
VARIATIONS ON A THEME: ON THE DISPERSION OF WAVES

SUNG-JIN OH

Abstract. The linear wave equation

p´B2t `

d
ÿ

j“1

B2j qφ “ 0

underlies description of many fundamental wave phenomena in physics; examples include
vibration of the string, elasticity, acoustics, optics, electromagnetism and gravity (general
relativity), to mention just a few. A key property of a solution to the linear wave equation is
dispersion, i.e., the decay of the amplitude of the solution while the total energy is conserved.
Not only is it of obvious physical relevance, dispersion is often the central mechanism for
stability and regularity in the mathematical investigation of nonlinear wave equations.

In this lecture series, I will describe not one, nor two, but three distinct proofs of disper-
sion for the wave equation, using 1) Fourier analysis and oscillatory integrals; 2) Klainer-
man’s vector field method; and 3) decomposition into wave packets. Each proof has varying
strengths and weaknesses, which I will demonstrate by discussing different nonlinear appli-
cations, respectively.

Introduction

The topic of this lecture series is the (linear) wave equation:

p´B
2
t ` B

2
x1 ` ¨ ¨ ¨ ` B

2
xdqφ “ 0, pt, xq P R1`d.

This PDE underlies many physical phenomena of basic importance:

‚ Motion of an elastic string (d’Alembert), membrane or body (elasticity);
‚ Propagation of sound (compressible Euler equation; gas dynamics);
‚ Propagation of light (Maxwell equation; electrodynamics, optics);
‚ Gravity (Einstein equation; general relativity).

Most of these interesting PDEs from physics are nonlinear wave equations. A suitable under-
standing of the simple linear wave equation is often the first step for studying such nonlinear
equations.

We always consider the initial value problem for the wave equation. Introducing the
shorthand

∆ “ B
2
x1 ` ¨ ¨ ¨ ` B

2
xd , l “ ´B

2
t ` B

2
x1 ` ¨ ¨ ¨ ` B

2
xd

These notes were prepared for a sequence of three one-hour lectures at “2018 IBS–CGP Mathematics
Festival”; the author thanks the participants of the Festival for their attention and enthusiasm. The author
learned of the content of Lecture III below (“wave packet approach”) through a seminar organized by
D. Tataru at UC Berkeley in Spring 2014. The author would like to acknowledge contribution from all the
participants of the seminar: M. Beceanu, B. Dodson, C. Gavrus, B. Haberman, B. Harrop-Griffiths, M. Ifrim,
A. Lawrie, G. Liu and P. Smith.
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The initial value problem for the wave equation consists of the following: Given a pair of
functions φ0, φ1 on Rd and a function f on I ˆ Rd, find the unique solution φ that satisfies

(0.1)

"

lφ “f

pφ, Btφq|t“0 “pφ0, φ1q.

We will discuss the well-posedness (existence and uniqueness) of this problem in the course
of this lecture.

We emphasize two absolutely fundamental features of this PDE. First, there is a naturally
associated notion of energy that is conserved.

Theorem 0.1 (Energy conservation). Let φ be a “nice” solution to lφ “ 0 defined on
I ˆ Rd, where I is any interval in R. Then the conserved energy of φ at time t, defined by

Erφsptq “

ż

1

2

˜

|Btφ|
2
`

d
ÿ

i“1

|Biφ|
2

¸

ptq dx

is constant in time.

Here, “nice” means that φ is smooth and decays to 0 sufficiently fast as xÑ 8.

Remark 0.2. From the energy conservation, uniqueness of a “nice” solution to the IVP with
f “ 0 follows.

Proof. We differentiate Erφsptq in time, and use the equation.

d

dt
Erφsptq “

ż

˜

BtφB
2
t φ`

ÿ

i

BiφBiBtφ

¸

dx

“

ż

˜

BtφB
2
t φ´

ÿ

i

BtφB
2
i φ

¸

dx “ 0. �

Remark 0.3. It may seem mysterious where Erφsptq comes from. In specific applications,
this quantity is associated with the physical notion of total energy of the system described
by the solution uptq. More generally, Erusptq arises as the conserved quantity associated
with the time translation symmetry, via the so-called Nöther principle.

The energy Erφsptq is a certain measure of the size of φ; when φpt, xq Ñ 0 as x Ñ 8,
then Erφsptq “ 0 implies φpt, ¨q ” 0. Therefore, Theorem 0.1 (conservation of energy) tells
us that something stays the same. Nonetheless, when d ě 2 it turns out that some other
measures of the size of φ, namely the maximum amplitude of φ (}φ}L8) and its differential
Bφ (}Bφ}L8), go to zero as tÑ ˘8, by a mechanism called dispersion:

Theorem 0.4 (Dispersion). Let φ be a “nice” solution to lφ “ 0. Then

sup
xPRd

p|φpt, xq| ` |Bφpt, xq|q Àφ0,φ1 p1` |t|q
´ d´1

2 .

A rough description of the mechanism is as follows: Consider a solution φ to lφ “ 0,
whose energy density is compactly supported initially. Although the energy is conserved,
the solution u “disperses” in time, and its the support of the energy density spreads to larger
and larger volumes. Since the total integral, which is the conserved energy, has to remain
the same in time, }Bφ}L8 has to decay.
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Remark 0.5. As we will see below, the situation is different in d “ 1; the solution does not
disperse, but is only transported.

The goal of this lecture series is to give not one, nor two, but three distinct proofs of this
important fact.

(1) Proof via a representation formula;
(2) Proof via the vector field method;
(3) Proof via a wave packet decomposition.

Each proof has its own strengths and weaknesses, leading to different applications in the
nonlinear case.

1. Lecture I: The representation formula approach

1.1. d’Alembert and Kirchoff’s formulae. We start with some classical representation
formulae in dimensions d “ 1, 3 (and d “ 2). For a reference, see [Evans, Partial Differential
Equations, §2.4].

d’Alembert’s formula in d “ 1. We consider

p´B
2
t ` B

2
xqφ “ 0.

Note the obvious factorization

p´B
2
t ` B

2
xq “ ´pBt ´ BxqpBt ` Bxq “ ´pBt ` BxqpBt ´ Bxq.

Thus

φpt, xq “ φleftpx` tq ` φrightpx´ tq.

To specify φleft and φright, note that

φleftpxq ` φrightpxq “φp0, xq “ φ0pxq,

Bxφleftpxq ´ Bxφrightpxq “Btφp0, xq “ φ1pxq,

which can be immediately solved as follows:

Bxφleftpxq “
1

2
pBxφ0 ` φ1q pxq, Bxφrightpxq “

1

2
pBxφ0 ´ φ1q pxq.

In conclusion,

φpt, xq “
1

2
φ0px` tq `

1

2
φ0px´ tq `

1

2

ż x`t

x´t

φ1pyq dy.

