe,|σ|(σ)(e) ↑}

and let De = [DTre] be the set of functions f such that Φe(f)(e) ↑.
Finally, let TrPA(A) denote an A-recursive tree ⊆ 2<ω such that [TrPA(A)] =

PA(A). That is to say, the class of infinite paths through TrPA(A) is the class of all
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{0, 1}-valued A-DNR functions. Given an infinite recursive set M , let CdTr(A,M)
denote the subtree of 2<ω recursive in A defined by

CdTr(A,M) = {σ ∈ 2<ω : Restr(σ,M) ∈ TrPA(A)}.
Thus,

[CdTr(A,M)] = {f : Restr(f,M) ∈ PA(A)}.
Here, CdTr stands for a coding tree. Observe, that any member of [CdTr(A,M)]
is T-above A. This is our way of coding A into any X such that, for some Y , (X, Y )
is an infinite path through the tree PT .

With each p-string ρ = (σ, α), we effectively associate a recursive tree Trρ ⊆ 2<ω

and a Π0
1 class Bρ = [Trρ] in the following way. Let first TrΛ denote a recursive

tree such that [TrΛ] equals PA. Further, if β = α≥0, then Tr(σ,α) = (TrΛ ∩
Ext(σ))

⋂
β(j)=0 DTrj . Intuitively, B(σ,α) = [Tr(σ,α)] is a restriction of PA∩ [σ] to

a Π0
1 class of sets X for which j /∈ X ′ for any j for which β(j) = 0.

We will ensure that for any p-string (σ, α) ∈ Se+1 one of the following conditions
holds.

• e ∈ X ′ for every X ∈ [Tr(σ,α)]
• e /∈ X ′ for every X ∈ [Tr(σ,α)]

In addition, with each ρ ∈ PT we associate (recursively in ∅′) an infinite recursive
set Mρ. Each set Mρ represents a way of coding of A into (first coordinate of)
infinite paths extending ρ through PT . We will prove that along any infinite path
through PT there will be only finitely many changes in the set that is so associated.
In other words, along each path (X, Y ) our coding of A into X will stabilize and
ensure that X ≥T A.

In outline, we begin by letting MΛ be an infinite recursive set such that Restr(PA,MΛ) =
2ω. In other words, we commit ourselves to building a PA set (i.e. a {0, 1}-valued
DNR function) and we fix an infinite set MΛ for coding A. At stage e + 1 in our
construction, if ρ = (σ, α) ∈ PR∩ Se and we can extend ρ during stage e + 1 with-
out injury (as described below), then we will associate the same infinite recursive
set Mρ with the extensions of ρ that we add in Se+1. Otherwise, our construction
may be injured at ρ. In this case, in order to fulfill our commitments about X
and X ′ which are specified by ρ, we must abandon the set Mρ as the place to code
A. We then specify new infinite recursive sets M+. The technical device of the
construction is to maintain the ability to keep numbers out of X ′ as specified by ρ
as we monitor the coding of A into the extensions of ρ in PT .

With each p-string ρ and infinite recursive set M , we define the A-recursive tree

Trρ(A,M) = Trρ ∩ CdTr(A,M).

Similarly, we let

Bρ(A,M) = [Trρ(A,M)]

= Bρ ∩ {f : Restr(f,M) ∈ PA(A)}

Intuitively, if ρ = (σ, α), then Bρ(A,M) is a restriction of PA ∩ [σ] : first to the
class of sets X for which j /∈ X ′ for any j for which β(j) = 0 and, second, to the
class of sets X for which Restr(X, M) ∈ PA(A).

For any p-string (σ, α) which is on our tree PT , we will ensure the following two
properties.

• ω-extendability of σ on Tr(σ,α) (i.e. in B(σ,α))
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• F ∗(|(σ, α)|)-extendability of σ on Tr(σ,α)(A,M(σ,α))
As already indicated earlier, we suppose that F ∗ grows sufficiently fast so that
Tr(σ,α) is finite if and only if σ is not F ∗(|(σ, α)|)-extendable on tree Tr(σ,α).

