Late Time Tail of Waves on Dynamic Asymptotically Flat Spacetimes, Part I

Sung-Jin Oh (UC Berkeley), based on joint work with Jonathan Luk (Stanford)

January 13th, 2025 Seoul National University Motivation & Introduction

Discussion & main questions

Examples & some conjectures

Main theorem

Motivation & Introduction

Consider a general *nonlinear wave* equation on curved background:

$$(\mathbf{g}^{-1})^{\mu\nu}\partial_{\mu}\partial_{\nu}\phi + B^{\mu}\partial_{\mu}\phi + V\phi = \mathcal{N}(\phi,\partial\phi,\partial^{2}\phi).$$

Examples: general relativity, gauge theory, compressible fluids, etc. We will be interested in the global asymptotics of ϕ .

Let us begin with the simplest case, the linear wave equation on \mathbb{R}^{1+d} :

$$egin{cases} (-\partial_t^2+\Delta)\phi=0,\ (\phi,\partial_t\phi)\restriction_{t=0}=(g,h)\in C^\infty_c(\mathbb{R}^d). \end{cases}$$

Linear wave equation on \mathbb{R}^{1+d} :

$$egin{cases} (-\partial_t^2+\Delta)\phi=0,\ (\phi,\partial_t\phi)\restriction_{t=0}=(g,h)\in C^\infty_c(\mathbb{R}^d). \end{cases}$$

This can be explicitly solved via fundamental solution (d'Alembert, Kirchhoff, Poisson) and ϕ exhibits the following behavior:

- Finite speed of propagation: φ = 0 outside of forward light (or characteristic) cone.
- Dispersive decay: $\sup_{x} |\phi(t,x)|$ is achieved in the Yellow region, where $|\phi(t,x)| \simeq t^{-\frac{d-1}{2}}$.
- Late time tail: $|\phi(t, x)|$ is smaller inside the Blue region.

General nonlinear wave equation on asymptotically flat background:

$$(\mathbf{g}^{-1})^{\mu\nu}\partial_{\mu}\partial_{\nu}\phi + B^{\mu}\partial_{\mu}\phi + V\phi = \mathcal{N}(\phi,\partial\phi,\partial^{2}\phi).$$

Finite speed of propagation remains true in general.

Dispersive decay is the main mechanism for stability of nonlinear waves.

Late time tails are for understanding the interaction of waves (radiation) with spatially localized objects, e.g., solitons or black holes.

Question (late time tails/asymptotics)

For a "generic" ϕ , what is its asymptotics as x is fixed and $t \to \infty$?

More generally, what is the asymptotics of ϕ along timelike curves?

Motivation: Black holes, singularities and late time tails

Our main motivation for studying late time asymptotics comes from understanding *singularity inside black holes*.

Image credits: Event Horizon Telescope

A celebrated theorem of Penrose – of the 2020 Nobel prize fame – says that, according to general relativity, singularities are abound:

But no singularity has ever been observed. The discrepancy explained by:

Conjecture (Penrose, weak cosmic censorship)

Generically, all singularities are hidden from (idealized, infinitely) far-away observers by "black holes."

Schwarzschild and Kerr black holes

According to general relativity, gravity is described by a Lorentzian metric on \mathcal{M}^{1+3} solving the *Einstein equation*:

$$extsf{Ric}_{\mu
u}[\mathbf{g}] - rac{1}{2} \mathbf{g}_{\mu
u} \operatorname{tr}_{\mathbf{g}} extsf{Ric} = extsf{T}_{\mu
u} \quad extsf{in} \ \mathcal{M}.$$

In suitable gauge, it is a nonlinear wave equation for g.

Explicit "black hole" solutions (for the vacuum case $T_{\mu\nu} = 0$):

- Schwarzschild g_M, M > 0: represents static black hole with mass M > 0;
- Kerr, g_{M,a}, 0 < |a| < M: represents stationary but rotating black hole with mass M > 0 and rotation parameter a

Black hole refers to a subregion of such a spacetime that cannot reach infinitely faraway observers (e.g., us!) even by null curves.

In the *black hole exterior*, $\mathbf{g}_{M,a}$ and \mathbf{g}_M are very close. There has been amazing developments concerning their nonlinear stability (Giorgi–Klainerman–Szeftel–Shen, Dafermos–Holzegel–Rodnianski–Taylor, etc.)

But the *black hole interiors* are completely different!

All observers that fell into the Schwarzschild black hole interior reaches a curvature singularity S, past which **g** is not even C^0 extendible (Sbierski (2018)).

