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Abstract. The goal of this expository talk is to present a proof of the remarkable Nash(–
Kuiper) C1 embedding theorem, which states that the unit sphere S2 can be ’crumpled’ in
a C1 fashion into an arbitrarily small ball in R3. Note that such a statement is obviously
false if one replaces C1 by ’smooth’, by consideration of curvature! This theorem turned
out to be more than a mere curiosity; its proof foreshadowed an important technique called
’convex integration’, which found remarkable applications in a wide array of fields, such as
symplectic topology, calculus of variations and fluid dynamics.

1. Introduction

This talk will concern the following startling result:

Theorem 1.1 (Nash [8], Kuiper [6]). Let (M, g) be any 2-surface, N ≥ dimM + 1 and u :
M → RN an embedding which is strictly short, i.e., the length of every vector in M (strictly)
shrinks under ∇u. Then u can be uniformly approximated by C1 isometric embeddings.

An example of a short map is the homothety S2 → εS2 for any 0 < ε < 1. In particular,
this theorem tells us that there exist C1 isometric embedding of the standard sphere into a
ball of any radius Bε.

Remark 1.2. In fact, more strikingly, it is a classical result that any C2 isometric embedding
u : S2 ↪→ R3 must agree with the standard embedding S2 ↪→ {x ∈ R3 : |X| = 1} up to a
translation and a rotation.

This theorem is proved using an iteration scheme introduced by Nash, now often called
convex integration, which has found surprising applications in different contexts. Examples
include symplectic topology [4], calculus of variations [7], and incompressible Euler equations
[2, 3, 5].

The foremost goal of today’s talk is to explain in detail the proof of a simpler version
of Theorem 1.1 (namely Theorem 2.1); see Section 2. The outline of the proof follows
the excellent lecture notes [9] of Székelyhidi, except we try to motivate the steps of the
argument differently. Various extensions of this proof, including the proof of Theorem 1.1,
will be sketched in Section 3.

2. A model result

Let D = {x ∈ R2 : |x| < 1} be the unit 2-disk, and let g = gij(x) be a metric on D (i.e.,
for every x ∈ D, gij(x) is a positive definite matrix). Recall that a map u : D → Rn for is

This note is based on a talk the author gave at an undergraduate seminar at Sogang University in
Feb. 2018. The author thanks Will Kwon for the invitation, and for drawing the figures.
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an immersion if the linear map ∇u(x) (viewed as an n× 2 matrix) is injective for every x.
The metric on D induced by u takes the form

∇u>(x)∇u(x) =

(
∇1u · ∇1u ∇1u · ∇2u
∇2u · ∇1u ∇2u · ∇2u

)
.

When ∇u>∇u = g at every point x ∈ D, then the map u is isometric. The map u is short
[resp. strictly short] if

∇u>∇u− g ≤ 0 [resp. < 0]

at every point x ∈ D.
Our goal will be to give a (more-or-less) complete proof of the following result:

Theorem 2.1 (Baby Nash). Let n ≥ 4 (= 2 + 2) and u : D → Rn be a strictly short
immersion. The for any ε > 0, there exists a C1 isometric immersion ũ : D → Rn such that
‖u− ũ‖C0(D) < ε.

Remark 2.2. Note that Theorem 2.1 requires the ambient Euclidean space to have codimen-
sion at least 2; it is essentially the version proved by Nash [8]. Refinement to codimension
1, as stated in Theorem 1.1, is the contribution of Kuiper [6] (see Section 3.2).

We will achieve this by an iteration procedure, where each step consists of adding a highly
oscillating(!) correction to u, designed to make the deviation from being an isometry smaller.
To motivate this procedure, we start with some basic computation.

Let u1 = u+ U , where

U =
∑
I∈I

UI

where I runs over an index set I. We allow each component U j
I to be complex-valued, as we

would like them to oscillate like eix·ξ; in order to ensure that U is real, we require that for
every I ∈ I, there exists Ī ∈ I and

UĪ = U I ,
¯̄I = I.

The new metric error h1 = g −∇u>1∇u1 takes the form

h1 = (h−
∑
I

∇U>I ∇UI)︸ ︷︷ ︸
qmet

−
∑
I

(∇u>∇UI +∇U>I ∇u)︸ ︷︷ ︸
qlin

−
∑

I,J :J 6=Ī

∇U>I ∇UJ︸ ︷︷ ︸
qhigh

.

• General form of a correction. We will attempt to find a correction which oscillates in
a fixed, single direction ξ ∈ R2, |ξ| = 1. Let us take

UI = W =
1

λ
a(x)n(x)eλix·ξ ,

where a : D → R and n : D → Cn such that n · n = 1. To ensure reality, we also need to
add Ī ∈ I and define

UĪ = W =
1

λ
a(x)n̄(x)e−λix·ξ .
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• Eliminating the metric error qmet. Note the basic computation:

∇jW =iξja(x)n(x)eλix·ξ +
1

λ
∇j(a(x)n(x))eλix·ξ

=iξja(x)n(x)eλix·ξ +O(
1

λ
).