To help the reader we give here a concentrated list of notations most frequently
used in what follows.
PR denotes {0, 1} × {−1, 0, 1}, PR<ω denotes the set of all finite sequences of ele-
ments of PR, i.e. the set of p-strings.
PT denotes an infinite perfect tree recursive in ∅′, a subtree of PR<ω, (to be
built).
DTre denotes the divergence tree for Φe, i.e. the recursive tree DTre = {σ ∈
2<ω : Φe,|σ|(σ)(e) ↑}, and De = [DTre] denotes the set of functions f such that
Φe(f)(e) ↑.
TrPA(A) denotes an A-recursive tree ⊆ 2<ω such that [TrPA(A)] = PA(A), i.e.
the class of all infinite paths through TrPA(A) is the class of all {0, 1}-valued A-
DNR functions.
CdTr(A,M), for an infinite recursive set M , (a coding tree), denotes the sub-
tree of 2<ω recursive in A defined by CdTr(A,M) = {σ ∈ 2<ω : Restr(σ,M) ∈
TrPA(A)}. Thus, the class of all infinite paths through this tree is just the class
of all functions f ∈ 2ω for which Restr(f,M) ∈ PA(A) (i.e. functions coding in a
recursive projection given by M a function from PA(A)).
Trρ, for each p-string ρ = (σ, α), denotes a recursive subtree of 2<ω and Bρ denotes
a Π0

1 class Bρ = [Trρ] such that Tr(σ,α) = (TrΛ ∩ Ext(σ))
⋂

β(j)=0 DTrj , where
TrΛ is a recursive tree with [TrΛ] = PA and β = α≥0. I.e., B(σ,α) is equal to
PA ∩ [σ] ∩ {X : β(j) = 0 → j /∈ X ′}.
For a p-string ρ and an infinite recursive set M , Trρ(A,M) denotes the A-recursive
tree Trρ ∩CdTr(A,M) and Bρ(A,M) denotes [Trρ(A,M)], i.e. Bρ(A,M) is equal
to Bρ ∩ {f : Restr(f,M) ∈ PA(A)}. Intuitively, if ρ = (σ, α), then Bρ(A,M) is a
restriction of PA ∩ [σ] : first to the class of sets X for which j /∈ X ′ for any j for
which β(j) = 0 and, second, to the class of sets X for which Restr(X, M) ∈ PA(A).

Now, we present the precise recursion step of our construction.

3.1. Stage e + 1. Let ρ = (σ, α) be a p-string from Se. We consider several cases.

Case 1. At least one of σ ∗ j, for j = 0, 1, is both
• ω-extendable on Trρ ∩DTre (i.e. in Bρ ∩ De)
• and F ∗(|ρ|+ 1)-extendable on Trρ(A,Mρ) ∩DTre.

Then for all such j’s put (σ ∗ j, α ∗ 0) into Se+1 and let M(σ∗j,α∗0) be Mρ . In this
case, we have ensured that e /∈ X ′, without injury.

Case 2. The previous case does not apply.
First observe, that necessarily Bρ(A,Mρ) ∩ De is empty (otherwise we would

have the previous case). Further, this condition is recursively recognized relative to
∅′. However, since we are not working with a low index of A, we cannot determine
recursively in ∅′ whether Bρ(A,Mρ) is empty. We consider two subcases. Either
it is possible to ensure e ∈ X ′ without injury at this case or we detect an injury.
Injuries will be explained in detail below.

If we take for each j = 0, 1 all strings τ, τ � σ ∗ j, of length |ρ|+ 1 + F ∗(|ρ|+ 1),
then the only such strings which are on Trρ(A,Mρ) and are ω-extendable in Bρ (if
there are such at all) are not ω-extendable on DTre, (i.e. [τ ] ∩ De is empty). So,
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for j = 0, 1 take all γ, γ � σ ∗ j (if such exist at all), which satisfy the following
conditions.

• γ ∈ Trρ(A,Mρ)
• γ is ω-extendable on Trρ (i.e. extends to an element of Bρ)
• γ has length ≤ |ρ|+ 1 + F ∗(|ρ|+ 1)
• [γ] ∩ De is empty

Now we split into two subcases, depending on whether there is a string γ as
above which is sufficiently extendable on Trρ(A,Mρ).

Subcase 2.a. There are a string γ and j, such that 0 ≤ j ≤ 1, γ � σ ∗ j, γ
is both F ∗(|γ|)-extendable on Trρ(A,Mρ) and ω-extendable on Trρ (i.e. in Bρ),
[γ] ∩ De is empty and |γ| ≤ |ρ|+ 1 + F ∗(|ρ|+ 1).

