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Abstract

Working in the base theory of PA+ 129 + exp, we show that for alt € w, the bounding
principle for Zy-formulas (BX) is equivalent to the induction principle fat,-formulas
(IAp). This partially answers a question of J. Paris; G&ge and Kréicek(1993.

1 Introduction

We begin with some background material on first order arithmetic. However, in lieu of
giving a detailed introduction to the subject, we settle for recommending the excellent
textsKaye (1991) andHajek and Pudik (1998.

The language of first order arithmetic consists of the usual symbols of first order logic
v, 3,(,), -, A, V, >,<, =, and variablex, Xo, ... together with symbols from arith-
metic: 0, 1,+,-, and<. Formulas and sentences are constructed as usual.

To fix some typographical notation, we uge< y to indicatex < y v x = y. We
also use boldface characters, suchpasnd x, represent sequences of typeor x. The
inequality p < r indicates that every element of the sequepde less tham .

PA~ consists of the axioms for the nonnegative part of a discretely ordered ring. It is
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the universal closures of the following formulas.

x+y=y+x, X-y=Yy-X,
X+yY)+z=x4+(¥Y+2, X-y)-z=Xx-(y-2),
X-(Yy+2=X-y+X-2

X+ 0=x, x-0=0,
X-1=xX,
(X < X), X<YAYy<Z —>X<2Z

X<YyVy<zvXx=Y,
X<y)>X+z<y+2, O<zAX<Y)—> X-2<Y-2),
X<y—> F2X+z=Y),

0<1,

0 <x, O<x—>1<X

1.1 Bounding, Least Number, and Induction Principles for X, and
IT,-formulas

Bounding for Xp-formulas (BX,). BX, consists of all sentences

VP (Va)l(Vx < a)@y)eX, y, p) = @) (VX <)@y < b)e(x, y, p)]

in whichg is . That s, if for every numbex less thara, there are numbeng satisfying
a Xn-property relative tox and parameterp, then there is a bounld such that for eack
less tharg, there is such ¥ all the elements of which are less than

Least number principle for ,-formulas (LZ,). LZX, consists of all the sentences

VP [@X) (X, p) = @X)[eX, P) A (VY < X)=(Y, P)]]

in which ¢ is . In other words, ifA is defined by a,-formula relative to parameters
and A is not empty, therA has a least elementIl, is defined similarly.

Induction for Zy-formulas (1Z,). X, consists of all the sentences

VP, p) A (VX)(9(X, P) = e(X+ 1, p) = (VX)e(X, p)]

in which ¢ is Xp,. In other words, ifA is defined by a,-formula relative to parameters,
0 € A, andA s closed under the successor function, then every numberAs in

A cutin a modeldt is a subset] of 2 such that for everx andy, if x € J and
y < x theny € J. A proper cut is a nonempty cut which does not include all of the
elements ofli. A nonprincipal cut is a cut which has no greatest element. One way in
which Zy-induction could fail in)¢ would be for there to be a proper nonprincipal cut
which is definable by &-formula relative to parameters #%.
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The Kirby and Paris Theorem. Building onParsong1970), Kirby and Paris(1977)
proved the fundamental theorem connecting bounding, induction, and the least number
principles forx,, andIl,-formulas.

Theorem 1.1 Kirby and Paris) Work inPA™ + 1Xq. Foralln > 1,
1. 1%, < Il < L%, < LII,.
2. BXpt1 < BIls.
3. 1¥pt1 = BZnp1 = 13X, and the implications are strict.

Consequently, the bounding principles are strictly interleaved with the equivalent in-
duction and least number principles.

1.2 Ap-formulas

We form the principles of A, andl Ay, by inserting an hypothesis of equivalence between
¥n andIT,-formulas.

The least number principle for Ap-formulas (LA,). LAp consists of all the sentences

D) (YX)(p(X, p) < =¥ (X, p)) =
(@0 (@(x, P = @Ole(X, P) A (VY < )=y, P)])

in which ¢ andvys areZ,. In other words, ifA is defined by & ,-formula and also by a
IT,-formula relative to parameters ardis not empty, therA has a least element.

Theorem 1.2 (Gandy (unpublished), seelajek and Pudlak (1998) If n > 1 andX is
a model ofPA™ + 1 Zg, then

MW =By — M E=LA,.

Proof: BX, = LAp. To sketch the proof, suppose thatis a Ap-set and suppose
that A has an element less than Use BX,, to bound the witnesses needed to determine
for eachx less thara, whetherx belongs toA. BX,, implies that thel1,_1 predicates are
closed under bounded existential quantification, so the restrictiéntothe numbers less
thana can be defined by &l,_1-formula. Now, LI1,_; is provable from B, and so
there is a least element éfbelowa.