Meanwhile, all observers that fell into the Kerr black hole interior reaches a smooth Cauchy horizon \mathcal{CH}^+ (boundary of maximal globally hyperbolic development of the initial data), through which **g** is C^{∞} extendible(!), and the Einstein (vacuum) equation does *not* uniquely determine **g**.

Question

How do singularities in generic (i.e., physical) black holes behave?

Conjecture (Penrose, strong cosmic censorship)

For generic asymptotically flat initial data, the maximal Cauchy development solving the Einstein vacuum equations is **inextendible as a suitably regular Lorentzian manifold**.

In particular, regarding Kerr, strong cosmic censorship says

 the smooth Cauchy horizon in Kerr black hole interior is nongeneric (and therefore nonphysical); and thus, a small perturbation of Kerr data leads to singularities inside the black hole.

Regarding "suitably regular":

- By Dafermos (2003; for spherical symmetric model problem) and Dafermos-Luk (2019), "suitably regular" ≠ "with C⁰ metric," as opposed to Schwarzschild singularity.
- Christodoulou proposed: "suitably regular" = "with H^1_{loc} metric"; $\mathbf{g} \in H^1_{loc}$ is the lowest regularity needed for weak formulation of Einstein.

Late time tails and SCC

Conjecture (Strong cosmic censorship near Kerr)

For *generic* small perturbations of the Kerr data, g is not extendible as a "suitably regular" metric past the Cauchy horizon.

In Luk–O. (2019), we resolved the strong cosmic censorship conjecture in spherically symmetric model (Einstein–Maxwell–uncharged scalar field, two-ended asymptotically flat data).

In our approach, the first step was to analyze the black hole exterior and prove that *generic data leads to nontrivial late time tail* on the boundary of the black hole region.

The nontriviality of the tail was then used as the input for the instability of the Cauchy horizon in the black hole interior; see also Dafermos (2005).

As in Luk–O. (2019), we expect the generic late time tail in the black hole exterior to play an important role in resolving this conjecture.

Discussion & main questions

Model: general nonlinear wave equation on a.f. background:

$$(\mathbf{g}^{-1})^{\mu\nu}\partial_{\mu}\partial_{\nu}\phi + B^{\mu}\partial_{\mu}\phi + V\phi = \mathcal{N}(\phi,\partial\phi,\partial^{2}\phi).$$

Late time tails are important for understanding the interaction of waves (radiation) with spatially localized objects, e.g., black holes or solitons. For this, it is important to allow for *dynamical* spacetimes and *nonlinear* equation. Also, d = 3 is of interest.

Interestingly, it turns out that

- the fact that d = 3 is odd makes the late time tail behavior nontrivial to determine, even for the *linear* wave equation on *stationary* black hole spacetimes (see **Price's law**, see below);
- for higher spin fields (i.e., tensor-valued waves such as *electromagnetic* or *gravitational* fields), late time tails behave *very differently* in the presence of *nonlinear* and/or *dynamic* (i.e., nonstationary) background (as our work shows).

To see why the parity of d matters, consider again

$$(-\partial_t^2 + \Delta)\phi = 0$$
 in \mathbb{R}^{1+d}

with $(\phi, \partial_t \phi) \upharpoonright_{t=0} = (g, h) \in C^{\infty}_c(\mathbb{R}^d)$, $\operatorname{supp}(g, h) \subseteq B_R(0)$.

When $d \ge 2$ is even

 $\phi(t,x)\sim Ct^{-(d-1)}$ as $t
ightarrow\infty$

for x fixed as $t \to \infty$; $C \neq 0$ generically.

This is the expected rate from scaling: d - 1 = (d + 1) - 2.

This rate is expected to be *stable* under perturbations (Gajic (2023), Hintz (2023), ...).

When $d \ge 3$ is odd

 $\phi(t,x)=0$

for x fixed as t large enough, due to the *Strong Huygens Principle* (SHP).

In fact, $\phi \equiv 0$ in the entire region where |x| < t - R.

SHP is expected to be *unstable*, but no easy expectation for the rate.

Instability of SHP and generation of late time tail

Let $d \ge 3$ be odd. While SHP holds for $\Box \phi = 0$, it is highly unstable! In $(u = t - r, r, \theta \in \mathbb{S}^{d-1})$ coordinates, consider $\Box \phi + a(r)\partial_r^2 \phi = 0$ in \mathbb{R}^{d+1}

where $a = \epsilon r^{-1} \chi_{>1}(r)$ and ϵ is constant. Then as long as $\epsilon \neq 0$,

$$\phi(t,x)\sim Ct^{-d}$$
 as $t
ightarrow\infty$

for x fixed as $t \to \infty$; $C \neq 0$ generically.

