Late Time Tail of Waves on Dynamic Asymptotically Flat Spacetimes, Part II

Sung-Jin Oh (UC Berkeley), based on joint work with Jonathan Luk (Stanford)

January 14th, 2025 Seoul National University Main theorem

Analysis of a model case

Analysis of higher radiation fields

Back to the main questions

Price's law: Prediction for the generic late-time tail for $\Box_{\mathbf{g}_{Sch}}\phi = 0$.

Question 1: Going beyond Price's law

What happens to Price's law if we change the setting?

To summarize what we have seen:

- Price's law generalizes to linear stationary equations, but there might be (possibly many orders of) cancellations, leading to anomalously fast decay.
- For *nonlinear* and/or *dynamical* (i.e., nonstationary) perturbations of the equation, slower decay rates may emerge.

We will now state the Main Theorem, which rigorously answers:

Question 2: Determination of late-time asymptotics

Given a general (nonlinear) wave equation in odd space dimension, how are the late-time asymptotics determined?

Main theorem

Main Theorem, executive summary

Main Theorem (Luk-O., 2024) in one sentence

There is an algorithm to determine the late time asymptotics of generic solutions to (possibly nonlinear) wave equations.

- Main Theorem reduces the PDE problem to (recurrence relations consisting of) ODEs.
- Main Theorem always gives an late-time tail upper bound t^{-(d-1)} (cf. d ≥ 2 even)
- Linearity + stationary always give cancellations in the ODE
 → Price's law!

Moreover, anomalous cancellations in ODEs could give faster decay.

 However, these cancellations in ODEs are highly unstable with respect to *nonlinear* and/or *dynamical* (i.e., *nonstationary*) perturbations of the equation.

Main Theorem

Consider $\mathcal{M} = \mathbb{R}^d \setminus \mathcal{K}$ (possibly $\mathcal{K} = \emptyset$) equipped with (τ, r, θ) , where $\tau = t$ in $\{r < 2R\}$ and $\tau = t - r + C$ in $\{r > R\}$.

Main Theorem (Luk–O. (2024), simplified & summarized) Consider the wave equation $\mathcal{P}\phi = \mathcal{N}(\phi, \partial\phi, \partial^2\phi)$ in (d+1) dimensions, $d \geq 3$ odd. Assume:

- 1. $\mathcal{P} = (\mathbf{g}^{-1})^{\mu\nu}\partial^2_{\mu\nu} + B^{\mu}\partial_{\mu} + V$ is asymptotically flat (towards $r \to \infty$), ultimately stationary (towards $\tau \to \infty$);
- 2. "null condition" holds for \mathcal{N} when d = 3,
- 3. ${}^{(\infty)}\mathcal{P}_0$ (ultimate stationary operator ${}^{(\infty)}\mathcal{P}$ with ∂_t dropped) is invertible with suitable estimates,
- 4. ϕ has C_c^{∞} data and the solution obeys vector field bounds $\phi = O_{\Gamma}^{\mathcal{M}}(\tau^{-\alpha_0 + \frac{d-1}{2}}(r+\tau)^{-\frac{d-1}{2}})$ for $\alpha_0 \in \mathbb{R}$; if $\mathcal{N} \neq 0$, $\alpha_0 > C(\mathcal{N})$.

(continued on the next slide)

Main Theorem (Luk–O. (2024), simplified & summarized) Then in $\{r \leq \tau^{1-}\}$,

$$\phi(t,r,\theta) = c_{d,J}(\mathbb{S}_{(0)}\mathfrak{L})\eta(r,\theta)\tau^{-J-\frac{d-1}{2}} + O(t^{-J-\frac{d-1}{2}-\delta}),$$

where $\mathbb{S}_{(\ell)}$ is projection to the ℓ -th spherical harmonics; $\mathbb{S}_{(0)}$ is the spherical average. For the key objects J, \mathfrak{L} and η :