LA, = BX,. We follow theHajek and Pudlk (1998 account of Gandy’s proof.
We work in the theory A,. Suppose thad, p, and all,_1-formulagg are given so that
(VX < a)(@Y)po(X, Y, p). We must argue thadb)(Vx < a)(3y < b)eo(X, ¥, p).

Defined(z, a, p) to be the formula

z=an@u[(vVX)(Z=x<a— 3y <Weo(X,y, PHANv <W)(VY < v)=¢o(Z, Y, P)]

One can read(z, a, p) as saying that for anyx with z < x < a, the least witness to
3Y)po(X, Y, p) is less than or equal to the least withesS3g)¢o(z, v, p). Syntacti-
cally, 6(z, a, p) is equivalent to a formula of the forifdu)y,, wherey is obtained by the
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bounded quantification ofH_1-formula. Now, LA, — 1Xp_1,1Zh-1 = BXp_1,

and BX_1 proves that thél,,_; predicates are closed under bounded quantification. So,
we can conclude th#&(z, a, p) is equivalent to a&n-formula. Additionally, if the least
witness forz is greater than or equal to some witness Xpithen every witness foz is
greater than or equal to some witnessXorSo,6(z, a, p) is equivalent to the following
formula.

z<aAMMW[AEY < Weo(z, Y, pP) = (VX)(Z <X <a— 3y < Weo(X, Y, p)]

Applying BX_1 as above, this formula is equivalent td&-formula. Thus, 1A, im-
plies thatd(z, a, p) is An, and we can apply the least number principlé¢p, a, p). Let
Zp be the least number such thatd(z, a, p) and letugp be the least numbar such that
@y < Weo(2o, Y. P).

We claim that(vx < a)(3y < ug)go(X, Y, p). By the definition ofzy, if x is greater
than or equal tap, then there is  such thaty < up andgo(X, y, p). Suppose that there is
anx < asuch that the least witness t®y)po(X, Y, p) is greater thamig. Then, consider
the set ofx’s such that(Vy < ug)—¢o(X, Yy, p). Again by BX,_1, this set is[1,_1. By
LAy, it has a greatest element (Think of the least number of the foran— x for such an
X). But z; would also satisfy (z, a, p) and be less tham, a contradiction. [ ]

The principle of induction for Ap-formulas (I1A,). 1Ay consists of all the sentences

Vp) VX)(p(X, p) < =¥ (X, p) —
((@(0, p) A (¥X)(p(X, P) = (X + 1, p)) = (VX)e(X, P))

in which ¢ andyr areXy.

Paris raised the question of determining the relationship betwagnahd BXp;
seeClote and Kraitek (1993.

As we will see in Sectior, the problem is to decide whethezR (or equivalently
LAp) follows from IA,. There is a natural approach to showing that it does, but this
approach does not lead to a correct proof. However, it does point out where the problem
lies.

Let us attempt to prove A, from IA. Suppose that we are given a nonemggyset
A, and let us attempt to show that it has a least element. We suppos liaatno least
element, and we look for a failure of induction. Define the set

A" ={x:(VYly <x—vy¢A].

Clearly 0 € A*, or 0 would be the least element & Equally clearly, ifa € A* and
a+ 1 ¢ A* thena + 1 would be the least element &f. So, A* satisfies the hypotheses
needed to apply induction.

It would only remain to show thad* is a Ap-set. SinceA* is explicitly Iy, it would
be sufficient to show that it i¥,,. There is a standard argument to show figtpredicates
are closed under bounded universal quantificatiop.itf (3w)eg, wheregg is IT,,_1, then
we would rewrite

(Vy = x)Fw)go
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as
Aw vy = x)Fw < U)go,

and then replac&w < u)gg by a formula which id1,_1. But look at the implication,
Yy = X)@Fw)go — EW(YY = X)(Fw < Wgo.

We have confronted an instance oEB, rather than an instance of:B,_; such as we
found we found earlier. Of course, we cannot use an instancegftB prove By, and
the natural argument fails.

Even so, there is a less direct argument leading to the same conclusion. If we
strengthen the base theory to include the assertion that exponentiation is a total function
(exp), then we obtain the following partial answer to Paris’s question.

PA™ + 130+ exp = (IAn < BXp)

2 Equating Bounding and Induction

2.1 BX,implies Ap.

For models of PA + 120, the implication
M =By = M = 1A,

is well known. However, the proof is short and so we include it here.