Therefore, we have

∇iW
∗(x)∇jW (x) =(−iξia(x)e−λix·ξ)(iξia(x)eλix·ξ)n̄(x) · n(x) +O(

1

λ
)

=a2(x)ξiξj +O(
1

λ
)

where (·)∗ = (·)
>

. Observe that in this interaction, high oscillation cancelled to give a
slowly-varying main term a2(x)ξiξj!

For simplicity, fix x ∈ D for a moment, and imagine that the metric error h were of the
form

h(x) = a2(x)ξ ⊗ ξ + b2(x)ξ′ ⊗ ξ′ + c2(x)ξ′′ ⊗ ξ′′.
Then the above will eliminate the ξ ⊗ ξ component of h! Repeating this construction for
ξ′ and ξ′′, one can imagine reducing h(x) to of size O(1/λ).

Remark 2.3. Observe that the short property of h is crucial, as ∇iW
∗(x)∇jW (x) gives rise

to a non-negative main term. As we will see soon below, in order to ensure that the new
metric error h1 is short, it is important to have some room and assume strict shortness of
h.

However, a problem with this argument is that the eigenvectors ξ would in general
depend on x. This problem can be fixed by the following lemma:

Lemma 2.4 (Decomposing the metric error). Let P be the space of all positive-definite
matrices. There exists a sequence ξ(k) of unit vectors in Rn and a sequence Γ(k) ∈
C∞c (P ; [0,∞)) such that

Aij =
∑
k

Γ2
(k)(A) ξ

(k)
i ξ

(k)
j ,

and the sum is locally finite, i.e., there exists N ∈ N such that for each A ∈ P, at most
N of Γ(k)(A) are non-zero.

The idea of the proof is to:
(1) Construct a locally finite covering of neighborhoods O ⊆ P , in each of which matrices

A ∈ O is the linear combination of ξ ⊗ ξ’s with positive coefficients;
(2) Construct global functions Γ2

(k) on P by a partition of unity argument.
We postpone the detailed proof until the end of this section, as it is not too much related
to the remainder of the argument
• Interlude. So far, observe that we have not specified our choice of the complex vector n.

Our goal is to show that by choosing n wisely, the error terms qlin and qhigh vanish up to
terms of order O(1/λ).
• Linearization error. We compute

∇iu
>∇jW = iξja(x)eix·ξ∇iu · n +O(

1

λ
)
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To cancel the first term, we are motivated to choose n(x) ⊥ ∇ju(x) = 0, or equivalently,

n(x) ⊥ Tu(x)u(D).

This property is not difficult to satisfy, since the immersion has co-dimension 1. A similar
computation applies to ∇iW

>∇ju, and we obtain

(2.1) ∇iu
>∇jW +∇iW

>∇ju = O(
1

λ
).

• High-high interference. In the present case, these are ∇W>∇W and ∇W>∇W .

∇iW
>∇jW = (−a2(x)ξiξje

2ix·ξ)n · n +O(
1

λ
)

Here the idea is to use the fact that (1) n is a complex-valued vector and (2) the immersion
has co-dimension ≥ 2, to cook up n such that

n(x) · n(x) = 0.

The following choice would work:

n(x) =
1

i
√

2
ζ(x) +

1√
2
η(x),

where η(x), ζ(x) are unit (real-)vectors which are normal to Tu(x)u(D).
• Final form of a correction. At the end, we arrive at the vector

(2.2) W (x) =
a(x)

λ

(
sin(λx · ξ)ζ(x) + cos(λx · ξ)η(x)

)
.

obeying the following properties:
(1) Small C0 norm

(2.3) ‖W‖C0 ≤ C
‖a‖C0

λ
,

(2) Main term in ∇W .

(2.4) ∇W = a(x)(cos(λx · ξ)ζ(x) + sin(λx · ξ)η(x)) +O‖a‖C0 ,‖∇a‖C0 ,‖∇ζ‖C0 ,‖∇η‖C0 (
1

λ
)

(3) Small metric error.

(2.5) ∇iW
>∇jW (x)− a2(x)ξiξj = O(

1

λ
).

(4) Small linearization error.

(2.6) ∇iu
>∇jW +∇iW

>∇ju = O(
1

λ
).

(5) Small high-high interference.

(2.7) ∇iW
>∇jW = O(

1

λ
).
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Remark 2.5. Here is another way of arriving at (2.2). For γ = (γ1, γ2) : D × T→ R2, where
T = R/2πZ, define

W (x) =
1

λ

(
γ1(x, λx · ξ)ζ(x) + γ2(x, λx · ξ)η(x)

)
.