Kirchoff’s formula in d “ 3. In the polar coordinates pt, r, ωq “ pt, r, θ, ϕq,
ˆ

´Bt2 ` B
2
r `

2

r
Br `

1

r2
∆ω

˙

φ “ 0.

where ∆ω “ B
2
θ `

cos θ
sin θ
Bθ `

1
sin2 θ

B2
ϕ is the Laplacian on S2. We introduce the spherical mean

Upt, r, ωq “

ż

S2
φpt, r, ωq

dω

4π
,

where dω “ sin θdθdϕ. Then
ˆ

´B
2
t ` B

2
r `

2

r
Br

˙

Upt, rq “ 0.
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A simple algebra gives, for t, r ą 0
`

´B
2
t ` B

2
r

˘

prUqpt, rq “ 0

By extending U past r “ 0 by an even reflection Uprq “ Up´rq for r ă 0, the preceding
equation holds for all r P R. Then using d’Alembert’s formula, for 0 ă r ď t we have

rUpt, rq “
1

2
pr ´ tqUp0, t´ rq `

1

2
pr ` tqUp0, r ` tq `

1

2

ż r`t

t´r

sBtUp0, sq ds

Since u is regular, we must have φpt, 0q “ limrÑ0 Upt, rq. Therefore,

φpt, 0q “ lim
rÑ0`

ˆ

1

2
pUp0, t´ rq ` Up0, t` rqq `

t

2r
pUpt` rq ´ Upt´ rqq `

1

2r

ż t`r

t´r

sBtUp0, sq ds

˙

“Up0, tq ` tU 1ptq ` tBtUp0, tq

“

ż

S2
φ0pt, ωq ` tBrφ0pt, ωq ` tφ1pt, ωq

dω

4π

“
1

4πt2

ż

Stp0q

pφ0 ` tBrφ0 ` tφ1q dApyq.

Translating any point x to the origin, we obtain

(1.1) φpt, xq “
1

4πt2

ż

Stpxq

φ0 dApyq `
1

4πt

ż

Stpxq

ˆ

y ´ x

|y ´ x|
¨ Byφ0 ` φ1

˙

dApyq.

This formula makes clear the dispersion effect for a smooth, compactly supported initial
data set pφ0, φ1q.

Exercise 1.1 (Poisson’s formula in d “ 2). By the method of descent from Kirchoff’s formula,
a representation formula in d “ 2 can be derived:

φpt, xq “
1

2πt

ż

Btpxq

φ0

pt2 ´ |y ´ x|2q
1
2

dApyq `
1

2π

ż

Btpxq

y´x
|y´x|

¨ Byφ0 ` φ1

pt2 ´ |y ´ x|2q1{2
dApyq.

In this case, although it is trickier to see, it can be shown that φ has a uniform pointwise
decay rate of t´

1
2 for a smooth, compactly supported initial data set pφ0, φ1q.

1.2. Notation. To continue, we introduce a few notation and conventions that will be used
throughout the lectures.

‚ Lp norms. For any 1 ď p ă 8 and any (nice) function f on Rd, define

}f}Lp “

ˆ
ż

|f |p dx

˙
1
p

In case p “ 8, we let }f}L8 “ supxPRd |fpxq|.
‚ Asymptotic notation. A À B means that there exists a constant C ą 0 such that
A ď CB. We specify the parameters that C depends on by subscripts: For instance,
A Àa B means that A ď CpaqB. We will often suppress the dependence of the
constants on the dimension d. We use A » B to mean A À B and B À A.
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1.3. A review of the Fourier transform. To derive a representation formula which is con-
venient for all dimensions, we will use the Fourier transform. See [Evans, Partial Differential
Equations, Ch. 4.3.1].

We introduce the Schwartz class SpRdq of C-valued functions on Rd:

SpRd
q “ tu P C8pRd

q : sup
x
|x|k|Bp`qx u| ă 8 for all k, ` P N0u.

Given a Schwartz function u P SpRdq, its Fourier transform û “ Fpuq is defined by

ûpξq “

ż

Rd
upxqe´ix¨ξ dx “: Fpuqpξq.

It is not difficult to check that û P SpRdq as well (see the properties below).
Two fundamental properties are as follows:

‚ Fourier inversion formula:

upxq “

ż

Rd
ûpξqeix¨ξ

dξ

p2πqd
“: F´1

pûqpxq

and vice versa. In short, F´1F “ FF´1 “ Id.
‚ Plancherel’s identity:

ż

Rd
|upxq|2 dx “

ż

Rd
|ûpξq|2

dξ

p2πqd
.

We take the above two facts as granted. Other important properties of the Fourier trans-
form follow rather easily from the Fourier inversion formula. For instance,

‚ Diagonalization of partial differentiation:

xBjupξq “ iξjûpξq.

To see this, we compute

Bjupxq “

ż

Rd
ûpξqBje

ix¨ξ dξ

p2πqd

“

ż

Rd
iξjûpξqe

ix¨ξ dξ

p2πqd
.

‚ Scaling property: For any λ ą 0, let uλpxq :“ upx{λq.

xuλpξq “ λdûpλξq.

We compute

uλpxq “

ż

Rd
ûpξqeiλ

´1x¨ξ dξ

p2πqd

“

ż

Rd
ûpξqeix¨λ

´1ξ dξ

p2πqd

“

ż

Rd
λdûpληqeix¨η

dη

p2πqd
.

(In fact, the effect of any linear change of variables in x can be easily computed.)
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Finally, we study the behavior of products under the Fourier transform:

uvpxq “

ż

Rd
ûpηqBje

ix¨η dη

p2πqd

ż

Rd
v̂pζqBje

ix¨ζ dζ

p2πqd

“

ż

Rd

ż

Rd
ûpηqv̂pζqeix¨pη`ζq

dη

p2πqd
dζ

p2πqd

“

ż

Rd

ˆ
ż

Rd
ûpηqv̂pξ ´ ηq

dη

p2πqd

˙

eix¨ξ
dξ

p2πqd
,

where on the last line, we made a change of variables pη, ζq ÞÑ pη, ξ “ η ` ζq. Motivated by
this computation, we introduce the convolution operation:

u ˚ vpxq “

ż

upyqvpx´ yq dy.

Then:

‚ Product to convolution:

xuvpξq “
1

p2πqd
û ˚ v̂pξq.

Conversely,

zu ˚ vpξq “ ûpξqv̂pξq.

1.4. Representation formula by Fourier transform. Let φ be a “nice” solution to the
wave equation lφ “ 0 in R1`d. Taking the Fourier transform in space, we arrive at

B
2
t φ̂pt, ξq “ ´|ξ|

2φ̂pt, ξq,

which is a second order ODE in t for each fixed value of ξ P Rd. Solving this ODE, we see
that φ̂ is of the form:

φ̂pt, ξq “ φ̂`pξqe
it|ξ|
` φ̂´pξqe

´it|ξ|

The coefficients φ̂˘ are determined by the initial data via the following linear relation

#

φ̂`pξq ` φ̂´pξq “φ̂0pξq,

i|ξ|pφ̂`pξq ´ φ̂´pξqq “φ̂1pξq,

Solving this linear relation, we arrive at

(1.2) φ̂˘pξq “
1

2

ˆ

φ̂0pξq ˘
1

i|ξ|
φ̂1pξq

˙

.

By the inverse Fourier transform, we have the representation formula

(1.3) φpt, xq “

ż

Rd
φ`pξqe

ipt|ξ|`x¨ξq dξ

p2πqd
`

ż

Rd
φ´pξqe

ip´t|ξ|`x¨ξq dξ

p2πqd
.
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1.5. Simple model problem: Oscillatory integrals. Before we continue, we consider
the simpler problem of estimating a model 1-dimensional oscillatory

I “

ż

R
eiλΦpξqapξq dξ.

We assume that the (unweighted) phase function Φpξq is real-valued, and that the amplitude
apξq has compact support in p´1, 1q. On this set, we assume that Φ, a are uniformly smooth,
in the sense that

|Φpkqpξq| ` |apkqpξq| Àk 1.