- Start with expansion $r^{\frac{d-1}{2}}\phi = \mathring{\Phi}_0 + r^{-1}\mathring{\Phi}_1 + r^{-2}\mathring{\Phi}_2...$, which obey recurrence ODE relations. $\rightsquigarrow \mathring{\Phi}_j = \mathring{\Phi}_j[\mathring{\Phi}_0]$.
- Correction rule: $\lim_{u\to\infty} \mathbb{S}_{(\ell)} \dot{\Phi}_j(u,\theta) = 0$ if $j \leq \frac{d-3}{2} + \ell$.
- Let J be the smallest integer such that

$$\mathfrak{L}:=\lim_{u\to\infty} \mathring{\Phi}_J(u,\theta)\neq 0.$$

• The spatial profile η solves $(\infty)\mathcal{P}_0\eta = 0$ with suitable boundary condition at spatial infinity (i.e., $\eta \to 1$ as $|x| \to +\infty$).

Assumptions for Main Theorem

- 3. ${}^{(\infty)}\mathcal{P}_0$ (ultimate stationary operator ${}^{(\infty)}\mathcal{P}$ with ∂_t dropped) is invertible with suitable estimates,
- 4. ϕ has C_c^{∞} data and the solution obeys some (weak) decay estimates.
 - We allow for quasilinear nonlinearity, but Condition 2 leaves out weak null condition (e.g., □φ + φΔφ = 0). In this case, a different picture arises [Luk-O.-Yu, forthcoming]!
 - Condition 3 \Leftrightarrow "no eigenvalue or resonance at zero energy."
 - Well-known obstructions to local decay, such as trapping, superradiance, discrete spectrum etc., would enter in the proof of the weak (vector field) decay estimate – more precisely, in the proof of ILED. However, they need *not* be considered in our result, which is conditional on the weak decay estimate.

Remark 2: Analysis of higher radiation fields

Recurrence ODE relations for $\mathring{\Phi}_j$: If $\Box \phi = f = r^{-1 - \frac{d-1}{2}} (r^{-1} \mathring{F}_1 + \cdots),$

$$\partial_{u} \mathring{\Phi}_{j} = -\frac{1}{2j} \left((j-1)j - \frac{(d-1)(d-3)}{4} + \mathring{\Delta} \right) \mathring{\Phi}_{j-1} + \frac{1}{2j} \mathring{F}_{j}.$$

Projecting to ℓ -th spherical harmonics,

$$\partial_{\boldsymbol{u}} \mathbb{S}_{(\ell)} \mathring{\Phi}_{j} = -\frac{1}{2j} \left(j - \frac{d-1}{2} - \ell \right) \left(j + \frac{d-1}{2} + \ell - 1 \right) \mathbb{S}_{(\ell)} \mathring{\Phi}_{j-1} + \frac{1}{2j} \mathbb{S}_{(\ell)} \mathring{F}_{j}.$$

The recurrence equations are problem specific (through \check{F}_j).

An important observation: some part can be prescribed! For instance, in d = 3, given any $\chi(u) \in C_c^{\infty}$, one can perturb $\mathbb{S}_{(0)} \mathring{\Phi}_0(u)$ approximately by $\epsilon \chi(u)$. This is why we can ensure $\mathfrak{L} := \lim_{u \to \infty} \mathring{\Phi}_J(u, \theta) \neq 0$ generically without knowing the Friedlander radiation field $\mathring{\Phi}_0$ (cf. Luk–O. (2019)).

