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Back to the main questions

Price’s law: Prediction for the generic late-time tail for □gSchϕ = 0.

Question 1: Going beyond Price’s law

What happens to Price’s law if we change the setting?

To summarize what we have seen:

• Price’s law generalizes to linear stationary equations, but there

might be (possibly many orders of) cancellations, leading to

anomalously fast decay.

• For nonlinear and/or dynamical (i.e., nonstationary) perturbations of

the equation, slower decay rates may emerge.

We will now state the Main Theorem, which rigorously answers:

Question 2: Determination of late-time asymptotics

Given a general (nonlinear) wave equation in odd space dimension, how

are the late-time asymptotics determined?
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Main theorem



Main Theorem, executive summary

Main Theorem (Luk–O., 2024) in one sentence

There is an algorithm to determine the late time asymptotics of generic

solutions to (possibly nonlinear) wave equations.

• Main Theorem reduces the PDE problem to (recurrence relations

consisting of) ODEs.

• Main Theorem always gives an late-time tail upper bound t−(d−1)

(cf. d ≥ 2 even)

• Linearity + stationary always give cancellations in the ODE

⇝ Price’s law!

Moreover, anomalous cancellations in ODEs could give faster decay.

• However, these cancellations in ODEs are highly unstable with

respect to nonlinear and/or dynamical (i.e., nonstationary)

perturbations of the equation.
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Main Theorem

Consider M = Rd \ K (possibly K = ∅) equipped with (τ, r , θ), where

τ = t in {r < 2R} and τ = t − r + C in {r > R}.

Main Theorem (Luk–O. (2024), simplified & summarized)

Consider the wave equation Pϕ = N (ϕ, ∂ϕ, ∂2ϕ) in (d +1) dimensions,

d ≥ 3 odd. Assume:

1. P = (g−1)µν∂2
µν + Bµ∂µ + V is asymptotically flat (towards

r → ∞), ultimately stationary (towards τ → ∞);

2. “null condition” holds for N when d = 3,

3. (∞)P0 (ultimate stationary operator (∞)P with ∂t dropped) is

invertible with suitable estimates,

4. ϕ has C∞
c data and the solution obeys vector field bounds

ϕ = OM
Γ (τ−α0+

d−1
2 (r + τ)−

d−1
2 ) for α0 ∈ R; if N ̸= 0, α0 > C (N ).

(continued on the next slide)

4



Main Theorem (Luk–O. (2024), simplified & summarized)

Then in {r ≲ τ 1−},

ϕ(t, r , θ) = cd,J(S(0)L)η(r , θ)τ−J− d−1
2 + O(t−J− d−1

2 −δ),

where S(ℓ) is projection to the ℓ-th spherical harmonics; S(0) is the
spherical average. For the key objects J, L and η:

• Start with expansion r
d−1
2 ϕ = Φ̊0 + r−1Φ̊1 + r−2Φ̊2 . . . , which obey

recurrence ODE relations. ⇝ Φ̊j = Φ̊j [Φ̊0].

• Correction rule: limu→∞ S(ℓ)Φ̊j(u, θ) = 0 if j ≤ d−3
2 + ℓ.

• Let J be the smallest integer such that

L := lim
u→∞

Φ̊J(u, θ) ̸= 0.

• The spatial profile η solves (∞)P0η = 0 with suitable boundary

condition at spatial infinity (i.e., η → 1 as |x | → +∞).
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Remark 1: On assumptions

Assumptions for Main Theorem

3. (∞)P0 (ultimate stationary operator (∞)P with ∂t dropped) is

invertible with suitable estimates,

4. ϕ has C∞
c data and the solution obeys some (weak) decay estimates.

• We allow for quasilinear nonlinearity, but Condition 2 leaves out

weak null condition (e.g., □ϕ+ ϕ∆ϕ = 0). In this case, a different

picture arises [Luk–O.–Yu, forthcoming]!

• Condition 3 ⇔ “no eigenvalue or resonance at zero energy.”