Then for any such γ, j for which no τ, σ ∗ j � τ ≺ γ has this property, put
(γ, α ∗ (−1)k ∗ 1) into Se+1, where k = |γ| − |σ ∗ j| (= |γ| − |ρ| − 1), and let also
Mτ = Mρ for any τ, ρ ≺ τ � (γ, α ∗ (−1)k ∗ 1).

In this case, we have ensured that e ∈ X ′, without injury.
Subcase 2.b. Now assume that neither of the two previous situations applies.

Then, we are unable to respect our commitments to deciding the jump while con-
tinuing the coding of A. This is the case in which we injure our coding strategy.

Observe, that Bρ(A,Mρ) must be empty. This means that σ is only finitely-
extendable on Trρ(A,Mρ). Further, from ρ and using A, we can compute an upper
bound of this finite-extendability. Thus, there are strings γ, γ � σ, with the
following properties.

• γ is ω-extendable on Trρ (i.e. in Bρ)
• F ∗(|γ|)-extendable on Trρ(A,Mρ)

but, however, neither of the immediate extensions of γ is both ω-extendable on Trρ

(i.e. in Bρ) and F ∗(|γ|+1)-extendable on Trρ(A,Mρ). There are only finitely many
of these strings γ. In particular, each is less than or equal to |ρ|+ 1 + F ∗(|ρ|+ 1).
Finally, note that Trρ(A,Mρ) is a subtree of Trρ.

Then for each such γ, we say that an injury occurred at (γ, α ∗ (−1)k), where
k = |γ| − |σ| (= |γ| − |ρ|), and we do the following.

Let for j = 0, 1, dj denote the maximal d such that γ ∗ j is d-extendable on
Trρ(A,Mρ). Since dj < F ∗(|γ|+1), let t0 be the least t such that G(|γ|+1, t) > dj

for both j = 0, 1. Intuitively, for strings γ in the current situation, at step t0 the
recursive approximation of F ∗ by G is able to see that an injury occurred.

We also know that the maximal d for which γ is d-extendable on Trρ(A,Mρ) is
greater than F ∗(|γ|). Denote it as d∅. We now position ourselves to use the hypoth-
esis that F eventually dominates every function which is partial recursive relative
to A. We will use d∅ to define a value of an A-partial recursive function at input
(γ, α ∗ (−1)k), which is greater than the corresponding value of F ∗. Precisely, the
value of the defined function will be greater than the value F ∗(|γ|) and, therefore,
also greater than F (γ, α ∗ (−1)k), since F ∗(|ρ|) ≥ F (ρ) for all p-strings ρ.

To summarize, d∅ > F ∗(|γ|), but dj < F ∗(|γ| + 1), j = 0, 1 and also d∅ =
1+max(d0, d1). Further, there is at least one string τ, τ � γ, which is ω-extendable
on Tr(γ,α∗(−1)k) (i.e. in B(γ,α∗(−1)k) ) and for which |τ | − |γ| = t0. Our ongoing
commitments concerning the jumps of the paths in PT can be enforced on the
extensions of these strings τ .

For each such τ , we have one of the following two possibilities.
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(1) The first possibility is that [τ ] ∩ De = ∅. Then for q = k + t0 = |τ | − |σ|
denote (τ, α ∗ (−1)q−1 ∗ 1) by ξ, put ξ into Se+1, and let Mη = Mρ for
any p-string η, ρ ≺ η ≺ ξ. Finally, apply Lemma 2.6 to effectively find an
infinite recursive set M+ such that Restr(Bξ,M

+) = 2ω and let Mξ = M+.
(2) The second possibility is that [τ ] ∩ De 6= ∅. Then for q = k + t0 = |τ | − |σ|

denote (τ, α ∗ (−1)q−1 ∗ 0) by ξ, put ξ into Se+1, and let Mη = Mρ for any
p-string η, ρ ≺ η ≺ ξ. Again, apply Lemma 2.6 to effectively find an infinite
recursive set M+ such that Restr(Bξ,M

+) = 2ω and let Mξ = M+.

In both of these possibilities, we start with a new version of coding of A into (first
coordinate of) infinite paths through PT extending ξ.

This ends the action of our construction during stage e + 1.
Recall that PT is built inductively by stages. At stage e > 0 we have produced a

finite collection of p-strings Se by extending p-strings from Se−1 and we restricted
our tree PT at this stage to those p-strings compatible with p-strings from Se. It is
important to note that at any stage e > 0 each p-string from Se−1 is really extended
to at least one (possibly more) p-string from Se. This fact follows immediately from
our construction. Thus, PT is an infinite perfect tree.