Remark 3: Strong Huygens principle & the Correction Rule

If
$$\Box \phi = f = r^{-1 - \frac{d-1}{2}} (r^{-1} \mathring{F}_1 + \cdots),$$

 $\partial_u \mathbb{S}_{(\ell)} \mathring{\Phi}_j = -\frac{1}{2j} \left(j - \frac{d-1}{2} - \ell \right) \left(j + \frac{d-1}{2} + \ell - 1 \right) \mathbb{S}_{(\ell)} \mathring{\Phi}_{j-1} + \frac{1}{2j} \mathbb{S}_{(\ell)} \mathring{F}_j.$
Correction rule: $\lim_{u \to \infty} \mathbb{S}_{(\ell)} \mathring{\Phi}_j(u, \theta) = 0$ if $j \leq \frac{d-3}{2} + \ell.$
In particular, $\lim_{u \to \infty} \mathring{\Phi}_j(u, \theta) = 0$ for $j = 0, \dots, \frac{d-3}{2}$
 $\Rightarrow J \geq \frac{d-1}{2}, \text{ or } J + \frac{d-1}{2} \geq d - 1$ (at least as fast as $d \geq 2$ even).
Since d is odd, there is cancellation $j - \frac{d-1}{2} - \ell = 0$ if $j = \frac{d-1}{2} + \ell.$
In particular, if $f = 0$ (i.e., $\Box \phi = 0$), then $\mathbb{S}_{(\ell)} \mathring{\Phi}_j \equiv 0$ for $j \geq \frac{d-1}{2} + \ell$
from NPC (and since ϕ has C_c^{∞} data). With Correction Rule, $J = +\infty$
 \Rightarrow Strong Huygens Principle!

Clearly, the argument leading to $J = +\infty$ is very unstable, and is generically broken if $\mathbb{S}_{(\ell)} \mathring{F}_j$ is nontrivial.

Stationary tails such as Price's law can be interpreted as an improved decay statement originating from *further cancellations in the ODE*. In general:

Theorem (Luk-O. (2024)).

For a solution ϕ to a *linear stationary* problem $\mathcal{P}\phi = 0$ satisfying the assumptions of the Main Theorem,

 $|\phi|(t,x) \leq Ct^{-d}.$

This result is deeply related to some conserved quantities known as *Newman–Penrose constants* (cf. Angelopoulos–Aretakis–Gajic).

We have already seen an example of linear stationary problem where the rate is even faster (higher dimensional Schwarzschild).

However, these cancellations are very unstable; they are easily destroyed by nonlinear and/or nonstationary perturbations of the equation.

Generalization of Price's law, nonlinear case

The rate $t^{-(d-1)}$ is, however, very stable – this observation forms the basis of *our generalization of Price's law*.

Conjecture

Generic solutions to the Einstein vacuum equations which converge to an asymptotically flat stationary solution (e.g., Kerr) decay with an exact rate of t^{-6} .

Price's law predicts t^{-7} for linearized gravity around Schwarzschild; see Ma–Zhang (2021) and Millet (2023) for proofs. Both predictions are based on the idea that dynamic gravitational perturbations are supported in spherical modes $\ell \geq 2$.

We make an analogous conjecture for Maxwell with t^{-4} decay (Price's law predicts t^{-5} ; see Ma–Zhang (2021), Millet (2023)). This is consistent with the general upper bound proved by Metcalfe–Tataru–Tohaneanu (2017).

The correction rules

$$(C_j) \qquad \qquad \lim_{u\to\infty} \mathbb{S}_{(\geq j-\frac{d-3}{2})} \mathring{\Phi}_j(u,\theta) = 0$$

for $j = 0, 1, \ldots$ gives necessary conditions for $\mathring{\Phi}_0$ (via recurrence ODE relations) arising from $\phi \in C_c^{\infty}$. More generally, data with decay $(\langle r \rangle \partial)^I \phi = o(r^{-J_0})$ gives (C_j) with $j = 0, \ldots, J_0$.

An interesting question is the converse, i.e., scattering theory: if $\mathring{\Phi}_0$ satisfies the correction rule (and $\mathring{\Phi}_0$ vanishes rapidly as $u \to -\infty$), does there exist a solution ϕ with *(spatially) rapidly decaying* data?

• For $\Box \phi = r^{-3} \mathring{F}(u, \theta) + \cdots$ with d = 3, the necessary condition $\mathbb{S}_{(\geq 1)} \mathring{\Phi}_1 \to 0$ becomes

$$\int (\mathring{\mathbb{A}}\mathring{\Phi}_0 - \mathbb{S}_{(\geq 1)}\mathring{F})(u,\theta)\,\mathrm{d} u = 0,$$

which was derived and imposed by Lindblad–Schlue (2023) in the study of scattering theory.