Denote by γ̇ the derivative with respect to t. Then

∇W>(x)∇W (x) =
(
γ̇2

1(x, λx · ξ) + γ̇2
2(x, λx · ξ)

)
ξ ⊗ ξ +O(

1

λ
)

For each fixed x, we need to find γ(x, ·) such that

(1) γ̇2
1 + γ̇2

2 = a2,
(2) t 7→ γ̇(x, t) is 2π-periodic and

∫
γ̇ dt = 0.

Note that the latter condition is equivalent to t 7→ γ(x, t) is 2π-periodic. Note that γ̇ is
required to solve an inclusion with average zero. In particular, the origin must lie on the
convex hull of the circle of radius a; this is where the term convex integration originated.

x

y

O a

x2 + y2 = a2

Following the language of Nash ’54, adding a correction is called a step; as we have seen,
each step eliminates one component of h up to an error of size O(1/λ). Invoking Lemma 2.4
and iterating steps, we can reduce the C0(D) norm of the metric error; this is called a stage,
and forms a main ‘atom’ for iteration. The precise statement we need is as follows:

Lemma 2.6 (Stage: Main iteration lemma). Let u : D → Rn be a smooth strictly short
immersion, such that h := g −∇u>∇u obeys

‖h‖C0(D) ≤ eh

for some eh > 0. Then for any ε > 0, there exists a smooth strictly short immersion u[1] of
the form u[1] = u+ U , where

‖∇U‖C0(D) ≤ Ce
1/2
h ,(2.8)

‖U‖C0(D) ≤ ε,(2.9)

and h[1] := g −∇u>[1]∇u[1] obeys

(2.10) ‖h[1]‖C0(D) ≤ ε.

Proof. By Lemma 2.4, we have

h(x) =
∑
k

Γ2
(k)(h(x))ξ(k) ⊗ ξ(k).
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where for each h(x), there are at most K many summands which are nonzero.
By compactness of h(D) ⊆ P , there exist only finitely many summands which are nonva-

nishing functions. We re-enumerate these summands as

Γ2
(1)(h(x))ξ(1) ⊗ ξ(1), . . . ,Γ2

(N)(h(x))ξ(N) ⊗ ξ(N).

By taking the trace, we see that

‖Γ(j)(h)‖C0 ≤ ‖h‖1/2

C0 ≤ e
1/2
h .

We now add N corrections (i.e., N steps) of the form (2.2) to u, oscillating in the directions
ξ(1), . . . , ξ(N), to cancel these errors. More precisely, given a small parameter δ > 0 (to be
fixed soon), we recursively define uj = uj−1 + (1− δ)1/2Uj, where u0 = u and

Uj =
Γ(j)(h(x))

λj

(
sin(λjx · ξ(j))ζj(x) + cos(λjx · ξ(j))ηj(x)

)
.

Here, ζj, ηj are defined with respect to uj, and λj will also be chosen depending on uj.
The purpose of δ > 0 is to preserve strict shortness, so that we may iterate stages. We

fix 0 < δ < ε
2(1+eh)

so that h ≥ δI, which is possible since u is assumed to be strictly short.

Later, we will verify that h[1] ≥ 1
2
δ2I.

Recall the estimates (2.3)–(2.7). For any fixed ε > 0, by choosing λj sufficiently large
depending1 on uj−1, eh and ε > 0, we may ensure that

‖Uj‖C0 � ε,(2.11)

∇Uj = Γ(j)(h)(cos(λjx · ξ(j))ζ − sin(λjx · ξ(j))η) + errj, ‖errj‖C0 � ε,(2.12)

hj = hj−1 − (1− δ)Γ2
(k)(h)ξ(j)ξ(j) + err′j, ‖err′j‖C0 � δ2.(2.13)

where hj = g −∇u>j ∇uj. The implicit constants in � may be chosen depending on N .
To conclude the proof, we now verify that U = U1 + · · ·+UN and u[1] = uN = u+U obey

the desired conclusions. Summing up (2.11), we clearly have (2.9). To obtain (2.8) with a
constant C independent of N , we recall from Lemma 2.4 that for each x, there are at most
finitely many (say K) terms Γ(j)(h(x)) which are nonzero. It follows that

|∇U(x)| ≤ Ke
1/2
h +

N∑
j=1

‖errj‖C0 ≤ 2Ke
1/2
h ,

if the small implicit constants are chosen appropriately. Finally, summing up (2.13), we see
that

hN = h− (1− δ)
∑
j

Γ2
(k)(h)ξ(j)ξ(j) +

N∑
j=1

err′j = δh+
N∑
j=1

err′j.

