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Abstract

Working in the base theory of PA− + I60 + exp, we show that for alln ∈ ω, the bounding
principle for6n-formulas (B6n) is equivalent to the induction principle for1n-formulas
(I1n). This partially answers a question of J. Paris; seeClote and Kraj́ıček(1993).

1 Introduction

We begin with some background material on first order arithmetic. However, in lieu of
giving a detailed introduction to the subject, we settle for recommending the excellent
textsKaye(1991) andHájek and Pudĺak (1998).

The language of first order arithmetic consists of the usual symbols of first order logic
∀, ∃,(, ), ¬, ∧, ∨, →,↔, =, and variablesx1, x2, . . . together with symbols from arith-
metic: 0, 1,+,·, and<. Formulas and sentences are constructed as usual.

To fix some typographical notation, we usex ≤ y to indicatex < y ∨ x = y. We
also use boldface characters, such asp and x, represent sequences of typep or x. The
inequality p< r indicates that every element of the sequencep is less thanr .

PA− consists of the axioms for the nonnegative part of a discretely ordered ring. It is
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the universal closures of the following formulas.

x + y = y + x, x · y = y · x,
(x + y)+ z = x + (y + z), (x · y) · z = x · (y · z),
x · (y + z) = x · y + x · z,
x + 0 = x, x · 0 = 0,
x · 1 = x,
¬(x < x), (x < y ∧ y < z) → x < z,
x < y ∨ y < z ∨ x = y,
(x < y) → (x + z< y + z), (0< z ∧ x < y) → (x · z< y · z),
x < y → (∃z)(x + z = y),
0< 1,
0 ≤ x, 0< x → 1 ≤ x

1.1 Bounding, Least Number, and Induction Principles for 6n and
5n-formulas

Bounding for 6n-formulas (B6n). B6n consists of all sentences

(∀ p)(∀a)[(∀x < a)(∃y)ϕ(x, y, p) → (∃b)(∀x < a)(∃y < b)ϕ(x, y, p)]

in whichϕ is6n. That is, if for every numberx less thana, there are numbersy satisfying
a6n-property relative tox and parametersp, then there is a boundb such that for eachx
less thana, there is such ay all the elements of which are less thanb.

Least number principle for 6n-formulas (L6n). L6n consists of all the sentences

(∀ p) [(∃x)(ϕ(x, p) → (∃x)[ϕ(x, p) ∧ (∀y < x)¬ϕ(y, p)]]

in which ϕ is 6n. In other words, ifA is defined by a6n-formula relative to parameters
andA is not empty, thenA has a least element. L5n is defined similarly.

Induction for 6n-formulas (I6n). I6n consists of all the sentences

(∀ p)[(ϕ(0, p) ∧ (∀x)(ϕ(x, p) → ϕ(x + 1, p))) → (∀x)ϕ(x, p)]

in which ϕ is6n. In other words, ifA is defined by a6n-formula relative to parameters,
0 ∈ A, andA is closed under the successor function, then every number is inA.

A cut in a modelM is a subsetJ of M such that for everyx and y, if x ∈ J and
y < x then y ∈ J. A proper cut is a nonempty cut which does not include all of the
elements ofM. A nonprincipal cut is a cut which has no greatest element. One way in
which 6n-induction could fail inM would be for there to be a proper nonprincipal cut
which is definable by a6n-formula relative to parameters inM.
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The Kirby and Paris Theorem. Building on Parsons(1970), Kirby and Paris(1977)
proved the fundamental theorem connecting bounding, induction, and the least number
principles for6n and5n-formulas.

Theorem 1.1 (Kirby and Paris ) Work inPA−
+ I60. For all n ≥ 1,

1. I6n ⇐⇒ I5n ⇐⇒ L6n ⇐⇒ L5n.

2. B6n+1 ⇐⇒ B5n.

3. I6n+1 H⇒ B6n+1 H⇒ I6n, and the implications are strict.

Consequently, the bounding principles are strictly interleaved with the equivalent in-
duction and least number principles.

1.2 1n-formulas

We form the principles of L1n andI1n by inserting an hypothesis of equivalence between
6n and5n-formulas.