We are interested in the size of I as λÑ 8.
The basic idea is to play the rapid oscillation of eiλΦpξq against the slowly varying amplitude

apξq, by using the formula

eiλΦpξq
“

1

iλ BξΦpξq
Bξe

iλΦpξq

and integrating by parts in ξ. Consider the following two basic examples:

Example 1: No critical points. Consider

I “

ż

eiλΦpξqapξq dξ

with Φ1pξq ą 1 on p´1, 1q. Then repeated integration by parts yields

I “ ONpλ
´N
q.

Example 2: One nondegenerate critical point. Consider Φpξq “ ξn, i.e.,

I “

ż

eiλξ
n

apξq dξ.

Note that we would see no oscillation in the interval |λξn| ! 1; it is reasonable to expect
that the contribution of this interval gives the main term. Indeed, this idea turns out to be
true: To see this, we make the change of variables

η “ λξn, dξ “ λ´
1
nη´

n´1
n dη.

Then

I “ λ´
1
n

ż

eiηapλ´
1
nη

1
n qη´

n´1
n dη.

It is not difficult to verify that

I “ λ´
1
n

ż

eiηap0qη´
n´1
n dη `Opλ´

2
n q.

Exercise 1.2. Prove the preceding formula.
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Interlude: Dyadic decomposition. In anticipation of what to come, however, we present a dif-
ferent proof, which does not involve change of variables, but rather a “dyadic decomposition”
of the interval, adapted to the phase λξn.

We begin by defining the notion of a smooth dyadic decomposition. Let χă1 be a smooth
function on Rd supported on t|x| ă 2u and is equal to 1 on t|x| ă 1u. For any µ ą 0, let

χăµpxq “ χă1px{µq, χµpxq “ χăµpxq ´ χăµ{2pxq.

Note that χăµ is supported in t|x| ă 2µu, and χµ is supported in tµ
2
ă |x| ă 2µu. Positive

numbers of the form 2k with k P Z are called dyadic numbers, and the set of all dyadic
numbers is denoted by 2Z. Note that for any µ, ν P 2Z with ν ă µ,

χăµ “
ÿ

µ1P2Z:µ1ďµ

χµ1 “ χăν `
ÿ

µ1P2Z:νăµ1ďµ

χµ1 .

Dyadic decomposition is an effective way to reduce the continuous problem to more man-
ageable discrete problems, because our phase λξn is a polynomial power, so that its values
are roughly equivalent on each dyadic interval t1

2
µ ă ξ ă 2µu.

Example 2’: One degenerate critical point, dyadic decomposition. Motivated by the above
consideration, we use

χă1 “ χăλ´1{n `
ÿ

αP2Z

1ăαďλ1{n

χαλ´1{n ,

to split I (we will be loose about the endpoints of the dyadic sums!). In the first region,
there is no oscillation to exploit. Thus,

I0 :“

ż

χăλ´1{npξqapξqeiλξ
n

dξ “ O

ˆ

1

λ1{n

˙

.

On the other hand,

Iα :“

ż

χαλ´1{npξqapξqeiλξ
n

dξ

“

ż

χαλ´1{npξqapξq
1

niλξn´1
Bξe

iλξn dξ

“´

ż

Bξ

ˆ

χαλ´1{npξqapξq
1

niλξn´1

˙

eiλξ
n

dξ.

Note that Bξ

´

χαλ´1{npξqapξq 1
niλξn´1

¯

“ Op 1
λξn
q, and it is still supported in t1

2
αλ´1{n ă |ξ| ă

2αλ´1{nu. Therefore, integration yields

|Iα| À
1

αn´1λ
1
n

.

which may be summed up for α ą 1.

Heuristic principles. The preceding simple computations generalize to the following heuristic
principles:

(1) Localization (or nonstationary phase) principle: If Φ is nonstationary (i.e., ∇Φ ‰ 0)
on the support of a, then I can be shown to be rapidly decaying like Opλ´Nq for any
N P N0. Therefore, the problem of estimating I can be localized to the regions near
stationary points tξ : ∇Φpξq “ 0u.
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(2) Scaling (or stationary phase) principle: The size of an oscillatory integral I whose am-
plitude is localized near a stationary point ξ0 is determined by the order of vanishing
of ∇Φ. The main contribution comes from the ξ-region where |λΦpξq ´ λΦpξ0q| À 1.

1.6. Proof of the dispersive inequality. The precise statement of the dispersive inequal-
ity that we will prove is as follows.

Theorem 1.3 (Dispersive inequality).

}φptq}L8 À |t|
´ d´1

2

ÿ

µP2Z

µ
d`1
2 }pPµφ0, µ

´1Pµφ1q}L1 .

Here, Pµu “ F´1pχµûq. The interest in this inequality lies in the range |t| ą 1.

Proof. We proceed in several steps.

Step 1: Reduction via symmetries. We begin by reducing the problem using the symmetries
of the problem. First, by the symmetry under reflection pt, xq ÞÑ p´t,´xq, we may assume
that t ą 0. Next, we decompose

1 “
ÿ

µP2Z

χµpξq,

and also introduce χ̃µpξq “ pχµ{2`χµ`χ2µqpξq so that χ̃µχµ “ χµ. Then we may decompose

φ̂pt, ξq “
ÿ

˘

ÿ

µPZ

χ̃µpξqφ̂0,˘pξqχµpξqe
˘it|ξ|.

Write

Iµ,˘pt, xq “

ż

χµpξqe
ip˘t|ξ|`x¨ξq dξ

p2πqd
.

Then
φpt, xq “

ÿ

µ

pIµ,˘ptq ˚ ψµ,˘qpxq.

where ψ̂µ,˘ “ χ̃µφ̂0,˘. By Hölder’s inequality,

|φpt, xq| À
ÿ

µ

}Iµptq}L8}ψµ,˘}L1 .

It is not difficult to show that

}ψµ,˘}L1 “ }F´1
pχ̃µφ̂0,˘q}L1 À

ÿ

µ1Ptµ{2,µ,2µu

}pPµ1φ0, µ
´1Pµ1φ1q}L1 .

Therefore, it is left to verify

}Iµ,˘pt, xq}L8x À t´
d´1
2 µ

d`1
2 .

By the time reversal and scaling symmetries, we may assume that ˘ “ ` and µ “ 1.

Step 2: Oscillatory integral estimate. By the previous step, the problem is reduced to
analyzing the size of the oscillatory integral

(1.4) I1 “

ż

Rd
χ1pξqe

iΦpt,x,ξq dξ,

where the phase Φ is given by
Φpt, x, ξq “ t|ξ| ` x ¨ ξ
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and the amplitude χ1pξq is a smooth function supported in the annulus t1
2
ă |ξ| ă 2u.

Step 2.1: Basic observations. By a suitable rotation, we may assume that the point x lies
on the x1-axis, i.e., x “ px1, 0, . . . , 0q. The phase function thus becomes

Φpt, x, ξq “ t|ξ| ` x1ξ1.

As before, the basic idea is to use the formula

eiΦpt,x,ξq “
1

iBξjΦpt, x, ξq
Bξje

iΦpt,x,ξq

and to integrate by parts in ξ. Note that

BξiΦpt, x, ξq “ t
ξi
|ξ|
` x1δ1i

and

BξiBξjΦpt, x, ξq “
t

|ξ|

ˆ

δij ´
ξiξj
|ξ|2

˙

.

We also note the easy higher derivative bounds (for k ě 3q

|B
pkq
ξ Φpt, x, ξq| À t for

1

2
ă |ξ| ă 2.

Stationary phase (i.e., critical point of Φ) when t ą 0 occurs when

ξ1

|ξ|
“
x1

t
, ξ2 “ ¨ ¨ ¨ “ ξd “ 0,

which forces ξ1 “ |ξ| and t “ x1.