Suppose thdlt = BX, thatg andyr are Zy-formulas, and that there are parameters
pin M relative to whichy and—y define the same subsébof ¢. We argue thal is not
a counterexample ta\;, in J%.

First, we can writep as3ygo andy as3yyo, wheregg andy are I1,_1-formulas,
which we may assume have the same number of free variables.

Now, suppose tha is strictly above some element of the complementidh .
Sincep andyr define complementary sets,

MW= (VX <a)@y)leo(X, Y, P) V Yo(X, Y, Pl

By applying BX, in ¢, there is & in 3¢ such that

M= (vx <)@y < b)lgoX, y, PV Yo, ¥, Pl

But then, for the elements dft which are less tham, J is defined by the formula
Ay < bygo(x, y, p) in M. Using BE, again, the intersection af with the numbers
belowa is definable by d1,_1-formula relative to the parametdrsa, and p. Since B,
implies I[T,,_1 and there is an element of the complemend afhich is less tham, either
0 ¢ J or Jis not closed under the successor, as required.
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2.2 1A, implies BXp

It is in our argument for the implication from\l, to BX,, that we make use of the expo-
nential function. Ultimately, we take an elemerit 2t, and use the baserepresentations
of numbers less thaaf to code lengtla sequences of numbers less tlzan

In the meantime, we make use of the existence of a standard coding within middels
of PA~ 4+ 1A1 + exp of sequences of element8fby elements oflt so that the relations
“c codes a sequence of lengthand “c; is the jth element of the sequence codeddy
areAy in M. We will write (m; : j < i) to denote the code for the sequence of length
whose elements are the numbarg for j less than.

Theorem 2.1 If n > 1andX is a model ofPA™ + 1 X + exp then
MEIA, = N =B,

We will prove Theoren?.1 for the case whem = 1. The general case for > 1
follows by the same argument relative to the compigte 1-subset oflk.

Lemma 2.2 Suppose thalll is a model of PA™ + 1A1 + expand IR is not a model of
BX1. There are an elementa ¢ and a function f: [0, a) — 2 such that the following
conditions hold.

1. fisinjective.
2. Therange of f is unbounded .

3. The graph of f i relative to parameters ifs.

Proof: By hypothesisiit is a not a model of B;. Consequently, we may fia € I, a
sequence of parametepfrom It, and aX1-formula (3w)¢g such thatyg is a Xp-formula
and the following conditions hold.

M= (VX < a)@y)Ew)po(X, Y, w, p) 1)
MW = (V9@ < a)(Vy < $)=Fw)po(X, Y, w, P) 2

Define f so that forx < a, f(X) is (X, ¢}, wheresy is leasts such that

M 3y <9)@w < go(X, ¥y, w, p). 3

There is ars satisfying Equatior8 by application of Equatior, and there is a least such
s by application of Ay in 3. Clearly, f is an injective function, since is determined
by the first coordinate of (x). The range off is unbounded by Equatioh Finally, the
graph off is definable by &o-formula essentially because the valuefaditx is chosen to
bound all of the quantifiers used to define it fraimNotice, we are invoking the properties
of a well behaved pairing function. [

Lemma 2.3 Suppose thatt is a model ofPA™ + I A1 + expand thatdk is not a model of
BX1. There are ac Ik, a nonprincipalX-cut |, and a function g such that the following
conditions hold.
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1. 1 CI0, a).

2.g:1 =M.

3. The graph of g i1 relative to parameters iti:.

4. Foreachi e I, g(i) is the code for a sequendenj : j < i) such that for all
unequal j and p less than i, m, # mj,. (Note that the sequence coded ly)g
has lengthii.)

5. Foreach i < iz € | the sequence coded byig) is an end extension of the one
coded by @i;). In other words, if gi;) codes(m;j : j < i1) and gi2) codes
(nj : j <ip), thenforall j<iy, mj =n;j.

6. For each m< a, there is an ie | such that m appears in the sequence coded by
g().

Proof: Let f anda be as in Lemma&.2. We view the set of numbers less tharnwhich is
finite in the sense abk, as a recursively enumerable set in the seng&.dfn this sensem
is enumerated into this set at stafjgm). Sincef is injective, there is at most one number
enumerated during each stage. At each stagee can define the sequence of numbers
which have been enumerated at earlier stages and order them according to the order in
which they were enumerated By That is, we reorder the numbearandm belowa such
thatn comes beforen if and only if f (n) is less thanf (m).

We defineg so thatg(i) is the code for sequeném; : j < i) suchthat for each < i,
mj is the jth number enumerated by. More formally,g(i) = (mj : j < i) if and only if
there is ars such that the following conditions hold.