• Well-known obstructions to local decay, such as trapping,

superradiance, discrete spectrum etc., would enter in the proof of

the weak (vector field) decay estimate – more precisely, in the proof

of ILED. However, they need not be considered in our result, which

is conditional on the weak decay estimate.
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Remark 2: Analysis of higher radiation fields

Recurrence ODE relations for Φ̊j : If □ϕ = f = r−1− d−1
2 (r−1F̊1 + · · · ),

∂uΦ̊j = − 1
2j

(
(j − 1)j − (d−1)(d−3)

4 + /̊∆
)
Φ̊j−1 +

1
2j F̊j .

Projecting to ℓ-th spherical harmonics,

∂uS(ℓ)Φ̊j = − 1
2j

(
j − d−1

2 − ℓ
) (

j + d−1
2 + ℓ− 1

)
S(ℓ)Φ̊j−1 +

1
2j S(ℓ)F̊j .

The recurrence equations are problem specific (through F̊j).

An important observation: some part can be prescribed! For instance,

in d = 3, given any χ(u) ∈ C∞
c , one can perturb S(0)Φ̊0(u)

approximately by ϵχ(u). This is why we can ensure

L := limu→∞ Φ̊J(u, θ) ̸= 0 generically without knowing the Friedlander

radiation field Φ̊0 (cf. Luk–O. (2019)).
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Remark 3: Strong Huygens principle & the Correction Rule

If □ϕ = f = r−1− d−1
2 (r−1F̊1 + · · · ),

∂uS(ℓ)Φ̊j = − 1
2j

(
j − d−1

2 − ℓ
) (

j + d−1
2 + ℓ− 1

)
S(ℓ)Φ̊j−1 +

1
2j S(ℓ)F̊j .

Correction rule: limu→∞ S(ℓ)Φ̊j(u, θ) = 0 if j ≤ d−3
2 + ℓ.

In particular, limu→∞ Φ̊j(u, θ) = 0 for j = 0, . . . , d−3
2

⇝ J ≥ d−1
2 , or J + d−1

2 ≥ d − 1 (at least as fast as d ≥ 2 even).

Since d is odd, there is cancellation j − d−1
2 − ℓ = 0 if j = d−1

2 + ℓ.

In particular, if f = 0 (i.e., □ϕ = 0), then S(ℓ)Φ̊j ≡ 0 for j ≥ d−1
2 + ℓ

from NPC (and since ϕ has C∞
c data). With Correction Rule, J = +∞

⇝ Strong Huygens Principle!

Clearly, the argument leading to J = +∞ is very unstable, and is

generically broken if S(ℓ)F̊j is nontrivial.
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Generalization of Price’s law, linear stationary case

Stationary tails such as Price’s law can be interpreted as an improved

decay statement originating from further cancellations in the ODE. In

general:

Theorem (Luk-O. (2024)).

For a solution ϕ to a linear stationary problem Pϕ = 0 satisfying the

assumptions of the Main Theorem,

|ϕ|(t, x) ≤ Ct−d .

This result is deeply related to some conserved quantities known as

Newman–Penrose constants (cf. Angelopoulos–Aretakis–Gajic).

We have already seen an example of linear stationary problem where the

rate is even faster (higher dimensional Schwarzschild).

However, these cancellations are very unstable; they are easily destroyed

by nonlinear and/or nonstationary perturbations of the equation. 9



Generalization of Price’s law, nonlinear case

The rate t−(d−1) is, however, very stable – this observation forms the

basis of our generalization of Price’s law.

Conjecture

Generic solutions to the Einstein vacuum equations which converge to

an asymptotically flat stationary solution (e.g., Kerr) decay with an

exact rate of t−6.

Price’s law predicts t−7 for linearized gravity around Schwarzschild; see

Ma–Zhang (2021) and Millet (2023) for proofs. Both predictions are

based on the idea that dynamic gravitational perturbations are supported

in spherical modes ℓ ≥ 2.