The least number principle for 1n-formulas (L1n). L1n consists of all the sentences

(∀ p)

[
(∀x)(ϕ(x, p) ↔ ¬ψ(x, p)) →(

(∃x)(ϕ(x, p) → (∃x)[ϕ(x, p) ∧ (∀y < x)¬ϕ(y, p)]
)]

in which ϕ andψ are6n. In other words, ifA is defined by a6n-formula and also by a
5n-formula relative to parameters andA is not empty, thenA has a least element.

Theorem 1.2 (Gandy (unpublished), seeHájek and Pudlák (1998)) If n ≥ 1 andM is
a model ofPA−

+ I60, then

M |H B6n ⇐⇒ M |H L1n.

Proof: B6n H⇒ L1n. To sketch the proof, suppose thatA is a1n-set and suppose
that A has an element less thana. Use B6n to bound the witnesses needed to determine
for eachx less thana, whetherx belongs toA. B6n implies that the5n−1 predicates are
closed under bounded existential quantification, so the restriction ofA to the numbers less
thana can be defined by a5n−1-formula. Now, L5n−1 is provable from B6n, and so
there is a least element ofA belowa.

L1n H⇒ B6n. We follow theHájek and Pudĺak (1998) account of Gandy’s proof.
We work in the theory L1n. Suppose thata, p, and a5n−1-formulaϕ0 are given so that
(∀x < a)(∃y)ϕ0(x, y, p). We must argue that(∃b)(∀x < a)(∃y < b)ϕ0(x, y, p).

Defineθ(z,a, p) to be the formula

z ≤ a∧(∃u)[(∀x)(z ≤ x < a → (∃y < u)ϕ0(x, y, p))∧(∀v < u)(∀y < v)¬ϕ0(z, y, p)]

One can readθ(z,a, p) as saying that for anyx with z ≤ x < a, the least witness to
(∃y)ϕ0(x, y, p) is less than or equal to the least witness to(∃y)ϕ0(z, y, p). Syntacti-
cally, θ(z,a, p) is equivalent to a formula of the form(∃u)ψ , whereψ is obtained by the
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bounded quantification of a5n−1-formula. Now, L1n H⇒ I6n−1, I6n−1 H⇒ B6n−1,
and B6n−1 proves that the5n−1 predicates are closed under bounded quantification. So,
we can conclude thatθ(z,a, p) is equivalent to a6n-formula. Additionally, if the least
witness forz is greater than or equal to some witness forx, then every witness forz is
greater than or equal to some witness forx. So,θ(z,a, p) is equivalent to the following
formula.

z ≤ a ∧ (∀u)[(∃y < u)ϕ0(z, y, p) → (∀x)(z ≤ x < a → (∃y < u)ϕ0(x, y, p)]

Applying B6n−1 as above, this formula is equivalent to a5n-formula. Thus, L1n im-
plies thatθ(z,a, p) is1n, and we can apply the least number principle toθ(z,a, p). Let
z0 be the least numberz such thatθ(z,a, p) and letu0 be the least numberu such that
(∃y < u)ϕ0(z0, y, p).

We claim that(∀x < a)(∃y < u0)ϕ0(x, y, p). By the definition ofz0, if x is greater
than or equal toz0, then there is ay such thaty ≤ u0 andϕ0(x, y, p). Suppose that there is
anx < a such that the least witness to(∃y)ϕ0(x, y, p) is greater thanu0. Then, consider
the set ofx’s such that(∀y < u0)¬ϕ0(x, y, p). Again by B6n−1, this set is5n−1. By
L1n, it has a greatest elementz1. (Think of the least number of the forma − x for such an
x). But z1 would also satisfyθ(z,a, p) and be less thanz0, a contradiction.

The principle of induction for 1n-formulas (I1n). I1n consists of all the sentences

(∀ p)

[
(∀x)(ϕ(x, p) ↔ ¬ψ(x, p)) →(

(ϕ(0, p) ∧ (∀x)(ϕ(x, p) → ϕ(x + 1, p))) → (∀x)ϕ(x, p)
)]

in whichϕ andψ are6n.
Paris raised the question of determining the relationship between I1n and B6n;

seeClote and Kraj́ıček(1993).
As we will see in Section2, the problem is to decide whether B6n (or equivalently

L1n) follows from I1n. There is a natural approach to showing that it does, but this
approach does not lead to a correct proof. However, it does point out where the problem
lies.