Analysis of a model case

Example: $(\Box - V)\phi = 0$, $V = \frac{\epsilon}{r^3}$ for $r \gg 1$

Consider the problem $\mathcal{P}\phi := (\Box_{\mathbb{R}^{1+d}} + V)\phi = 0.$

For \mathcal{P} , we need two facts:

• W.r.t. $(u := t - r, r, \theta)$ in $\{r > R_0\} = \mathcal{M}_{med} \cup \mathcal{M}_{wave}$,

$$\mathcal{P}\phi = \Box_{\mathbb{R}^{1+d}}\phi + \mathcal{P}^{rem}\phi, \quad \mathcal{P}^{rem}\phi := -\epsilon r^{-3}\phi$$

• Define τ to agree with u in $\{r > R_0\}$, and $\tau = t$ near $\{x = 0\}$. On $\Sigma_{\tau} = \{\tau = const\}$,

 $^{(\infty)}\mathcal{P}_0$ is invertible (between some weighted Sobolev spaces on $\Sigma_{ au}$)

Recall: In this example, ${}^{(\infty)}\mathcal{P}_0 = -\Delta + V$.

Remark: On the Schwarzschild black hole, ${}^{(\infty)}\mathcal{P}_0$ is only *degenerate elliptic* $(:: \mathcal{H}^+)$, but such a statement still follows, for instance, from ILED for " $\omega = 0$ ".

Analysis of higher radiation fields, for $(\Box_{\mathbb{R}^{1+d}} - V)\phi = 0$, $V = \frac{\epsilon}{r^3}$ for $r \gg 1$

Example 1: r^{-3} -potential in \mathbb{R}^{1+3}

Consider

$$(\Box - V)\phi$$
 in \mathbb{R}^{1+3} , $V = \frac{\epsilon}{r^3}$ for $r \gg 1$,

as above.

Assume, for simplicity, $\phi = \mathbb{S}_{(0)}\phi$ (radial).

- When $d=3,\, \mathring{\Phi}_0
 ightarrow 0;\, \mathring{\Phi}_0$ can be prescribed.
- Recurrence ODE relations: From $Q\Phi = \epsilon r^{-3}\Phi$,

$$\begin{split} &-2\partial_u\partial_r\left(\mathring{\Phi}_0+r^{-1}\mathring{\Phi}_1+r^{-2}\mathring{\Phi}_2+\cdots\right)+\partial_r^2\left(\mathring{\Phi}_0+r^{-1}\mathring{\Phi}_1+\cdots\right)\\ &-\epsilon r^{-3}\left(\mathring{\Phi}_0+r^{-1}\mathring{\Phi}_1+\cdots\right)=0, \end{split}$$

we obtain

$$2\partial_u \mathring{\Phi}_1 = 0, \quad 4\partial_u \mathring{\Phi}_2 + 2\mathring{\Phi}_1 - \epsilon \mathring{\Phi}_0 = 0,$$

or equivalently,

$$\partial_u \mathring{\Phi}_1 = 0, \quad \partial_u \mathring{\Phi}_2 = -\frac{1}{2} \mathring{\Phi}_1 + \epsilon \mathring{\Phi}_0.$$

$$(\Box - V)\phi$$
 in \mathbb{R}^{1+3} , $V = \frac{\epsilon}{r^3}$ for $r \gg 1$,

Assume: ϵ is constant.