Step 2.2: Region with no stationary phase. We first treat the region with no stationary phase.
Let η be a smooth function on R which equals 1 on p´8,´1

4
q and 0 on p0,8q. Consider

Inonstat “

ż

χ1pξqηpξ1 ´
1
2
qeiΦpt,x,ξq dξ.

It is not difficult to verify that |∇Φpt, x, ξq| Á t in the set t1
2
ă |ξ| ă 2, ξ1 ă

1
4
u. Repeated

integration by parts then gives

|Inonstat| ÀN Opt´Nq.

Step 2.3: Region with stationary phase. We may now focus on the set t1
4
ă ξ1 ă 2u, where

there are possibly stationary phases. We introduce the notation

χ̃1pξq “ χ1pξqp1´ ηqpξ1 ´
1
2
q,

and write

Istat “ I ´ Inonstat “

ż

χ̃1pξqe
iΦpt,x,ξq dξ.

The Hessian of Φ is

∇2
ξΦ “

t

|ξ|

ˆ

0 0
0 δij

˙

.

This means that near the the critical points of ∇Φ,

Φpt, x, ξq “
t

ξ1

pξ2
2 ` ¨ ¨ ¨ ξ

2
dq ` ¨ ¨ ¨ ,
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where ξ1 » 1. We expect the dominant contribution to be the ξ-volume of the region where
t
ξ1
pξ2

2 ` ¨ ¨ ¨ ξ
2
dq À 1, which is Opt´

d´1
2 q.

To make this idea precise, we note that
ˇ

ˇ

ˇ

ˇ

ż

χăt´1{2pξ1qχ̃1pξqe
iΦpt,x,ξq dξ

ˇ

ˇ

ˇ

ˇ

À t´
d´1
2 ,

where ξ1 “ pξ2, . . . , ξdq. On the other hand, in the region

t1
4
α2
ď tpξ2

2 ` ¨ ¨ ¨ ` ξ
2
dq ď 4α2

u X t1
2
ă |ξ| ă 2, 1

8
ă ξ1u,

we have the bound
ˇ

ˇ

ˇ

ˇ

B
pkq
ξ1

ˆ

1

BξjΦpt, x, ξq

˙
ˇ

ˇ

ˇ

ˇ

Àk
1

t
pαt´1{2

q
´1´k.

so that repeated integration by parts (k-times) yields
ˇ

ˇ

ˇ

ˇ

ż

χαt´1{2pξ1qχ̃1pξqe
iΦpt,x,ξq dξ

ˇ

ˇ

ˇ

ˇ

Àk
1

tk
pαt´1{2

q
´2kαd´1t´

d´1
2 À αpd´1q´2kt´

d´1
2

which may be summed up for α Á 1 if k Á d. �

Exercise 1.4. For α ą 0, consider the fractional Schrödinger equation

iBtφ` |D|
αφ “ 0.

where |D|αφ “ F´1p|ξ|αφq. The case α “ 2 corresponds to the usual Schrödinger equation,
and α “ 1 is the (half-)wave equation, that we just considered.

Formulate and prove the dispersive inequality in the case α ą 1. What is the uniform
decay rate in t? Also, what happens when 0 ă α ă 1?

2. Lecture II: The vector field method

In this lecture, we follow an idea of Klainerman to prove the dispersive property of the
wave equation using only physical space methods. The reference is [Klainerman, Uniform
decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure.
Appl. Math., 1985].

2.1. More on the energy method. Let φ be a (real-valued) solution to

lφ “ f.

Multiplying the equation by Btφ, we compute

(2.1) ´Bt

˜

1

2
|Btφ|

2
`

1

2

d
ÿ

j“1

|Bjφ|
2

¸

` Bj pBjφBtφq “ fBtφ.

Integrating this identity on pt1, t2q ˆ Rd, and integrating by parts (or, in fancy terms, use
the divergence theorem):

Erφspt2q “ Erφspt1q `

ż t2

t1

ż

Rd
fBtφ dxdt.

For instance, by the Cauchy–Schwarz inequality, we have a useful basic inequality

}∇t,xφpt2q}L2 ď }∇t,xφpt1q}L2 ` C

ż t2

t1

}fpt1q}L2 dt1.
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Exercise 2.1. Integrating the above identity over Cpt0, x0q X tt1 ă t ă t2u, where

Cpt0, x0q “ tpt, xq : |x´ x0| ă t0 ´ t, t ą 0u.

it follows that
ż

Bt0´t2 px0q

1

2
|Btφ|

2
`

1

2

d
ÿ

j“1

|Bjφ|
2 dx ď

ż

Bt0´t1 px0q

1

2
|Btφ|

2
`

1

2

d
ÿ

j“1

|Bjφ|
2dx

`

ż

Cpt0,x0qXtt1ătăt2u

fBtφ dtdx.

This estimate proves finite speed of propagation: If pφ0, φ1q “ 0 on BRpx0q, then the solution
lφ “ 0 is zero on CRpx0q (called the future domain of dependence of BRpx0q). This property
implies a nice uniqueness statement for lφ “ f !

2.2. Pointwise estimate via the energy method. Conservation of energy allows us to
have an L2-type control on the solution. How do we convert this to a pointwise control on,
say, Bφ?

Step 1: Commute lφ “ f with Bµ, so that lBµφ “ Bµf .
Step 2: Apply the energy inequality to control }Bpk`1qφ}L2

Step 3: Apply the following Sobolev inequality :

Lemma 2.2 (Sobolev inequality). Let φ be a smooth compactly supported function on Rd.
Then we have

|φpxq| À

td{2u`1
ÿ

j“0

}B
pkqφ}L2pRdq.

For a nice exposition of Sobolev spaces, see [Evans, Partial Differential Equations, Ch. 5].
Here, we present a simple proof on Rd using the Fourier transform.

Proof. Write N “ td{2u`1. We use the Fourier transform. By the inverse Fourier transform,

|φpxq| “

ˇ

ˇ

ˇ

ˇ

ż

φ̂pξq
dξ

p2πqd

ˇ

ˇ

ˇ

ˇ

ď

ż

|φ̂| dξ

We split the last integral and bound each term as follows:
ż

t|ξ|ă1u

|φ̂| dξ `

ż

t|ξ|uě1

|φ̂| dξ ď }φ̂}L2 ` }|ξ|N φ̂}L2 ,

where we used that |ξ|´2N is integrable on t|ξ| ě 1u. Using the properties of the Fourier
transform, the desired statement follows. �

As a result, we have:

sup
pt,xqPr0,T sˆRd

|φpt, xq| À

td{2u`1
ÿ

j“0

ˆ

}B
pkq
Bφp0q}L2 `

ż T

0

}B
pkqfptq}L2 dt

˙

.

2.3. Overview of the strategy for dispersion. We pursue the same strategy to prove
pointwise decay, with some extra ingredients: First, instead of just controlling higher deriva-
tives of φ, we attempt to control weighted higher derivatives of φ. Second, rather than the
usual Sobolev inequality, we use a tailored version (often called the Klainerman–Sobolev
inequality) which exploits the control of the weighted derivatives of φ.
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2.4. Symmetries of the l. Just as the Laplacian ∆ is intimately related to the Euclidean
space pRd, δq, the d’Alembertian l is associated with the scalar product gpv, wq of the form

gpv, wq “ ´v0w0
` v1w1

` ¨ ¨ ¨ vdwd,

This scalar product is called the Minkowski metric, and the pair pRd`1, gq is referred to as
the Minkowski spacetime. Introducing the matrix notation

gµν “ diagp´1,`1, . . . ,`1q,

we may write
l “ pg´1

q
µν
BµBν

where we implicitly sum over repeated indices. From this expression, it is clear that l is
invariant under the Lorentz transformations, i.e., affine transformations of Rd`1 that preserve
g.