Let us attempt to prove L1n from I1n. Suppose that we are given a nonempty1n-set
A, and let us attempt to show that it has a least element. We suppose thatA has no least
element, and we look for a failure of induction. Define the set

A∗
= {x : (∀y)[y ≤ x → y 6∈ A]}.

Clearly 0 ∈ A∗, or 0 would be the least element ofA. Equally clearly, ifa ∈ A∗ and
a + 1 6∈ A∗, thena + 1 would be the least element ofA∗. So, A∗ satisfies the hypotheses
needed to apply induction.

It would only remain to show thatA∗ is a1n-set. SinceA∗ is explicitly5n, it would
be sufficient to show that it is6n. There is a standard argument to show that6n-predicates
are closed under bounded universal quantification. Ifϕ is (∃w)ϕ0, whereϕ0 is5n−1, then
we would rewrite

(∀y ≤ x)(∃w)ϕ0
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as

(∃u)(∀y ≤ x)(∃w < u)ϕ0,

and then replace(∃w < u)ϕ0 by a formula which is5n−1. But look at the implication,

(∀y ≤ x)(∃w)ϕ0 → (∃u)(∀y ≤ x)(∃w < u)ϕ0.

We have confronted an instance of B6n, rather than an instance of B6n−1 such as we
found we found earlier. Of course, we cannot use an instance of B6n to prove B6n, and
the natural argument fails.

Even so, there is a less direct argument leading to the same conclusion. If we
strengthen the base theory to include the assertion that exponentiation is a total function
(exp), then we obtain the following partial answer to Paris’s question.

PA−
+ I60 + exp H⇒ (I1n ⇐⇒ B6n)

2 Equating Bounding and Induction

2.1 B6n implies I1n.

For models of PA− + I60, the implication

M |H B6n H⇒M |H I1n

is well known. However, the proof is short and so we include it here.
Suppose thatM |H B6n, thatϕ andψ are6n-formulas, and that there are parameters

p inM relative to whichϕ and¬ψ define the same subsetJ ofM. We argue thatJ is not
a counterexample to I1n inM.

First, we can writeϕ as∃yϕ0 andψ as∃yψ0, whereϕ0 andψ0 are5n−1-formulas,
which we may assume have the same number of free variables.

Now, suppose thata is strictly above some element of the complement ofJ in M.
Sinceϕ andψ define complementary sets,

M |H (∀x < a)(∃y)[ϕ0(x, y, p) ∨ ψ0(x, y, p)].

By applying B6n inM, there is ab inM such that

M |H (∀x < a)(∃y < b)[ϕ0(x, y, p) ∨ ψ0(x, y, p)].

But then, for the elements ofM which are less thana, J is defined by the formula
(∃y < b)ϕ0(x, y, p) in M. Using B6n again, the intersection ofJ with the numbers
belowa is definable by a5n−1-formula relative to the parametersb, a, and p. Since B6n

implies I5n−1 and there is an element of the complement ofJ which is less thana, either
0 6∈ J or J is not closed under the successor, as required.
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2.2 I1n implies B6n

It is in our argument for the implication from I1n to B6n that we make use of the expo-
nential function. Ultimately, we take an elementa inM, and use the basea representations
of numbers less thanaa to code lengtha sequences of numbers less thana.

In the meantime, we make use of the existence of a standard coding within modelsM

of PA−
+ I11 + exp of sequences of elements ofM by elements ofM so that the relations

“c codes a sequence of lengthi ” and “c j is the j th element of the sequence coded byc”
are11 in M. We will write 〈m j : j < i 〉 to denote the code for the sequence of lengthi
whose elements are the numbersm j , for j less thani .

Theorem 2.1 If n ≥ 1 andM is a model ofPA−
+ I60 + exp, then

M |H I1n H⇒M |H B6n.

We will prove Theorem2.1 for the case whenn = 1. The general case forn > 1
follows by the same argument relative to the complete6n−1-subset ofM.