We make an analogous conjecture for Maxwell with t−4 decay (Price’s

law predicts t−5; see Ma–Zhang (2021), Millet (2023)). This is

consistent with the general upper bound proved by Metcalfe–Tataru–

Tohaneanu (2017).
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Remark 4: Conditions on Φ̊0 from rapidly decaying data

The correction rules

(Cj) lim
u→∞

S(≥j− d−3
2 )Φ̊j(u, θ) = 0

for j = 0, 1, . . . gives necessary conditions for Φ̊0 (via recurrence ODE

relations) arising from ϕ ∈ C∞
c . More generally, data with decay

(⟨r⟩∂)Iϕ = o(r−J0) gives (Cj) with j = 0, . . . , J0.

An interesting question is the converse, i.e., scattering theory:

if Φ̊0 satisfies the correction rule (and Φ̊0 vanishes rapidly as u → −∞),

does there exist a solution ϕ with (spatially) rapidly decaying data?

• For □ϕ = r−3F̊ (u, θ) + · · · with d = 3, the necessary condition

S(≥1)Φ̊1 → 0 becomes∫
( /̊∆Φ̊0 − S(≥1)F̊ )(u, θ)du = 0,

which was derived and imposed by Lindblad–Schlue (2023) in the

study of scattering theory.
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Analysis of a model case



Example: (□− V )ϕ = 0, V = ϵ
r3

for r ≫ 1

Consider the problem Pϕ := (□R1+d + V )ϕ = 0.

For P, we need two facts:

• W.r.t. (u := t − r , r , θ) in {r > R0} = Mmed ∪Mwave ,

Pϕ = □R1+dϕ+ P remϕ, P remϕ := −ϵr−3ϕ

• Define τ to agree with u in {r > R0}, and τ = t near {x = 0}. On
Στ = {τ = const},

(∞)P0 is invertible (between some weighted Sobolev spaces on Στ )

Recall: In this example, (∞)P0 = −∆+ V .

Remark: On the Schwarzschild black hole, (∞)P0 is only degenerate

elliptic (∵ H+), but such a statement still follows, for instance, from

ILED for “ω = 0”.
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Analysis of higher radiation fields, for

(□R1+d − V )ϕ = 0, V = ϵ
r3 for r ≫ 1
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Example 1: r−3-potential in R1+3

Consider

(□− V )ϕ in R1+3, V =
ϵ

r3
for r ≫ 1,

as above.

Assume, for simplicity, ϕ = S(0)ϕ (radial).

• When d = 3, Φ̊0 → 0; Φ̊0 can be prescribed.

• Recurrence ODE relations: From QΦ = ϵr−3Φ,

− 2∂u∂r
(
Φ̊0 + r−1Φ̊1 + r−2Φ̊2 + · · ·

)
+ ∂2

r

(
Φ̊0 + r−1Φ̊1 + · · ·

)
− ϵr−3

(
Φ̊0 + r−1Φ̊1 + · · ·

)
= 0,

we obtain

2∂uΦ̊1 = 0, 4∂uΦ̊2 + 2Φ̊1 − ϵΦ̊0 = 0,

or equivalently,

∂uΦ̊1 = 0, ∂uΦ̊2 = −1

2
Φ̊1 + ϵΦ̊0.
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(□− V )ϕ in R1+3, V =
ϵ

r3
for r ≫ 1,

Assume: ϵ is constant.

• When d = 3, Φ̊0 → 0; S(0)Φ̊0 can be prescribed.

• Recurrence ODE relations:

∂uΦ̊1 = 0, ∂uΦ̊2 = −1

2
Φ̊1 +

ϵ

4
Φ̊0.

• ∂uΦ̊1 = 0 =⇒ Φ̊1 ≡ 0. (Φ̊1 is the Newman–Penrose constant; we

call ∂uΦ̊1 = 0 Newman–Penrose cancellation)

• ∂uΦ̊2 = − 1
2 Φ̊1 + ϵΦ̊0 = ϵΦ̊0. In general Φ̊2 ̸→ 0 (since Φ̊0 can be

prescribed).

• Hence, the main contribution far-away comes from Φ̊2, which gives a

late time tail ϕ ∼ τ−3 on compact r region.
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Example 2: stationary r−3-potential in R1+5

(Red: deviation from d = 3) Consider

(□− V )ϕ in R1+5, V =
ϵ

r3
for r ≫ 1,

as above. Assume: ϵ is constant, ϕ = S(0)ϕ.