Note that a tail is generated, but it is faster than the even dimensional case!

For data supported on the ℓ -th spherical harmonics, (if $\epsilon \neq 0$)

$$\phi(t,x) \sim \mathit{C}t^{-d-2\ell}$$
 as $t o \infty$

for x fixed as $t \to \infty$; $C \neq 0$ generically.

Price's law

PHYSICAL REVIEW D VOLUME 5, NUMBER 10

15 MAY 1972

Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations*

Richard H. Price† California Institute of Technology, Pasadena, California 91109 (Received 12 April 1971; revised manuscript received 27 December 1971)

Schwarzschild black hole exterior: $\mathcal{M} = (0, \infty)_t \times (2M, \infty)_r \times \mathbb{S}^2$,

$$\mathbf{g}_M = -(1-rac{2M}{r})\mathrm{d}t^2 + (1-rac{2M}{r})^{-1}\mathrm{d}r^2 + r^2\mathbf{g}_{\mathbb{S}^2}$$

"Price's law" on (3 + 1)-dimensional Schwarzschild black holes Assume:

- $\square_{\mathbf{g}_M} \phi = \mathbf{0}$,
- ϕ initially compactly supported,
- ϕ supported on the spherical harmonics of degree ℓ .

Then Price's prediction was:
$$|\phi(t,r, heta)| \simeq t^{-2\ell-3}$$
.

Through the work of many contributors in the past few decades, Price's prediction had been made into a theorem.

Consider $\Box_{{\bf g}_M}\phi=0$ on Schwarzschild spacetime, ϕ initially smooth and compactly supported.

Theorem (Price's law)

 (Dafermos–Rodnianski (2005), Tataru (2013), Donninger–Schlag–Soffer (2012), Metcalfe–Tataru–Tohaneanu (2012))

$$|\phi(t,r, heta)| \leq C(r)t^{-3}.$$

2. (Angelopoulos–Aretakis–Gajic (2018, 2021), Hintz (2020)) Generic ϕ supported on spherical harmonics $\geq \ell$ obeys, for some $c \neq 0$,

$$\left|\phi(t,r, heta)=ct^{-3-2\ell}Y_{\ell}(heta)+O_{r}(t^{-3-2\ell-\delta}),
ight.$$

where Y_{ℓ} is a spherical harmonic.

Theorem (Price's law)

For $\Box_{\mathbf{g}_M} \phi = \mathbf{0}$, ϕ initially smooth and compactly supported:

1.
$$|\phi|(t,r,\theta) \leq C(r)t^{-3}$$
.

2. Generic ϕ supported on spherical harmonics $\geq \ell$ obeys $\phi(t, r, \theta) = ct^{-3-2\ell} Y_{\ell}(\theta) + O_r(t^{-3-2\ell-\delta}).$

Remarks:

- 1. More generally in (3+1) dimensions:
 - Theorem holds on a large class of asymptotically flat, stationary (and spherically symmetric in case ℓ ≥ 1) spacetimes, including Kerr.
 - Upper bound also holds on dynamical spacetimes.
- 2. Restriction to spherical harmonics $\geq \ell$ is a proxy for considering spin- ℓ fields (e.g., electromagnetic and gravitational fields, which are spin 1 and 2 respectively).
- 3. Restriction to spherical harmonics ≥ 1 is similar to considering d > 3 odd. Indeed, if ϕ supported on spherical harmonics ℓ , then $\Box_{\mathbb{R}^{1+3}}\phi = 0 \Leftrightarrow \Box_{\mathbb{R}^{1+3+2\ell}}(r^{-\ell}\phi) = 0.$

See also:

Barack-Ori, Bičák, Bizoń-Chmaj-Rostworowski, Blaksley-Burko, Burko-Khanna, Casals-Ottewill, Ching-Leung-Suen-Young, Gómez-Winicour-Schmidt, Gundlach-Price-Pullin, Hod. Krivan-Laguna-Papadopoulos-Andersson, Leaver, Lucietti-Murata-Reall-Tanahashi, Marsa-Choptuik, Poisson, Szpak, Zenginoğlu–Khanna–Burko, ..., Aretakis, Baskin–Vasy–Wunsch, Dafermos-Rodnianski, Donninger-Schlag-Tataru, Gajic, Gajic-Kehrberger, Guillarmou-Hassell-Sikora, Kehrberger, Lindblad, Looi, Looi-Xiong, Luk-O., Ma, Ma-Zhang, Millet, Morgan, Morgan-Wunsch, Moschidis, Oliver-Sterbenz, Schlue, Van de Moortel, ...