Lemma 2.2 Suppose thatM is a model ofPA−
+ I11 + exp andM is not a model of

B61. There are an element a∈M and a function f: [0,a) →M such that the following
conditions hold.

1. f is injective.

2. The range of f is unbounded inM.

3. The graph of f is60 relative to parameters inM.

Proof: By hypothesis,M is a not a model of B61. Consequently, we may fixa ∈ M, a
sequence of parametersp fromM, and a61-formula(∃w)ϕ0 such thatϕ0 is a60-formula
and the following conditions hold.

M |H (∀x < a)(∃y)(∃w)ϕ0(x, y,w, p) (1)

M |H (∀s)(∃x < a)(∀y < s)¬(∃w)ϕ0(x, y,w, p) (2)

Define f so that forx < a, f (x) is 〈x, sx〉, wheresx is leasts such that

M |H (∃y < s)(∃w < s)ϕ0(x, y,w, p). (3)

There is ans satisfying Equation3 by application of Equation1, and there is a least such
s by application of I11 in M. Clearly, f is an injective function, sincex is determined
by the first coordinate off (x). The range off is unbounded by Equation2. Finally, the
graph of f is definable by a60-formula essentially because the value off atx is chosen to
bound all of the quantifiers used to define it fromx. Notice, we are invoking the properties
of a well behaved pairing function.

Lemma 2.3 Suppose thatM is a model ofPA−
+ I11 + expand thatM is not a model of

B61. There are a∈M, a nonprincipal61-cut I , and a function g such that the following
conditions hold.
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1. I ⊂ [0,a).

2. g : I →M.

3. The graph of g is61 relative to parameters inM.

4. For each i ∈ I , g(i ) is the code for a sequence〈m j : j < i 〉 such that for all
unequal j1 and j2 less than i, mj1 6= m j2. (Note that the sequence coded by g(i )
has length i .)

5. For each i1 < i2 ∈ I the sequence coded by g(i2) is an end extension of the one
coded by g(i1). In other words, if g(i1) codes〈m j : j < i1〉 and g(i2) codes
〈n j : j < i2〉, then for all j < i1, mj = n j .

6. For each m< a, there is an i∈ I such that m appears in the sequence coded by
g(i ).

Proof: Let f anda be as in Lemma2.2. We view the set of numbers less thana, which is
finite in the sense ofM, as a recursively enumerable set in the sense ofM. In this sense,m
is enumerated into this set at stagef (m). Since f is injective, there is at most one number
enumerated during each stage. At each stages, we can define the sequence of numbers
which have been enumerated at earlier stages and order them according to the order in
which they were enumerated byf . That is, we reorder the numbersn andm belowa such
thatn comes beforem if and only if f (n) is less thanf (m).

We defineg so thatg(i ) is the code for sequence〈m j : j < i 〉 such that for eachj < i ,
m j is the j th number enumerated byf . More formally,g(i ) = 〈m j : j < i 〉 if and only if
there is ans such that the following conditions hold.

i. {m : (∃y < s)( f (m) = y)} = {m : (∃ j < i )(m = m j )}

ii. For all j1 and j2 less thani , ( j1 < j2) ↔ ( f (m j1) < f (m j2)).

We leave it to the reader to verify thatg is well defined and61 in M, relative to the
parameters needed to definef .

Let I denote the domain ofg.
By definition, for eachi in I , there is ans in M so that there are at leasti many

elementsm of M such that f (m) < s. For such ans and any j less thani , there is a
smallersj which is adequate to defineg at j , so I is an initial segment ofM. In fact,
the map sendingi to mi −1 is an order isomorphism betweenI \ {0} and the range off .
Further, for eachi ∈ I \ {0}, the restriction of this map to{ j : 0 < j ≤ i } is coded within
M. Consequently, orderingI \ {0} and the range off by the ordering ofM produces
isomorphic order types.