Lfm: @y <s)(f(m =y} ={m: 3] <i)(m=mj)}
ii. Foralljiandjzlessthari, (ji1 < j2) < (f(mj) < f(Mj,)).

We leave it to the reader to verify thagtis well defined andxs in 2%, relative to the
parameters needed to defihe

Let | denote the domain df.

By definition, for each in |, there is ars in 2N so that there are at leastmany
elementan of I such thatf (m) < s. For such ars and anyj less than, there is a
smallers; which is adequate to defirgat j, sol is an initial segment ofi. In fact,
the map sending to m;_z is an order isomorphism between\ {0} and the range of.
Further, for each € | \ {0}, the restriction of this map tj : 0 < j < i} is coded within
M. Consequently, ordering \ {0} and the range of by the ordering of¢ produces
isomorphic order types.

Now, suppose that> ain k. If i were to be inl, theng(i) would be the code for a
sequence of length greater tharwith elements less thaa and with no repetitions. This
is impossible, since every model of PA-1A1+exp satisfies th&g-pigeon hole principle;
seeHajek and Pudik (1998. Thus,| is a subset of0, a). Finally, since the range of is
unbounded in)¢ and| has the same order type as the rangé ahere can be no greatest
element ofl . Consequentlyi is a proper nonprincipal cut 8. | is X1 by virtue of being
the domain of the; functiong.
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Finally, for everym in the domain off and every sufficiently largein |, m appears
in the sequence coded lyyi ). Since the domain of is [0, a), for eachm < a, there is an
i € | such tham appears in the sequence codedjdy. [ |
Letg and! be fixed as in Lemm&.3. Letm* = (m" : i € |) be the sequence of
length| such that for ali € I, m* is equal to theth element ofg(i + 1). That is,m* is
the sequence given by the limit of the rangegof

Lemma 2.4 Suppose that e ¢, n = (nj : j < c) is coded i, andn is a sequence of
elements oflt which are less than a. Then, either ¢ is not an upper bound for | or there
isani e | suchthatn # mf.

Proof: Letcandn = (n; :i < c) be given as above, and suppose thigtan upper bound
for I. For the sake of a contradiction, suppose that for alll, m* = n;.
But then consider the set

J={j:Foralli <j,n #n;j.}

For each in I, the sequence coded lgyi) has no repeated values, andlsg J. Con-
versely, every element 3¢ which is less tham appears irm*. Consequently, if < ¢
andj ¢ I, then there is anin | such thaim® = nj. But then,nj = nj and soj is not an
element ofJ. Thus,J is equal tol .

But thenJ is a properZo-cut, contrary to the assumption th8t is a model ofAj-
induction. [ |

We can now present the proof of Theor@rmi.

Proof: Suppose thatt is a model of PA + A1 + exp and thaf)t is not a model of B 1.
Let |, g, andm* be fixed as above.

We define a collection of intervalg;, d;], fori € |. If i = 0, thencyg = 0 and
dp = @2. Fori > 0,

G =) ma* UtV andd = +a*".

j<i
We calculate the first few values explicitly.

[co. do] = [0, @%]

[c1, di] = [mia®~L, (m§ + Da? 1

a2 mpalt 4 (mf + Da* )

[C2. d2] = [mga®~* + m}a
Since eacrnn]-k is less thara, for eachi € I, [¢i+1, di+1] C [Gi, d;]. DefineJ by
xedJ < @A) =0),
and defineK by

xeK < @) =>d).
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Since the initial segments ofi* are X1-definable relative to parametersif, J and
K are X;-definable relative to parametersi. In addition,J is closed downward itle,
andK is closed upward. It remains to show thhis a proper cut and thak = 0t \ K.

Since there is only one e | such thaim is equal to O, for all but ong ¢ < Gj41.
Sincel has no greatest element, it follows that neither dbeSonsequently] is a proper
cut.

Now, suppose that is an element oft which is neither an element df nor one of
K. Then, consider the baserepresentation afi. Let n; be the coefficient of the2—i-1
term in this representation. For exampleniivhere 22-1 + 3222, thenng would be 2,
ni would be 3, and for every othérless tharga, nj would be 0. By the choice af, for
everyi in |,

* a—(j+1) *qa—(j+1) a—i
ija <n< ija +a

j<i j<i

But then, for eachin I, nj is equal tan". Since the basa-+epresentation af is definable
from n by a bounded recursionAk implies that the sequengg; : j < a) is coded by an
element oflX. This is a contradiction to Lemnia4.

Consequently,) is a ¥1-cut and theX1-setK is its complement idX. So, from the
failure of BX 1 in I, we produced a failure ofA1 in I¢. Theorem?2.1 follows. [ ]
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