The Lorentz transformations consist of the following:

‚ Translations. xµ ÞÑ xµ ` svµ.
‚ Rotations. Rotation in the px1, x2q plane is given by the matrix

¨

˚

˚

˝

1 0 0 0
0 cos θ ´ sin θ 0
0 sin θ cos θ 0
0 0 0 Id

˛

‹

‹

‚

.

‚ Lorentz boosts. Lorentz boost in the pt “ x0, x1q plane is given by the matrix
¨

˝

1?
1´v2

´v?
1´v2

0
´v?
1´v2

1?
1´v2

0

0 0 Id

˛

‚.

The infinitesimal generators of these symmetries are:

‚ Translations. Tµ “ Bµ
‚ Rotations. Ωjk “ xjBk ´ xkBj
‚ Lorentz boosts. Hj “ Ωj0 “ xjBt ` tBj

It can be verified that all these vector fields commute with l:

rl, Tµs “ 0, rl,Ωµνs “ 0.

Although it is not a symmetry of the Minkowski spacetime, the l is also invariant under
the scaling transformation xµ ÞÑ λxµ, whose infinitesimal generator is:

‚ Scaling. S “ xµBµ
In fact, we have

rl, Ss “ 2 l.

The commutator relations for these vector fields are as follows.

rTµ, Tνs “0,

rΩαβ, Tµs “gαµTβ ´ gβµTα,

rS, Tµs “ ´ Tµ,

rΩαβ,Ωµνs “gαµΩβν ´ gβµΩαν ` gβνΩαµ ´ gανΩβµ,

rΩαβ, Ss “0,
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We use the notation Γj to refer to vector fields with different homogeneities. More precisely,

Γ0 P tTµu, Γ1 P tΩjk, Hj, Su.

Schematically, one may summarize the commutation relations between these vector fields
as follows.

rΓ0,Γ0s “ 0, rΓ0,Γ1s “ Γ0, rΓ1,Γ1s “ Γ1.

We leave the derivation of these commutator formulae as an exercise.
Let Z :“ tTµ,Ωjk, Hj, Su. For Γ P Z, note that

lφ “ 0 ñ lpΓφq “ 0.

Finally, we introduce the following schematic notation: We write

|B
pkqφ|2 “

ÿ

α1,...,αkPt0,...,du

|Bα1 ¨ ¨ ¨ Bαkφ|
2, |B

pďkqφ|2 “
d
ÿ

j“0

|B
pjqφ|2,

|Γpkqφ|2 “
ÿ

Γ1,...,ΓkPZ
|Γ1 ¨ ¨ ¨Γkφ|

2, |Γpďkqφ|2 “
k
ÿ

j“0

|Γpjqφ|2.

Accordingly, we also write

|BΓpkqφ|2 “
ÿ

Γ1,...,ΓkPZ
|BΓ1 ¨ ¨ ¨Γkφ|

2, |BΓpďkqφ|2 “
k
ÿ

j“0

|BΓpjqφ|2.

2.5. Weights from Z. We now study the weights obtained by commuting with the vector
fields Z. In what follows, we restrict to the case t ą 0.

A general principle is that the control of vector field commuters in Z gives rise to control
of uB, where u “ t´ r. More precisely, we have the relation

(2.2) Bµ “ p´t
2
` |x|2q´1

pxνΩµν ` xµSq.

Note that, schematically,

r´t2 ` |x|2,Γ1s “ 0, rx,Γ1s “ x.

We therefore arrive at the following lemma.

Lemma 2.3. We have

uk|Bpkqφ| À |Γ
pďkq
1 φ|

where Γ1 P tΩ, H, Su.

Remark 2.4. Lemma 2.3 and the trivial observation that the rotation vector fields Ω are
invariant under scaling (which is closely related to the fact that Ω’s are essentially the weight
r times the normalized angular derivatives) suffice for the proof of the Klainerman–Sobolev
inequality below.
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2.6. Klainerman–Sobolev inequality.

Theorem 2.5. Let φ be a smooth function on R1`d. Then the following inequality holds for
t ě 0:

(2.3) p1` |v|q
d´1
2 p1` |u|q

1
2 |φpt, xq| À

td{2u`1
ÿ

k“0

}Γpkqφptq}L2pRdq.

To prove this theorem, we need the following two ingredients:

Lemma 2.6 (Localized Sobolev inequality). For any smooth function ψ on Rd and R ą 0,
the following inequality holds.

(2.4) Rd
|ψpxq|2 Àd

ÿ

0ďkďtd{2u`1

R2k

ż

BRpxq

|B
k
yψ|

2 dV,

Proof. Without loss of generality, we may set x “ 0. In the case R “ 1, this lemma follows
from the usual Sobolev inequality (Lemma 2.2) after a smooth cutoff. The general case
R ą 0 then follows by scaling. �

Lemma 2.7 (Localized Sobolev inequality in polar coordinates). Let ψ be a smooth function
on Rd pd ě 2q. Then for any x ‰ 0 and λ such that 0 ă λ ď r{2 (where r “ |x|), the following
inequality holds.

(2.5) λrd´1
|ψpxq|2 Àd

ÿ

0ďk``ďtd{2u`1

λ2k

ż

Aλprq

|B
k
rΩp`qx ψpyq|

2 dV

where Aλprq is the annulus ty P Rd : ||y| ´ r| ă λu.

Proof. By scaling, it suffices to consider the case r “ 1, in which case 0 ă λ ď 1
2
. We can

moreover restrict our attention to the angular sector ty : y1{|y| ě 1{10u, as we can cover the
whole annulus Aλp1q by a finite number (depending on d) of its rotated copies (Exercise:
Prove that the RHS remains equivalent under rotations).

The idea now is to flatten-out the angular directions. One concrete way to do it is simply
to take pr, y2, . . . , ydq as the coordinates. Because of the localization

r P p1´ λ, 1` λq Ď p1
2
, 3

2
q,

y1

|y|
ě

1

10

we can check, with concrete computation, that:

dV “ Jdr ^ dy2
^ ¨ ¨ ¨ ^ dyd, J » 1,

|B
pkq
r B

p`q
y1 ψ| Àk,` |B

k
rΩp`qψ|.

Then the proof of (2.5) is reduced to

λ|ψpxq|2 Àd
ÿ

0ďk``ďtd{2u`1

λ2k

ż

|y1´1|ăλ,|y1|ď1

|B
k
1B

`
y1ψpyq|

2 dy,

This follows from the usual Sobolev inequality by localizing to p1{2, 3{2q ˆ t|y1| ď 1u, and
scaling the first variable around 1. �
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Proof of Theorem 2.5. We divide into two cases.

Case 1: r ď t
2
. By Lemma 2.3, we have

uk|Bpkqφ| À |Γ
pďkq
1 φ|.

For the region where u ď 1, we also have the trivial schematic relation

|B
pkqφ| ď |Γ

pďkq
0 φ|.

Note furthermore that u » v » t in this region. Applying Lemma 2.6 to balls Bt{2p0q, we
obtain

p1` t
d
2 q|φpt, xq| À

td{2u`1
ÿ

k“0

}Γpkqφptq}L2pRdq,

which is sufficient.