Now, suppose thati > a inM. If i were to be inI , theng(i ) would be the code for a
sequence of length greater thana, with elements less thana, and with no repetitions. This
is impossible, since every model of PA−

+I11+exp satisfies the60-pigeon hole principle;
seeHájek and Pudĺak (1998). Thus,I is a subset of[0,a). Finally, since the range off is
unbounded inM and I has the same order type as the range off , there can be no greatest
element ofI . Consequently,I is a proper nonprincipal cut inM. I is61 by virtue of being
the domain of the61 functiong.
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Finally, for everym in the domain off and every sufficiently largei in I , m appears
in the sequence coded byg(i ). Since the domain off is [0,a), for eachm< a, there is an
i ∈ I such thatm appears in the sequence coded byg(i ).

Let g and I be fixed as in Lemma2.3. Let m∗
= 〈m∗

i : i ∈ I 〉 be the sequence of
length I such that for alli ∈ I , m∗

i is equal to thei th element ofg(i + 1). That is,m∗ is
the sequence given by the limit of the range ofg.

Lemma 2.4 Suppose that c∈M, n = 〈n j : j < c〉 is coded inM, andn is a sequence of
elements ofM which are less than a. Then, either c is not an upper bound for I or there
is an i ∈ I such that ni 6= m∗

i .

Proof: Let c andn = 〈ni : i < c〉 be given as above, and suppose thatc is an upper bound
for I . For the sake of a contradiction, suppose that for alli ∈ I , m∗

i = ni .
But then consider the set

J = { j : For all i < j , ni 6= n j .}

For eachi in I , the sequence coded byg(i ) has no repeated values, and soI ⊆ J. Con-
versely, every element ofM which is less thana appears inm∗. Consequently, ifj < c
and j 6∈ I , then there is ani in I such thatm∗

i = n j . But then,ni = n j and soj is not an
element ofJ. Thus,J is equal toI .

But thenJ is a proper60-cut, contrary to the assumption thatM is a model of11-
induction.

We can now present the proof of Theorem2.1.

Proof: Suppose thatM is a model of PA− + I11 + exp and thatM is not a model of B61.
Let I , g, andm∗ be fixed as above.

We define a collection of intervals[ci ,di ], for i ∈ I . If i = 0, thenc0 = 0 and
d0 = aa. For i > 0,

ci =

∑
j<i

m∗

j a
a−( j +1) anddi = ci + aa−i .

We calculate the first few values explicitly.

[c0,d0] = [0,aa
]

[c1,d1] = [m∗

0aa−1, (m∗

0 + 1)aa−1
]

[c2,d2] = [m∗

0aa−1
+ m∗

1aa−2,m∗

0aa−1
+ (m∗

1 + 1)aa−2
]

Since eachm∗

j is less thana, for eachi ∈ I , [ci +1,di +1] ⊆ [ci ,di ]. DefineJ by

x ∈ J ⇐⇒ (∃i )(x ≤ ci ),

and defineK by

x ∈ K ⇐⇒ (∃i )(x ≥ di ).
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Since the initial segments ofm∗ are61-definable relative to parameters inM, J and
K are61-definable relative to parameters inM. In addition,J is closed downward inM,
andK is closed upward. It remains to show thatJ is a proper cut and thatJ =M \ K .

Since there is only onei ∈ I such thatm∗

i is equal to 0, for all but onei , ci < ci +1.
SinceI has no greatest element, it follows that neither doesJ. Consequently,J is a proper
cut.

Now, suppose thatn is an element ofM which is neither an element ofJ nor one of
K . Then, consider the base-a representation ofn. Let ni be the coefficient of theaa−i −1

term in this representation. For example, ifn where 2aa−1
+ 3aa−2, thenn0 would be 2,

n1 would be 3, and for every otheri less thana, ni would be 0. By the choice ofn, for
everyi in I ,∑

j<i

m∗

j a
a−( j +1) < n <

∑
j<i

m∗

j a
a−( j +1)

+ aa−i

But then, for eachi in I , ni is equal tom∗

i . Since the base-a representation ofn is definable
from n by a bounded recursion, I11 implies that the sequence〈n j : j < a〉 is coded by an
element ofM. This is a contradiction to Lemma2.4.

Consequently,J is a61-cut and the61-setK is its complement inM. So, from the
failure of B61 inM, we produced a failure of I11 inM. Theorem2.1follows.
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