3.2. Verification. It remains to show that our construction achieves its aims. We
must show that for any infinite path (X, Y ) through PT which is computable from
∅′, Y ≥0 = X ′ and A ≤T X. Since (X, Y ) is recursive relative to ∅′ and X ′ is
recursive in Y , X is low as required.

It is clear that during stage e + 1 we have decided the membership of e in
X ′ for any such (X, Y ) and so Y ≥0 = X ′. More precisely, using ∅′ we can find
ρ = (σ, α) ∈ Se+1, σ ≺ X and then e ∈ X ′ if and only if α(|ρ|) = α(|α|) = 1.
It remains only to verify A ≤T X. For that it is sufficient to show that along
any infinite path through PT there are only finitely many stages where an injury
occurs.

For this purpose, we build a partial function H on PR<ω (i.e. on p-strings)
recursively in A. In the definition of H, we A-recursively approximate the ∅′-
construction of PT . At the beginning, all p-strings are associated with an infinite
recursive set MΛ (the original set used for coding into PA). During building H
we sometimes either stop some strategies or restart strategies for defining values
of H by changing current values of infinite recursive sets associated with p-strings,
more precisely, p-strings preceding (σ, α) may eventually either stop a strategy for
defining H(σ, α) or restart a strategy for defining H(σ, α) (if such strategy was not
already finished) by changing a current value of M associated with (σ, α).

We will now first describe an isolated strategy of H for a p-string (σ, α) and
an infinite recursive set M and then we will indicate how to combine strategies
together.

Consider a tree Tr(σ,α)(A,M). If σ is ω-extendable on Tr(σ,α)(A,M) then the
strategy has no output and no effect on p-strings extending (σ, α). If σ is not
ω-extendable on Tr(σ,α)(A,M), then define H(σ, α) = d∅, where d∅ denotes the
maximal d such that σ is d-extendable on Tr(σ,α)(A,M). Further, wait for a step t
such that G(|σ|+ 1, t) > dj for both j = 0, 1, where dj denotes the maximal d for
which σ ∗ j is d-extendable on Tr(σ,α)(A,M) (recall that d∅ = 1 + max(d0, d1)). If
there is no such t, the strategy has no effect on p-strings extending (σ, α). If there
is such t, take the least such and denote it by t0. Take a finite collection Q of all
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p-strings (τ, α ∗ (−1)(t0−1) ∗ j), for j = 0, 1 and τ � σ with |τ | − |σ| = t0, and stop
all strategies (which are still active) for p-strings extending (σ, α) either with length
< |σ|+t0, or not compatible with any p-string from Q, and finally restart strategies
for any p-string η of length ≥ |σ| + t0 compatible with some p-string from Q but
now with a new infinite recursive set M which is determined as follows. For any
p-string ξ = (τ, α ∗ (−1)(t0−1) ∗ j) from Q, as we did in our construction, effectively
find an infinite recursive set M+ such that if Bξ 6= ∅ then Restr(Bξ,M

+) = 2ω,
and ξ together with all p-strings extending such ξ are restarted with this newly
associated set M+.

All strategies for defining values of H are combined together easily by a finite
injury style where any p-string has a higher priority than exactly all p-strings ex-
tending it. As mentioned previously, at the beginning all p-strings are associated
with MΛ (the original set used for coding into PA).

We omit further details.
By virtue of its definition, H is an A-partial recursive function. The only values

of H that are relevant for our purposes are those on p-strings from tree PT .
It remains to verify that A ≤T X for any infinite path (X, Y ) through PT .

Let such path (X, Y ) be given. It is clearly sufficient to show that there are only
finitely many p-strings ρi, ρi ≺ (X, Y ), at which an injury occurs. Suppose, for a
contradiction, that {ρi}i is an infinite sequence of p-strings with increasing length at
which an injury occurred and for which ρi ≺ (X, Y ). It follows from the construction
and our assumptions on F ∗ and G that H(ρi) is defined and greater than F ∗(|ρi|)
for all i. Since F ∗(|ρ|) ≥ F (ρ) for any p-string ρ, it immediately yields a failure of
F to eventually dominate all A-partial recursive functions. A contradiction.

To finish the construction we have to provide an infinite path (X, Y ) through PT
which is recursive in ∅′, and then let A∗ = X. This is easy. Recall that PT is an
infinite perfect tree which is recursive in ∅′. Thus, e.g. we may fix the left-most (in
the standard ordering) infinite path through PT . This path is obviously recursive
in ∅′.