Case 2: r ě t
4
. By Lemma 2.3, we have the schematic relation

uk|BkrΩp`qφ| À |Γ
pďk``q
1 φ|.

On the other hand, we also have the trivial schematic relation

|B
k
rΩp`qφ| À |Γ

pďkq
0 Γ

p`q
1 φ|.

Performing a dyadic decomposition in u and applying Lemma 2.7, we obtain the desired
statement. �

2.7. Uniform decay of the derivative of solutions.

Theorem 2.8. Let φ be a “nice” solution to lφ “ 0 on R1`d. Then for t ě 0, we have

p1` t` |x|q
d´1
2 p1` |u|q

1
2 |Bφpt, xq| ď C

td{2u`1
ÿ

k“0

}BΓpkqφp0, xq}L2
x

Sketch of the proof. We follow the following strategy:

Step 1: Commute lφ “ 0 with the vector fields Γ; note that lΓφ “ 0 as well.
Step 2: Apply the energy inequality to control }BΓpkqφ}L2 . In this process, we need:

Lemma 2.9. We have

|BΓpkqφ| ď C|ΓpďkqpBφq|, |ΓpkqBφ| “ C|BΓpďkqφ|

The proof is a straightforward application of the commutator identities.
Step 3: Apply the Klainerman–Sobolev inequality.

We leave the details to as an exercise. �

Remark 2.10. As discussed above, the following decay estimate for the wave equation with
a forcing term lφ “ f can be easily formulated and proved by the same strategy:

sup
pt,xqPr0,T sˆRd

|Bφpt, xq| À p1`|t|`|x|q´
d´1
2 p1`|u|q´

1
2

td{2u`1
ÿ

j“0

ˆ

}ΓpkqBφp0q}L2 `

ż T

0

}Γpkqfptq}L2 dt

˙

.
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Exercise 2.11. Consider the Schrödinger equation

iBtφ`∆φ “ 0.

Using the commuting operators
Lk “ xk ` i2tBk,

prove uniform t-decay of a “nice” solution φ with the sharp rate t´
d
2 . [Hint: To prove an

analogue of the Klainerman–Sobolev inequality, use the identity e´i
|x|2

4t Lke
i |x|

2

4t “ 2itBk.]

3. Lecture III: Wave packet approach

3.1. Phase space decomposition and the uncertainty principle. The two approaches
so far for the proof of the dispersive property proceeded either in the Fourier space (Lecture I)
or in the physical space (Lecture II). In this third and final lecture, we present the so-called
wave packet or phase space approach, which is a powerful philosophy that “bridges” the
Fourier and physical space approaches.

Before discussing the wave equation, let us discuss the more basic issue of expressing a
given function f on Rd in various ways. One way to express f is by its pointwise values in the
physical (or x-) space: Rd Q x ÞÑ fpxq. Alternatively, we can take the Fourier transform and

express f by its pointwise values in the Fourier (or ξ-) space: Rd Q ξ ÞÑ f̂pξq. Informally,
we may think of these two viewpoints as decomposing f into “basis elements” consisting
of, respectively, “delta distributions”1 tδx0ux0PRd , which are sharply localized in the physical
space, or plane waves teiξ0¨xuξ0PRd , which are sharply localized in the Fourier space. Each
viewpoint has its own strength; the operation of differentiation is best understood with
the Fourier-localized basis (since each plane wave eiξ0¨x diagonalize all partial differentiation
operators), but the operation of multiplication by another function is easier to understand
with the physical-space-localized basis.

The phase space viewpoint is an idea that attempts to take the best of both worlds, by
decomposing f into “basis elements” that are well-localized in both the physical and Fourier
spaces. However, a fundamental complication of this viewpoint is that there does not exist
a way to decompose functions into basis elements with arbitrarily good localization in both
the physical and Fourier spaces. The following celebrated result embodies this property:

Theorem 3.1 (Uncertainty principle). For any f P SpRq and x0, ξ0 P Rd, we have
ˆ
ż

|x´ x0|
2
|f |2 dx

˙ˆ
ż

|ξ ´ ξ0|
2
|f̂ |2

dξ

2π

˙

ě
1

4
}f}4L2 ,

Proof. By translation, modulation and normalization, we may assume that x0 “ ξ0 “ 0 and
}f}L2 “ 1. By Cauchy–Schwarz and Plancherel,

ˇ

ˇ

ˇ

ˇ

ż

RepxfBxfq dx

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

|x|2|f |2 dx

˙1{2 ˆż

|ξ|2|f̂ |2
dξ

2π

˙1{2

.

On the other hand,
ż

RepxfBxfq dx “
1

2

ż

Reprx, Bxsffq dx “ ´
1

2

ż

Reff dx “ ´
1

2
. �

1At this informal level, the reader may view the delta distribution δx0
as a “generalized function” that is

only supported at the point tx0u, but is somehow nontrivial (in particular, has “integral” 1). This discussion
may be made more precise with the help of measure theory, viewing δx0 as a measure with mass 1 supported
only at tx0u.
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Remark 3.2. Following the proof, it can be verified that the extremizers of the uncertainty
principle are the Gaussians.

Applying the uncertainty principle to each ξi-axis, we have the informal formulation:

∆xi ¨∆ξi Á 1.

Informally, functions which saturate the uncertainty principle are called wave packets, or
coherent waves.

As in Remark 3.2, the Gaussians are the precise extremizers of the uncertainty principle,
as formulated in Theorem 3.1. However, in applications it helps to take a more general
view, and consider any function which obey appropriate decay (or localization) properties in
both the physical and Fourier spaces. An archetypical example is given by fixing a Schwarz
function χ, and considering the functions given by rescalings, translations and modulations
(i.e., translation in the Fourier space) of χ to be wave packets. For a more precise formulation,
see Section 3.2 below.

Remark 3.3. It would be convenient if we can take χ be compactly supported in both the
physical and the Fourier space. However, there does not exist any nontrivial such function.
This is due to the Paley–Wiener theorem. For simplicity we sketch the case of R. If supp f̂ Ă
p´A,Aq, then

fpzq “

ż

f̂pξqeiz¨ξ
dξ

2π

is, in fact, an entire (analytic) function of z P C; such a function cannot be zero in an
interval.

3.2. Notation and conventions. We start by introducing some notation.

‚ Fourier multiplier. For any function fpξq on Rd, we define the corresponding Fourier
multiplier fpDq to be the operator

FpfpDqφqpξq “ fpξqφ̂pξq.

Correspondingly, we use the notation Dj “
1
i
Bj, which is the Fourier multiplier corre-

sponding to ξj. Fourier multipliers are flexible generalizations of constant coefficient
differential operators.

‚ Localization scales & orientation. We denote by ∆x (resp. ∆ξ) a rectangular box
of dimension ∆x1 ˆ ¨ ¨ ¨ ˆ ∆xd (resp. ∆ξ1 ˆ ¨ ¨ ¨ ˆ ∆ξd) in an orthonormal frame
pe1, . . . , edq in Rd

x (resp. θ1 ˆ ¨ ¨ ¨ ˆ θd in Rd
ξ “ pRd

xq
˚). The numbers p∆x1, . . . ,∆xdq

(resp. p∆ξ1, . . . ,∆ξdq) are called localization scales, and the frame pe1, . . . , edq (resp.
pθ1, . . . , θdq) is called the orientation of the rectangular box.

We say that ∆x and ∆ξ are dual if pe1, . . . , enq and pθ1, . . . , θdq are dual to each
other and ∆xi∆ξi “ 1.

Oftentimes, we will rotate the axes and work with ∆x, ∆ξ whose orientations
coincide with the usual coordinate axes.