Main questions

Question 1: Going beyond Price's law

What happens to Price's law if we change the setting?

In particular, what happens if we go beyond the (1+3)-dimensional, linear, and stationary setting? More generally,

Question 2: Determination of late-time asymptotics

Given a general (nonlinear) wave equation in odd space dimension, how are the late-time asymptotics determined?

Later, I will present our *Main Theorem*, which answers Question 2 for a large class of nonlinear wave equations on dynamical background.

But first, I will present several applications of the Main Theorem to answer Question 1, which turns out to be quite subtle.

Examples & some conjectures

Example 0: Anomalous decay in the linear stationary case

Consider

$$\Box \phi = c(r)\phi \quad \text{in } \mathbb{R}^{d+1},$$

c small, smooth, $c(r)=\epsilon r^{-3}$ for large $r,\,\epsilon$ constant.

• When
$$d = 3$$
, $\phi \sim \epsilon C(r)t^{-3}$.

So $\phi \sim \epsilon C(r)t^{-5}$ when d = 5?

Consider

$$\Box \phi = c(r)\phi \quad \text{in } \mathbb{R}^{d+1},$$

c small, smooth, $c(r)=\epsilon r^{-3}$ for large $r,\,\epsilon$ constant.

• When
$$d = 3$$
, $\phi \sim \epsilon C(r)t^{-3}$.

So $\phi \sim \epsilon C(r)t^{-5}$ when d = 5? No!

Theorem (Luk–O. (2024)) When d = 5,

$$|\phi| \sim \epsilon C(r) t^{-6},$$

where $C \neq 0$ generically.

Example 1: Anomalous decay in the linear stationary case

Consider higher dimensional Schwarzschild black holes:

$$\mathbf{g}_{M} = -\left(1 - \frac{2M}{r^{d-2}}\right) \mathrm{d}t^{2} + \left(1 - \frac{2M}{r^{d-2}}\right)^{-1} \mathrm{d}r^{2} + r^{2} \mathbf{g}_{\mathbb{S}^{d-1}}.$$

For generic stationary metrics with r^{-d+2} decay, solution has t^{-2d+3} tail.

• So $\phi \sim Ct^{-7}$ on (1+5)-dimensional Schwarzschild?

Consider higher dimensional Schwarzschild black holes:

$$\mathbf{g}_{M} = -\left(1 - \frac{2M}{r^{d-2}}\right) \mathrm{d}t^{2} + \left(1 - \frac{2M}{r^{d-2}}\right)^{-1} \mathrm{d}r^{2} + r^{2} \mathbf{g}_{\mathbb{S}^{d-1}}.$$

For generic stationary metrics with r^{-d+2} decay, solution has t^{-2d+3} tail.

• So $\phi \sim C t^{-7}$ on (1+5)-dimensional Schwarzschild? No!

In fact, heuristic/numerical arguments suggest *anomalous faster decay* Cardoso–Yoshida–Dias–Lemos (2003), Bizoń– Chmaj–Rostworowski (2007). Indeed, we prove

Theorem (Luk-O. (2024))

Solutions arising from compactly supported data to $\Box_{\mathbf{g}_M} \phi = 0$ on (5+1)-dimensional Schwarzschild spacetime satisfies

$$\phi(t,r,\theta) \sim Ct^{-10},$$

where $c \neq 0$ generically.

However, on *dynamical* backgrounds, slower tails emerge! For $\Box \phi = c\phi$, if $c = \frac{\epsilon(u,r)}{r^3}$ on \mathbb{R}^{1+5} , then if $\partial_u \epsilon \neq 0$, $\phi \sim \epsilon C(r)t^{-4}$ (Luk–O. (2024); cf. t^{-6} when $\partial_u \epsilon = 0$).

For a generic dynamical spacetime tending to the (5 + 1)-dimensional Schwarzschild spacetime, $\phi \sim \epsilon t^{-6}$ (Luk–O. (2024); cf. t^{-10} in the stationary case)

More interesting is the next example from general relativity in dimension (1+3).

Theorem (Luk–O. (2024))

Let $(\mathcal{M}, \mathbf{g})$ be a "generic" (1 + 3)-dimensional spherically symmetric spacetime **converging** to Schwarzschild. Consider ϕ solving $\Box_{\mathbf{g}}\phi = 0$ with compactly supported data supported in spherical harmonics $\geq \ell$. Then

$$\phi(t,r,\theta) = \begin{cases} ct^{-3} + O(t^{-3-\delta}) & \ell = 0, \\ ct^{-2-2\ell}Y_{\ell}(\theta) + O(t^{-2-2\ell-\delta}) & \ell \ge 1, \end{cases}$$

where "generically" $c \neq 0$.