- When d = 3, $\mathring{\Phi}_0 \rightarrow 0$; $\mathbb{S}_{(0)} \mathring{\Phi}_0$ can be prescribed.
- Recurrence ODE relations:

$$\partial_u \mathring{\Phi}_1 = 0, \quad \partial_u \mathring{\Phi}_2 = -\frac{1}{2} \mathring{\Phi}_1 + \frac{\epsilon}{4} \mathring{\Phi}_0.$$

- $\partial_u \dot{\Phi}_1 = 0 \implies \dot{\Phi}_1 \equiv 0$. ($\dot{\Phi}_1$ is the Newman–Penrose constant; we call $\partial_u \dot{\Phi}_1 = 0$ Newman–Penrose cancellation)
- $\partial_u \dot{\Phi}_2 = -\frac{1}{2} \dot{\Phi}_1 + \epsilon \dot{\Phi}_0 = \epsilon \dot{\Phi}_0$. In general $\dot{\Phi}_2 \not\rightarrow 0$ (since $\dot{\Phi}_0$ can be prescribed).
- Hence, the main contribution far-away comes from $\mathring{\Phi}_2$, which gives a late time tail $\phi \sim \tau^{-3}$ on compact *r* region.

Example 2: stationary r^{-3} -potential in \mathbb{R}^{1+5}

(Red: deviation from d = 3) Consider

$$(\Box - V)\phi$$
 in \mathbb{R}^{1+5} , $V = \frac{\epsilon}{r^3}$ for $r \gg 1$,

as above. Assume: ϵ is constant, $\phi = \mathbb{S}_{(0)}\phi$.

- When $d=5,\ \mathring{\Phi}_0, \mathring{\Phi}_1
 ightarrow 0;\ \mathring{\Phi}_1$ can be prescribed .
- Recurrence ODE relations: From $Q\Phi = \epsilon r^{-3}\Phi$,

$$\begin{aligned} &-2\partial_{u}\partial_{r}\left(\mathring{\Phi}_{0}+r^{-1}\mathring{\Phi}_{1}+r^{-2}\mathring{\Phi}_{2}+r^{-3}\mathring{\Phi}_{3}+r^{-4}\mathring{\Phi}_{4}+\cdots\right)\\ &+\partial_{r}^{2}\left(\mathring{\Phi}_{0}+r^{-1}\mathring{\Phi}_{1}+r^{-2}\mathring{\Phi}_{2}+r^{-3}\mathring{\Phi}_{3}+\cdots\right)\\ &-2r^{-2}\left(\mathring{\Phi}_{0}+r^{-1}\mathring{\Phi}_{1}+r^{-2}\mathring{\Phi}_{2}+r^{-3}\mathring{\Phi}_{3}+\cdots\right)\\ &-\epsilon r^{-3}\left(\mathring{\Phi}_{0}+r^{-1}\mathring{\Phi}_{1}+r^{-2}\mathring{\Phi}_{2}+\cdots\right)=0,\end{aligned}$$

implies

$$\begin{aligned} & 2\partial_{u}\dot{\Phi}_{1} - 2\dot{\Phi}_{0} = 0, \quad 4\partial_{u}\dot{\Phi}_{2} + 2\dot{\Phi}_{1} - 2\dot{\Phi}_{1} - \epsilon\dot{\Phi}_{0} = 0, \\ & 6\partial_{u}\dot{\Phi}_{3} + 6\dot{\Phi}_{2} - 2\dot{\Phi}_{2} - \epsilon\dot{\Phi}_{1} = 0, \quad 8\partial_{u}\dot{\Phi}_{4} + 12\dot{\Phi}_{3} - 2\dot{\Phi}_{3} - \epsilon\dot{\Phi}_{2} = 0. \end{aligned}$$

$$(\Box - V)\phi$$
 in \mathbb{R}^{1+5} , $V = \frac{\epsilon}{r^3}$ for $r \gg 1$,

as above. Assume: ϵ is constant, $\phi = \mathbb{S}_{(0)}\phi$.