‚ Let χ be a Schwartz function on Rd. Without loss of generality, we set:
∆x and ∆ξ are dual localization scales whose orientation coincides with the
usual coordinate axes.
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A normalized wave packet based on χ centered at px0, ξ0q P Rd
xˆRd

ξ with localization
scales p∆x,∆ξq is given by

φ∆x,∆ξ
x0,ξ0

pxq “
1

p∆x1 ¨ ¨ ¨∆xdq
1
2

eix¨ξ0χ

ˆ

x1 ´ x1
0

∆x1
, . . . ,

xd ´ xd0
∆xd

˙

Note that

φ̂∆x,∆ξ
x0,ξ0

“
1

p∆ξ1 ¨ ¨ ¨∆ξdq
1
2

e´ipξ´ξ0q¨x0χ̂

ˆ

ξ1 ´ pξ0q1

∆ξ1

, . . . ,
ξd ´ pξ0qd

∆ξd

˙

.

and that }φ∆x,∆ξ
x0,ξ0

}L2 “ }χ}L2 .

3.3. Evolution of a single wave packet. We would like to understand the evolution of a
single wave packet φ∆x,∆ξ

x0,ξ0
under the evolution

#

iBtφ˘ |D|φ “0,

φp0q “φ∆x,∆ξ
x0,ξ0

.

To simplify the notation, we write φx0,ξ0 “ φ∆x,∆ξ
x0,ξ0

. By scaling and rotational symmetries,

we may assume that 1
2
ă |ξ0| ă 2 and ξ0 “ ppξ0q1, 0, . . . , 0q. Without loss of generality, we

may also assume that t ą 0 and ˘ “ `.
Working in the Fourier space, we expand the symbol |ξ| around ξ “ ξ0:

|ξ| “
a

|ξ0 ` pξ ´ ξ0q|
2

“
ξ0

|ξ0|
¨ ξ ` rξ0pξ ´ ξ0q.

where rξ0pξ ´ ξ0q consist of quadratic of higher terms in ξ ´ ξ0. Thus, back in the physical
space,

Btφ`
ξ0

|ξ0|
¨ Bxφ “ irξ0pD ´ ξ0qφ.

Since φ̂pt, ¨q is expected to be localized near ξ0, we expect the RHS to be small. The linear
operator on the LHS is nothing but the transport operator with constant velocity ξ0

|ξ0|
; thus

we expect
φpt, xq “ φx0ptq,ξ0pxq ` error

where

x0ptq “ x0 ` t
ξ0

|ξ0|
.

To quickly read off the time scale ∆t on which such an approximation is valid, which will
be related with ∆ξ, we make one iteration and consider

$

&

%

ˆ

Bt `
ξ0

|ξ0|
¨ Bx

˙

e1 “irξ0pD ´ ξ0qφx0ptq,ξ0 ,

e1pt “ 0q “0

and solve this equation for 0 ď t ď ∆t. By the energy method (i.e., multiplying by e1 and
integrating by parts)

}e1ptq}L2 ď

ż t

0

}rξ0pD ´ ξ0qφx0pt1q,ξ0pt
1
q}L2 dt1.
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Taking the Fourier transform, observe that φ̂x0pt1q,ξ0pt
1q “ e

´i
ξ0
|ξ0|

t
φ̂x0,ξ0p0q. By the Plancherel

identity, we may estimate
ż t

0

}rξ0pD ´ ξ0qφx0pt1q,ξ0pt
1
q}L2

x
dt1 À

ż t

0

}rξ0pξ ´ ξ0qφ̂x0,ξ0}L2
ξ

dt1

À∆t}rξ0pξ ´ ξ0qφ̂x0,ξ0}L2
ξ

Since

rξ0pξ ´ ξ0q “ Hessξ0 |ξ|p∆ξ,∆ξq,

and the main term φx0,ξ0 is normalized in L2, we see that the error is small as long as

(3.1) Hessξ0 |ξ|p∆ξ,∆ξq∆t ! 1.

Since

Hessξ0 |ξ| “
1

|ξ0|

ˆ

0 0
0 Idpd´1qˆpd´1q

˙

,

we see that the optimal choice is

∆ξ “ p1, p∆tq´
1
2 , . . . p∆tq´

1
2 q.

Remark 3.4. The velocity

v “
ξ0

|ξ0|
“ Bξ|ξ|pξ0q

is called the group velocity corresponding to the dispersion relation τ “ |ξ| (here, τ is the
temporal frequency). As we have seen, it is the velocity of the wave packet centered at ξ0.
Note that Hessξ0 |ξ|∆ξ can be interpreted as the group velocity spread ∆v. Note that the
relation (3.1) can be rewritten as

∆v∆t “ ∆x,

which means that ∆t is not only the coherent time, but also the time when the nearby wave
packets, which may be initially overlapping, become essentially disjoint.

The heuristics concerning the coherence time ∆t can be made precise as follows.

Proposition 3.5 (Coherence). Let 1
2
ă |ξ0| ă 2 and ξ0 “ ppξ0q1, 0, . . . , 0q. Given ∆t ą 0,

take

∆ξ “ p1, p∆tq´
1
2 , . . . , p∆tq´

1
2 q

oriented with the usual coordinate axes, and let ∆x be the dual localization scale.
Let φ be a solution to

piBt ` |D|qφ “ 0.

Define

x0ptq “ x0 ` t
ξ0

|ξ0|
,

and

χpt, xq “ p∆x1
¨ ¨ ¨∆xdq

1
2 e´i

ř

j ∆xjxjpξ0qjφpt, x1
0ptq `∆x1x1, . . . , xd0ptq `∆xdxdq.

If χp0, xq obeys the Schwartz bounds

sup
xPRd

||x|nBpmqχp0, xq| ď Cn,m,
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then there exist positive constants tC̃n,mu depending on tCn,mu such that

sup
pt,xqPr0,∆tsˆRd

||x|nBpmqχpt, xq| ď C̃n,m for 0 ď t ď ∆t.

We defer the proof of Proposition 3.5 until Section 3.6.

Remark 3.6 (Connection with Knapp counterexample). In the constant-coefficient case, like
the wave equation we have been considering, there is a Fourier-analytic way to interpret and
construct a wave packet solution. In fact, the process is nothing but that of finding a Knapp
counterexample, which is well-known. Namely, recall the Fourier representation formula for
the (positive) half-wave equation:

φpt, xq “

ż

eipt|ξ|`x¨ξqφ̂p0, ξq dξ,

Recall further that a smooth cutoff φ̂p0, ξq to a suitable parallelepiped R in ξ corresponds
to the Fourier transform of a wave packet initial data (with physical space center x0 “ 0;

we may translate this around by multiplying φ̂p0, ξq by eiξ¨x0). Then looking for a solution
coherent for time ∆t boils down to looking for a parallelepiped R in ξ such that the phase
eipt|ξ|`x¨ξq is not oscillatory in the physical-space region r0,∆ts ˆ R1, where R1 is the dual
parallelepiped to R in the physical space (i.e., where φp0, xq is localized); outside this region,
the oscillation would take over and we would see decay. The choice of localization scale for
φ̂p0, ξq as in Proposition 3.5 leads to ∆t « 1; this is the standard Knapp counterexample for
the wave equation.

3.4. Wave packet decomposition. We now wish to understand the evolution of more
general initial data by decomposition of wave packets. As in Section 1.6, it suffices to
understand

(3.2) I1 “

ż

χ1pξqe
ipt|ξ|`x¨ξq dξ,

or equivalently, the solution to

(3.3)

#

iBtφ` |D|φ “0,

φp0q “F´1
pχ1qpxq.