We end with a remark. The above construction can be carried out uniformly in
a ∅′-index of A. That is, there are recursive functions f, g with properties stated in
Lemma 3.5.

�

Remark. (1) In the proof of Lemma 3.5 we have coded a set A into A∗ not
straightforwardly. We could do that, but instead, we have nested into a Π0

1

class PA a Π0,A
1 class PA(A) all members of which are T -above A. This

way does not increase a complexity of the proof and is more general. It
can be used to provide just one global construction of a T -upper bound
mentioned in Theorem 3.2.

(2) It is easy to verify that for any infinite path (X, Y ) through PT (not nec-
essarily computable by ∅′) in the above proof A ≤T X, X ′ = Y ≥0 and
X ∈ GL1.

Before giving a proof of Theorem 3.2 we illustrate the main idea (of a more
difficult implication) on a simple example.

Claim 3.6. Given a sequence {An}n of low sets uniformly recursively in ∅′ so that
low indices of all finite joins of members of the sequence are also uniformly recursive
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in ∅′ then there is a low set A which is T -above all An. Moreover, we may require
a >> an for all n, where a,an are T -degrees of A, An respectively.

Proof. We give a sketch of the main idea. Let Bn =
⊕n−1

i=0 Ai for n ≥ 1 and
B0 = ∅. We construct recursively in ∅′ a sequence of nonempty relativized Π0

1

classes {Bn}n such that Bn ⊇ Bn+1 for all n and the required low set A recursive
in ∅′ will be the only set in the intersection of all these classes. Each class Bn is
a nonempty Π0,Bn

1 class. We also construct recursively in ∅′ a sequence of infinite
recursive sets {Me}e such that for all e, Me ⊇ Me+1 and Restr(Be,Me) = PA(Be).

Let B0 be PA and M0 = ω. So, since B0 = ∅, Restr(B0,M0) = PA(B0).
At step e + 1 we first use the relativized Low Basis Theorem of Jockusch and

Soare [7] to force the e-th instance of the jump operator. This gives a subclass
B∗e+1 ⊆ Be. Obviously Restr(B∗e+1,Me) ⊆ PA(Be) and Restr(B∗e+1,Me) is also a
nonempty Π0,Be

1 class. Thus, by a modification of Lemma 2.6, there is an infinite
recursive set Me+1, a subset of Me, such that Restr(B∗e+1,Me+1) = 2ω. Let Be+1 =
B∗e+1 ∩ {f : Restr(f,Me+1) ∈ PA(Be+1)}. Then, Be+1 is a Π0,Be+1

1 class and
Restr(Be+1,Me+1) = PA(Be+1).

This ends step e + 1.
One verifies that there is just only one set A in the intersection of all these

classes and that A satisfies all required requirements. Moreover, T -degree of A is
>> T -degrees of all An. �

Remark. We could equally construct, recursively in ∅′, an infinite perfect tree (⊆
2<ω) such that any infinite path through it both is T -above all An and belongs to
GL1. We could also work with elements of 2ω × 2ω and build, recursively in ∅′, an
infinite perfect tree (⊆ ({0, 1} × {0, 1})<ω) such that for any infinite path (X, Y )
through it Y codes (in fact, is equal to) the jump of X.

However, in case we do not have low indices of such low sets An available (re-
cursively in ∅′) and we have only a weaker information about lowness of these sets,
we have to adapt the method explained in the proof of Claim 3.6 by combining it
with the technique of the proof of Lemma 3.5. We explain subsequently how to do
it.

Lemma 3.7. Given a low set B with a low index b and a function F recursive in
∅′, there is a uniform way to obtain from a ∅′-index of a set A with the property
that any partial function recursive in B ⊕ A is eventually dominated by F both a
low set A∗ and an index of lowness of A∗ such that B ⊕ A ≤T A∗. That is to say
that there are recursive functions f, g such that if Φe(∅′) is total and equal to some
set A so that any partial function recursive in B ⊕A is eventually dominated by F
then Φf(e)(∅′) is a low set, g(e) is its lowness index and B ⊕A ≤T Φf(e)(∅′).