- When $d=5,\ \mathring{\Phi}_0,\mathring{\Phi}_1
 ightarrow 0;\ \mathring{\Phi}_1$ can be prescribed.
- Recurrence ODE relations:

$$\partial_{u}\mathring{\Phi}_{1} = \mathring{\Phi}_{0}, \quad \partial_{u}\mathring{\Phi}_{2} = 0 \cdot \mathring{\Phi}_{1} + \frac{\epsilon}{4}\mathring{\Phi}_{0},$$

$$\partial_{u}\mathring{\Phi}_{3} = -\frac{2}{3}\mathring{\Phi}_{2} + \frac{\epsilon}{6}\mathring{\Phi}_{1}, \quad \partial_{u}\mathring{\Phi}_{4} = -\frac{5}{4}\mathring{\Phi}_{3} + \frac{\epsilon}{8}\mathring{\Phi}_{2}.$$
• $\partial_{u}\left(\mathring{\Phi}_{2} - \frac{\epsilon}{4}\mathring{\Phi}_{1}\right) = 0 \implies \mathring{\Phi}_{2} = \frac{\epsilon}{4}\mathring{\Phi}_{1} \rightarrow 0! \quad (\mathring{\Phi}_{2} - \frac{\epsilon}{4}\mathring{\Phi}_{1} \text{ is the Newman-Penrose constant; a similar conservation law holds for any linear stationary problem (generalized Price's law))$
• $\partial_{u}\mathring{\Phi}_{2} = -\frac{2}{5}\mathring{\Phi}_{2} + \frac{\epsilon}{5}\mathring{\Phi}_{1} = -\frac{\epsilon}{5}\mathring{\Phi}_{1} + \frac{\epsilon}{5}\mathring{\Phi}_{1} = 0!! \implies \mathring{\Phi}_{2} = 0$

- $\partial_u \Phi_3 = -\frac{2}{3} \Phi_2 + \frac{\epsilon}{6} \Phi_1 = -\frac{\epsilon}{6} \Phi_1 + \frac{\epsilon}{6} \Phi_1 = 0!! \implies \Phi_3 = 0$ (anomalous cancellation).
- $\partial_u \mathring{\Phi}_4 = -\frac{5}{4} \mathring{\Phi}_3 + \frac{\epsilon}{8} \mathring{\Phi}_2 = \frac{\epsilon^2}{32} \mathring{\Phi}_1$. In general $\mathring{\Phi}_4 \neq 0$ (since $\mathring{\Phi}_1$ can be prescribed).
- Hence, the main contribution far-away comes from $\check{\Phi}_4$, which gives a late time tail $\phi \sim \tau^{-6}$ on compact r region.

Example 3: dynamic r^{-3} -potential in \mathbb{R}^{1+5}

Consider

$$(\Box - V)\phi$$
 in \mathbb{R}^{1+5} , $V = \frac{\epsilon(\boldsymbol{u})}{r^3}$ for $r \gg 1$,

as above. Assume: $\epsilon = \epsilon(\mathbf{u}), \ \phi = \mathbb{S}_{(0)}\phi$.

- When $d=5,~\mathring{\Phi}_0,\mathring{\Phi}_1
 ightarrow 0;~\mathring{\Phi}_1$ can be prescribed.
- Recurrence ODE relations:

$$\begin{aligned} \partial_u \mathring{\Phi}_1 &= \mathring{\Phi}_0, \quad \partial_u \mathring{\Phi}_2 &= \frac{\epsilon}{4} \mathring{\Phi}_0, \\ \partial_u \mathring{\Phi}_3 &= -\frac{2}{3} \mathring{\Phi}_2 + \frac{\epsilon}{6} \mathring{\Phi}_1, \quad \partial_u \mathring{\Phi}_4 &= -\frac{5}{4} \mathring{\Phi}_3 + \frac{\epsilon}{8} \mathring{\Phi}_2. \end{aligned}$$

- $\partial_u \left(\mathring{\Phi}_2 \frac{\epsilon}{4} \mathring{\Phi}_1 \right) = -\frac{\partial_u \epsilon}{4} \mathring{\Phi}_1$. In general $\mathring{\Phi}_2 \not\rightarrow 0$ (since $\mathring{\Phi}_1$ can be prescribed).
- Hence, the main contribution far-away comes from $\mathring{\Phi}_2$, which gives a slower late time tail $\phi \sim \tau^{-4}$ on compact *r* region.

Thank you for your attention!