Given ∆t ą 0, ∆ξ is determined by (3.1); note that ∆ξ depends on the center ξ0, in the

sense that it is the rectangle of dimension 1 ˆ p∆tq´
1
2 ˆ ¨ ¨ ¨ ˆ p∆tq´

1
2 oriented towards ξ0.

Consider uniformly separated covering of the annulus t1
2
ă |ξ| ă 2u by such rectangles R∆ξ

ξ0

(of which there are Opp∆tq
d´1
2 q many). Accordingly, in the Fourier space, we decompose

χ1pξq “
ÿ

χ∆ξ
ξ0
pξq

where each χ∆ξ
ξ0

is a smooth bump function essentially supported on the rectangle R∆ξ
ξ0

. Back

in the physical space, note that F´1χ∆ξ
ξ0

is essentially supported in the dual localization scale
∆x centered at x0 “ 0. Thus, we write

χ∆ξ
ξ0
pξq “ φ0,ξ0 .
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3.5. Wave packet proof of the dispersive inequality. Here, we give an alternative
proof of Theorem 1.3 using the wave packet method. As in the previous proof, it suffices to
consider the solution (3.3) and prove

sup
xPRd

|φpt, xq| À t´
d´1
2 t ą 0.

Fix t ą 0. We apply the wave packet decomposition as in Section 3.4 with ∆t “ t. In the
physical space, the wave packets are all centered at x0 “ 0. Geometrically, we may see that
at time t, the overlap among the wave packets is Op1q (see Remark 3.4). Therefore, the
maximum amplitude of φ at t is comparable to the amplitude of one wave packet, i.e.,

sup
x
|φpt, xq| À sup

ξ0

sup
x
|φ0,ξ0pt, xq| À sup

ξ0

sup
x
|φ0,ξ0pxq|.

According to the wave packet decomposition in Section 3.4, χ0 is split into p∆tq
d´1
2 many

pieces, corresponding to decomposition of the angular variables into caps of radius p∆tq´
1
2 .

Each piece has an (essentially) equal L2-norm N , supported on a Fourier-space region with
(essentially) equal volume V ; these numbers are determined by

p∆tq
d´1
2 N2

» 1, p∆tq
d´1
2 V » 1,

or equivalently, }φ0,ξ0}L2 » p∆tq´
d´1
4 and |supp φ̂0,ξ0 | » p∆tq

´ d´1
2 . It follows that

|φ0,ξ0 | ď

ż

|φ̂0,ξ0 |
dξ

p2πqd
ď |∆ξ1 ¨ ¨ ¨∆ξd|

1
2 }φ̂0,ξ0}L2

ξ
À t´

d´1
2 ,

as desired.

Remark 3.7. The strategy presented here is robust; it can be applied to the study of

1

i
Btφ` Aφ “ f

for a general partial differential (or pseudo-differential) operator A with variable coefficients.
See [H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential
operator, Comm. Pure. Appl. Math.].

3.6. Proof of coherence. Finally, we prove Proposition 3.5.

Step 1. We first treat the case ∆t “ 1, ∆ξ “ p1, . . . , 1q, ∆x “ p1, . . . , 1q, which is very
simple.

We need to understand the evolution under the equation

1

i
Btφ` |D|φ “ 0

of the initial data
φp0q “ φ∆x,∆ξ

x0,ξ0
.

As we have seen, for a wave packet localized near ξ “ ξ0, the leading order approximate
equation is

1

i

ˆ

Bt `
ξ0

|ξ0|
¨ Bx

˙

φ “ ¨ ¨ ¨

Consider the solution operator Sξ0rts for the approximate equation with zero RHS:

Sξ0rtsψpxq “ ψ

ˆ

x´
ξ0

|ξ0|
t

˙

.
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We write

φ “ Sξ0rtsψptq

Without difficulty, we may translate in space and rotate the axes so that

x0 “ 0, ξ0 “ ppξ0q1, 0, . . . , 0q,
1

2
ă |ξ0| ă 2.

The goal is to show that ψ remains well-localized at scales ∆x,∆ξ “ p1, . . . , 1q near p0, ξ0q

up until time ∆t “ 1.
Note that ψ̂ obeys the equation:

1

i
Btψ̂ ` rξ0pξ ´ ξ0qψ̂ “ 0, rξ0pηq :“ |ξ0 ` η| ´ |ξ0| ´

ξ0

|ξ0|
¨ η.

The ξ-localization of ψ therefore remains invariant. To determine the x-localization, we need
to commute with Bξj . However, since the symbol rξ0pηq in the range 1

2
ă |ξ0| ă 2 and |η| À 1

clearly obey the bound

|B
pnq
η rξ0pηq| Àn 1

it is not difficult to prove, by the energy method and an induction on the number of deriva-
tives, that

ÿ

0ďjďn

}B
pjq
ξ ψ̂ptq}L2

ξ
Àn

ÿ

0ďjďn

}B
pjq
ξ ψ̂p0q}L2

ξ
.

for 0 ď t ď 1. The desired statement then follows.

Step 2. Next, we upgrade the special case in Step 1 to the general case using the Lorentz
transformation and scaling.

Let φ, x0, ξ0 etc. be as in the statement of Proposition 3.5. Without loss of generality,
assume that ξ0 lies on the ξ1-axis, i.e., ξ0 “ ppξ0q1, 0, . . . , 0q. We apply the Lorentz transfor-
mation Lv in the pt, x1q-plane (where 0 ď v ď 1 will be determined below) and make the
change of variables

x “ Lvx̃ “

ˆ

t̃´ vx̃1

?
1´ v2

,
x̃1 ´ vt̃
?

1´ v2
, x2, . . . , xd

˙

,

so that the time interval 0 ď x0 ď ∆t is mapped to 0 ď x̃0 ď
?

1´ v2∆t, and the initial
localization scale ∆x is mapped to p 1?

1´v2
∆x1,∆x2, . . . ,∆xdq. Then we apply scaling

x̃ “ µ´1y

so that the time interval 0 ď x0 ď ∆t is mapped to 0 ď y0 ď
?

1´ v2µ∆t, and the initial
localization scale ∆x is mapped to p 1?

1´v2
µ∆x1, µ∆x2, . . . , µ∆xdq. Choosing

1
?

1´ v2
µ “ 1, µ “ p∆tq´1{2

ñ
?

1´ v2µ “ p∆tq´1,

the situation is reduced to that treated in Step 1.
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3.7. Optional: An alternative method for the proof of coherence. It is possible to
avoid the use of Lorentz boosts.

When ξ “ pξ1, 0, . . . , 0q, we know that the optimal localization scale is

∆ξ “ p1, p∆tq´
1
2 , . . . , p∆tq´

1
2 q,

and ∆x is dual to ∆ξ. However, due to the degeneracy in the radial (or ξ1-) direction, the
physical space localization is a bit tricky to propagate.

The problem is simplified if we instead work with the localization scale

∆ξ “ pp∆tq´
1
2 , p∆tq´

1
2 , . . . , p∆tq´

1
2 q.

If we work with wave packets with such a localization scale, then we get an overlap of
Opt1{2q wave packets at time t in the proof of the dispersive inequality, but that is exactly
compensated by the fact that each wave packet is smaller by a factor of Opt´1{2q.

Exercise 3.8. Give an alternative proof of the dispersive inequality for the fractional
Schrödinger equation with α ą 1 (see Exercise 1.4) using the wave packet approach.
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