• When d = 5, Φ̊0, Φ̊1 → 0; Φ̊1 can be prescribed .

• Recurrence ODE relations: From QΦ = ϵr−3Φ,

− 2∂u∂r
(
Φ̊0 + r−1Φ̊1 + r−2Φ̊2 + r−3Φ̊3 + r−4Φ̊4 + · · ·

)
+ ∂2

r

(
Φ̊0 + r−1Φ̊1 + r−2Φ̊2 + r−3Φ̊3 + · · ·

)
− 2r−2

(
Φ̊0 + r−1Φ̊1 + r−2Φ̊2 + r−3Φ̊3 + · · ·

)
− ϵr−3

(
Φ̊0 + r−1Φ̊1 + r−2Φ̊2 + · · ·

)
= 0,

implies

2∂uΦ̊1 − 2Φ̊0 = 0, 4∂uΦ̊2 + 2Φ̊1 − 2Φ̊1 − ϵΦ̊0 = 0,

6∂uΦ̊3 + 6Φ̊2 − 2Φ̊2 − ϵΦ̊1 = 0, 8∂uΦ̊4 + 12Φ̊3 − 2Φ̊3 − ϵΦ̊2 = 0. 15



(□− V )ϕ in R1+5, V =
ϵ

r3
for r ≫ 1,

as above. Assume: ϵ is constant, ϕ = S(0)ϕ.

• When d = 5, Φ̊0, Φ̊1 → 0; Φ̊1 can be prescribed.

• Recurrence ODE relations:

∂uΦ̊1 = Φ̊0, ∂uΦ̊2 = 0 · Φ̊1 +
ϵ

4
Φ̊0,

∂uΦ̊3 = −2

3
Φ̊2 +

ϵ

6
Φ̊1, ∂uΦ̊4 = −5

4
Φ̊3 +

ϵ

8
Φ̊2.

• ∂u

(
Φ̊2 − ϵ

4 Φ̊1

)
= 0 =⇒ Φ̊2 =

ϵ
4 Φ̊1 → 0! (Φ̊2 − ϵ

4 Φ̊1 is the

Newman–Penrose constant; a similar conservation law holds for any

linear stationary problem (generalized Price’s law))

• ∂uΦ̊3 = − 2
3 Φ̊2 +

ϵ
6 Φ̊1 = − ϵ

6 Φ̊1 +
ϵ
6 Φ̊1 = 0!! =⇒ Φ̊3 = 0

(anomalous cancellation).

• ∂uΦ̊4 = − 5
4 Φ̊3 +

ϵ
8 Φ̊2 =

ϵ2

32 Φ̊1. In general Φ̊4 ̸→ 0 (since Φ̊1 can be

prescribed).

• Hence, the main contribution far-away comes from Φ̊4, which gives a

late time tail ϕ ∼ τ−6 on compact r region. 16



Example 3: dynamic r−3-potential in R1+5

Consider

(□− V )ϕ in R1+5, V =
ϵ(u)

r3
for r ≫ 1,

as above. Assume: ϵ = ϵ(u), ϕ = S(0)ϕ.

• When d = 5, Φ̊0, Φ̊1 → 0; Φ̊1 can be prescribed.

• Recurrence ODE relations:

∂uΦ̊1 = Φ̊0, ∂uΦ̊2 =
ϵ

4
Φ̊0,

∂uΦ̊3 = −2

3
Φ̊2 +

ϵ

6
Φ̊1, ∂uΦ̊4 = −5

4
Φ̊3 +

ϵ

8
Φ̊2.

• ∂u

(
Φ̊2 − ϵ

4 Φ̊1

)
= −∂uϵ

4 Φ̊1. In general Φ̊2 ̸→ 0 (since Φ̊1 can be

prescribed).

• Hence, the main contribution far-away comes from Φ̊2, which gives a

slower late time tail ϕ ∼ τ−4 on compact r region.
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Thank you for your attention!
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