Fixing the small implicit constants appropriately, we may ensure that u[1] = uN is still
strictly short, i.e., h[1] = hN ≥ 1

2
δ2I as desired, whereas (2.10) also hold. �

We are now ready to iterate stages (Lemma 2.4) to conclude the proof of Theorem 2.1.

1In addition to ‖uj−1‖C1 , whose size is kept in track in the iteration, we note that the choice of λj depends
on the higher order norm ‖uj−1‖C2 , in order to control ∇ζj and ∇ηj . While this is not an issue for the
present construction, this ‘loss of derivative’ necessitates a careful smoothing procedure if one is interested
in the constructing a Hölder regular isometric immersion.
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Proof of Theorem 2.1 using Lemma 2.6. Let eh,[k] > 0 be a sequence such that∑
k

eh,[k] ≤ ε,
∑
k

e
1/2
h,[k] <∞.

By Lemma 2.6, we obtain a sequence of smooth, strictly short maps u[k] such that u[0] = u
and

‖g −∇u>[k]∇u[k]‖C0 ≤eh,[k]

‖∇u[k+1] −∇u[k]‖C0 ≤Ce1/2
h,[k]

‖u[k+1] − u[k]‖C0 ≤eh,[k+1],

from which the theorem is obvious. �

Appendix: Proof of Lemma 2.4. We proceed in two steps, following the ideas outlined
earlier.

• Note that P is a convex open subset of Rn×n
sym , which is a vector space of dimension N =

n(n+1)
2

. Recall Carathèodory’s theorem:
Any point x in the convex hull of K ⊆ RN may be written as the convex combi-
nation of a subset K ′ ⊆ K consisting of at most N + 1 many points.

Using this theorem, we may easily construct a locally finite covering of P by neighborhoods
Oi, each which is the convex hull of an (N + 1)-point set {Ai,1, . . . , Ai,N+1}. Since each
Ai,j is symmetric and positive-definite, it admits a decomposition of the form Ai,j =∑n

k=1 c
2
i,j,kξi,j,k⊗ ξi,j,k. It follows that every element A ∈ Oi admits a decomposition of the

form

A =
∑
j,k

d2
j,kξi,j,k ⊗ ξi,j,k

where dj,k can be chosen to depend smoothly on A ∈ Oi.
• To find global functions Γk(A), consider a quadratic partition of unity ψi subordinate to
{Oi} (i.e.,

∑
ψ2
i = 1). Applying the above decomposition for each ψiA, we see that

A =
∑
i,j,k

(ψi(A)dj,k(A))2ξi,j,k ⊗ ξi,j,k,

which is the desired decomposition (note that the i-sum is locally finite, where as the
j, k-sums are finite).

3. Extensions

Finally, we sketch some extensions of Theorem 2.1.

3.1. Extension to embedding of manifolds. It is not difficult to extend Theorem 2.1 in
the following ways.
To immersions from a general surface: Reduce to coordinate patches by a partition of unity.
From immersions to embeddings: Since M is compact, we can find ε > 0 such that

inf
x,y

dist(u(x), u(y)) ≥ ε.

Now perform the construction within a 1
100
ε neighborhood.
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3.2. Kuiper’s refinement: Codimension 1 embedding. By modifying the form of the
correction, we can achieve the same construction in the codimension 1 setting. Let η : D →
R3 be the unit normal vector field on u(D), and let

ζ = ∇u(∇u>∇u)−1ξ.

Take

U =
1

λ

(
γ1(x, λx · ξ)ζ̃(x) + γ2(x, λx · ξ)η̃(x)

)
where

ζ̃ =
ζ

|ζ|2
, η̃ =

η

|ζ|
.

and let u1 = u+ U . This leads to

∇u>1∇u1 = ∇u>∇u+
1

|ζ|2
(2γ̇1 + γ̇2

1 + γ̇2
2)ξ ⊗ ξ +O(

1

λ
)

Hence for each x and a = a(x) ∈ R, we now need γ to obey

(1) (1 + γ̇1)2 + γ̇2
2 = |ζ|2a2 + 1,

(2) t 7→ γ̇(x, t) is 2π-periodic and
∫
γ̇ dt = 0.

and such that |γ̇| ≤ C|a|. This is possible since the convex hull of {(x, y) : (1 + x)2 + y2 =
|ζ|2a2 + 1} contains 0 (Exercise: Construct such γ̇!). This feature in the design of the
correction is one of the reasons why Nash’s technique became known as convex integration.

(−1, 0)
x

y

O

(1 + x)2 + y2 = |ζ|2a2 + 1

3.3. Hölder continuous embeddings. Finally, for refinement of the convex integration
techniques to produce a Hölder C1,α-continous immersion, see [1].
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