Proof. It is an easy relativization of Lemma 3.5, i.e. the construction in the proof
of Lemma 3.5 is relativized to an oracle B and it begins now with the class PA(B)
instead of the class PA. Let us explicitely note that we substantially use a low
index b of B so that we can always decide whether a B-recursive tree (⊆ 2<ω) is
finite or infinite. Thus, we can always keep ω-extendability of relevant strings in
infinite B-recursive trees, similarly as we kept ω-extendability of relevant strings
in infinite recursive trees in the original construction (recall that, in the proof of
Lemma 3.5, (σ, α) ∈ PT implies ω-extendability of σ in Tr(σ,α)). �
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The situation changes (slightly) if instead of a low index of a low set B we
have only a weaker information about lowness of B, namely, if we have a function
recursive in ∅′ which eventually dominates all partial function recursive in B.

Lemma 3.8. Given a function F recursive in ∅′ and a low set B there is a uniform
way to obtain from a ∅′-index of a set A with the property that any partial function
recursive in B ⊕ A is eventually dominated by F both a low set A∗ and an index
of lowness of A∗ such that B ⊕ A ≤T A∗. That is to say that there are recursive
functions f, g such that if Φe(∅′) is total and equal to some set A so that any partial
function recursive in B ⊕ A is eventually dominated by F then Φf(e)(∅′) is a low
set, g(e) is its lowness index and B ⊕A ≤T Φf(e)(∅′).

Proof. It is a further generalization of the technique used in the proof of Lemma 3.5
and Lemma 3.7. Suppose that any partial function recursive in B⊕A is eventually
dominated by F . We have to replace missing low index of B by a technique of
Lemma 3.5, i.e. we use guesses computed by F (or F ∗) as approximations to
correct answers to Σ0,B

1 questions. By a finite injury style, these approximations are
eventually really correct answers to such questions from some point on. From such
a point the construction resembles that one described in the proof of Lemma 3.7.
It means, the construction then simulates the proof of Lemma 3.7 with a deeper
nested class PA(A) into the current version of PA(B). Thus, to combine everything
together, we nest relativized Π0

1 classes in a cascade style (like in Claim 3.6), here
with depth of nesting equal to 2. We first nest a Π0,B

1 class PA(B) into PA and
then we further nest a Π0,A class PA(A) into it (by applying Lemma 2.6 like in the
proof of Claim 3.6). Whenever (at any step) we encounter an injury at any level
of nesting (along any p-string), we continue at the lowest level at which and also
at all levels above it all guesses (computed by F , or F ∗) currently look correct, we
leave all current versions of nested classes at lower levels and restart all lower levels
with new versions of nested classes. The crucial thing is that at the highest level
(level 0), where we work with nonrelativized Π0

1 class PA, we never have any injury
because ∅′ can always correctly decide any Σ0

1 question. Under given assumptions
the construction reaches all required goals. It uses standard finite injury technique
and we omit further details. �

Proof. We now complete the proof of Theorem 3.2. As it was already mentioned,
the implication from (2) to (1) is direct.

To verify the implication from (1) to (2), we may identify the ideal C with the
ideal A described in (1). Given a function F recursive in ∅′ and a sequence of sets
{An}n which satisfy given assumptions, we combine the method of the proof of
Claim 3.6 with the method of the proof of Lemma 3.8, i.e. missing low indices are
replaced by the function F (or F ∗). At each step we have to nest a next relativized
Π0

1 class into a previous one, where nested classes are PA(An) (or PA(
⊕n−1

j=0 Aj)).
Thus, the depth of nesting of relativized Π0

1 classes increases by 1 at each step.
Analogously as before, at each level of nesting there are only finitely many injuries.
We omit further details.

�

4. A question

We have left the following questions open.
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Question 4.1. Is there a natural set of conditions which characterize whether an
ideal in the Turing degrees of the recursively enumerable sets has a upper bound
which is low and recursively enumerable?

Exact pairs play an important role in the study of T -degree structures. By a
result of Nerode and Shore [13] it follows that there is an exact pair for the class
of K-trivials in ∆0

2 T -degrees. On the other hand the following problem is open.

Question 4.2. Is there a low exact pair for the class of K-trivial sets, i.e. are there
low sets A,B such that K = {C : C ≤T A & C ≤T B}?

Finally, since the K-trivial sets are closely linked with the 1-random reals, the
following special situation is interesting.

Question 4.3. Is there a low 1-random set which is a T -upper bound for the class
of K-trivial sets?
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[10] A. Kučera and S. A. Terwijn. Lowness for the class of random sets. J. Symbolic
Logic, 64(4):1396–1402, 1999. ISSN 0022-4812.
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