Observe that the $\ell = 0$ tail remains the same. This was also verified for the spherically symmetric Einstein–Maxwell–Scalar Field system by Gautam (2024), leading to a stronger version of SCC (mass inflation).

However, when $\ell \neq 0$, the tail is slower than Price's law decay (which was $t^{-3-2\ell}$); these should be relevant for higher spin fields!

Our result rigorously verifies (and settles) the scenario suggested by Bizoń–Chmaj–Rostworowski, etc., and numerically observed by Gundlach–Price–Pullin (1994).

Indeed, from **Gundlach-Price-Pullin (1994)** (revisited by Bizoń-Chmaj-Rostworowski (2008)):

Recall: Price's law on exact

Schwarzschild is $\phi_{(\geq \ell)} \sim Ct^{-3-2\ell} Y_{\ell}.$

FIG. 12. Log-log plots of test fields $\varphi_1^m(r) = 10, (n_2)$ for different multipole indices t on one background spacetime. The background is evolved from Gaussian initial data for ϕ with amplitude 0.02 (noncollapsing). The initial data for the test field are in each case a Gaussian (the test field ampltude 1.0 has no significance). From top to bottom the curves correspond to t = 0, 1, 2, 3. The best fits for the power-haw exponents are =2.77, -3.35, -5.54, and = 8.34, compared to predictions of =3.55, =5.74, and = 8.34. As we have seen, *nonstationarity* (i.e., dynamical spacetime) should lead to a behavior *different* from the linear stationary case. In fact, *nonlinearity* also has a similar effect (see Ex. 3). Hence, we make:

Conjecture

Generic solutions to the Einstein vacuum equations which converge to an asymptotically flat stationary solution (e.g., Kerr) decay with an exact rate of t^{-6} .

Price's law predicts t^{-7} for linearized gravity around Schwarzschild; see Ma–Zhang (2021) and Millet (2023) for proofs. Both predictions are based on the idea that dynamic gravitational perturbations are supported in spherical modes $\ell \geq 2$.

We make an analogous conjecture for Maxwell with t^{-4} decay (Price's law predicts t^{-5} ; see Ma–Zhang (2021), Millet (2023)). This is consistent with the general upper bound proved by Metcalfe–Tataru–Tohaneanu (2017).

Nonlinear equation with "null condition" in (3 + 1) dimensions:

$$\Box \phi^{I} = \Gamma^{I}_{JK}(\phi)(\partial_{t}\phi^{J}\partial_{t}\phi^{K} - \sum_{i=1}^{3}\partial_{i}\phi^{J}\partial_{i}\phi^{K}), \quad I, J, K = 1, \cdots, N.$$

Theorem (Christodoulou, Klainerman (1986))

Suppose the initial data $(\phi, \partial_t \phi)$ are C_c^{∞} and sufficiently small, then the solutions are global-in-time and decay.

Nonlinear decay of $O(t^{-2})$ is known by Christodoulou.

But in many interesting cases, this is *not* the generic tail. In determination of the tail, both dispersion and structure of nonlinearity are important!

Example: There are equations for which $\phi = O(t^{-\infty})$. (e.g., $\Box \phi = (\partial_t \phi)^2 - \sum_{i=3}^3 (\partial_i \phi)^2$, equivalent to $\Box \psi = 0$ for $\phi = e^{\psi}$.)

Consider the wave map system:

- (Σ, h) a 2-dimensional Riemannian manifold
- $\phi: \mathbb{R}^{3+1} \to \Sigma$ a wave map:

$$\Box \phi^{I} = \Gamma^{I}_{JK}(\phi)(\partial_{t}\phi^{J}\partial_{t}\phi^{K} - \sum_{i=1}^{3}\partial_{i}\phi^{J}\partial_{i}\phi^{K}).$$

Perturbations of the constant map $\mathbb{R}^3 \mapsto p \in \Sigma$ satisfies the global stability theorem.

For wave maps, late time tail depends on curvature of (Σ, h) at p! $\phi : \mathbb{R}^{3+1} \to \Sigma$ a wave map, perturbation of the constant map to $p \in \Sigma$.

Theorem (Luk–O. (2024))

1. Suppose the Gauss curvature $K(p) \neq 0$. Then, for an open and dense subclass of small initial data, the solution obeys

$$t^{-3} \lesssim \operatorname{dist}(\phi(t,x),p) \lesssim t^{-3}.$$

2. Suppose K(p) = 0. Then small-data solutions obey

 $\operatorname{dist}(\phi(t,x),p) \lesssim t^{-4}.$

Thank you for your attention!