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Motivation & Introduction



Linear and nonlinear waves

Consider a general nonlinear wave equation on curved background:

(g−1)µν∂µ∂νϕ+ Bµ∂µϕ+ Vϕ = N (ϕ, ∂ϕ, ∂2ϕ).

Examples: general relativity, gauge theory, compressible fluids, etc.

We will be interested in the global asymptotics of ϕ.

Let us begin with the simplest case, the linear wave equation on R1+d :{
(−∂2t +∆)ϕ = 0,

(ϕ, ∂tϕ) ↾t=0 = (g , h) ∈ C∞
c (Rd).
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Linear wave equation on R1+d :{
(−∂2t +∆)ϕ = 0,

(ϕ, ∂tϕ) ↾t=0 = (g , h) ∈ C∞
c (Rd).

This can be explicitly solved via fundamental solution (d’Alembert,

Kirchhoff, Poisson) and ϕ exhibits the following behavior:

Linear wave equation on R1+d :
(
(�@2

t +�)� = 0,

(�, @t�) �t=0 = (g , h) 2 C1
c (Rd).

This can be explicitly solved via fundamental solution (d’Alembert,

Kirchho↵, Poisson) and � exhibits the following behavior:

• Finite speed of propagation: � = 0 outside of forward light (or

characteristic) cone.

• Dispersive decay: supx |�(t, x)| is achieved in the Yellow region,

where |�(t, x)| ' t�
d�1
2 .

• Late time tail: |�(t, x)| is smaller inside the Blue region.
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• Finite speed of propagation: ϕ = 0 outside of forward light (or

characteristic) cone.

• Dispersive decay: supx |ϕ(t, x)| is achieved in the Yellow region,

where |ϕ(t, x)| ≃ t−
d−1
2 .

• Late time tail: |ϕ(t, x)| is smaller inside the Blue region.
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General nonlinear wave equation on asymptotically flat background:

(g−1)µν∂µ∂νϕ+ Bµ∂µϕ+ Vϕ = N (ϕ, ∂ϕ, ∂2ϕ).

General nonlinear wave equation on asymptotically flat background:

(g�1)µ⌫@µ@⌫�+ Bµ@µ�+ V� = N (�, @�, @2�).

Question (late time tails/asymptotics)

What is the asymptotics of �(t, x) as x is fixed and t ! 1?

More generally, what is the asymptotics of � along timelike curves?

Dispersive decay is the main mechanism for stability of nonlinear waves.

Late time tails are for understanding the interaction of waves (radiation)

with spatially localized objects, e.g., solitons or black holes (see

Motivation below).
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Finite speed of propagation remains true in general.

Dispersive decay is the main mechanism for stability of nonlinear waves.

Late time tails are for understanding the interaction of waves (radiation)

with spatially localized objects, e.g., solitons or black holes.

Question (late time tails/asymptotics)

For a “generic” ϕ, what is its asymptotics as x is fixed and t → ∞?

More generally, what is the asymptotics of ϕ along timelike curves?
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Motivation: Black holes, singularities and late time tails

Our main motivation for studying late time asymptotics comes from

understanding singularity inside black holes.

Image credits: Event Horizon Telescope
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Penrose’s incompleteness theorem & weak cosmic censorship

A celebrated theorem of Penrose – of the 2020 Nobel prize fame – says

that, according to general relativity, singularities are abound:

But no singularity has ever been observed. The discrepancy explained by:

Conjecture (Penrose, weak cosmic censorship)

Generically, all singularities are hidden from (idealized, infinitely)

far-away observers by “black holes.”
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Schwarzschild and Kerr black holes

According to general relativity, gravity is described by a Lorentzian metric

on M1+3 solving the Einstein equation:

Ricµν [g]−
1

2
gµν trg Ric = Tµν in M.

In suitable gauge, it is a nonlinear wave equation for g.

Explicit “black hole” solutions (for the vacuum case Tµν = 0):

• Schwarzschild gM , M > 0: represents static black hole with mass

M > 0;

• Kerr, gM,a, 0 < |a| < M: represents stationary but rotating black

hole with mass M > 0 and rotation parameter a

Black hole refers to a subregion of such a spacetime that cannot reach

infinitely faraway observers (e.g., us!) even by null curves.
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Schwarzchild and Kerr black holes

In the black hole exterior, gM,a and gM are very close. There has been

amazing developments concerning their nonlinear stability (Giorgi–

Klainerman–Szeftel–Shen, Dafermos–Holzegel–Rodnianski–Taylor, etc.)

But the black hole interiors are completely different!

All observers that fell into the Schwarzschild black hole interior reaches a

curvature singularity S, past which g is not even C 0 extendible (Sbierski

(2018)).

Meanwhile, all observers that fell into the Kerr black hole interior reaches

a smooth Cauchy horizon CH+ (boundary of maximal globally hyperbolic

development of the initial data), through which g is C∞ extendible(!),

and the Einstein (vacuum) equation does not uniquely determine g.

Question

How do singularities in generic (i.e., physical) black holes behave?
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Strong cosmic censorship

Conjecture (Penrose, strong cosmic censorship)

For generic asymptotically flat initial data, the maximal Cauchy

development solving the Einstein vacuum equations is inextendible as

a suitably regular Lorentzian manifold.

In particular, regarding Kerr, strong cosmic censorship says

• the smooth Cauchy horizon in Kerr black hole interior is nongeneric

(and therefore nonphysical); and thus, a small perturbation of Kerr

data leads to singularities inside the black hole.

Regarding “suitably regular”:

• By Dafermos (2003; for spherical symmetric model problem) and

Dafermos–Luk (2019), “suitably regular” ̸= “with C 0 metric,” as

opposed to Schwarzschild singularity.

• Christodoulou proposed: “suitably regular” = “with H1
loc metric”;

g ∈ H1
loc is the lowest regularity needed for weak formulation of

Einstein. 9



Late time tails and SCC

Conjecture (Strong cosmic censorship near Kerr)

For generic small perturbations of the Kerr data, g is not extendible as

a “suitably regular” metric past the Cauchy horizon.

In Luk–O. (2019), we resolved the strong cosmic censorship conjecture in

spherically symmetric model (Einstein–Maxwell–uncharged scalar field,

two-ended asymptotically flat data).

In our approach, the first step was to analyze the black hole exterior and

prove that generic data leads to nontrivial late time tail on the boundary

of the black hole region.

The nontriviality of the tail was then used as the input for the instability

of the Cauchy horizon in the black hole interior; see also Dafermos

(2005).

As in Luk–O. (2019), we expect the generic late time tail in the black

hole exterior to play an important role in resolving this conjecture.
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Discussion & main questions



Late time tails for nonlinear and/or dynamical problems

Model: general nonlinear wave equation on a.f. background:

(g−1)µν∂µ∂νϕ+ Bµ∂µϕ+ Vϕ = N (ϕ, ∂ϕ, ∂2ϕ).

Late time tails are important for understanding the interaction of waves

(radiation) with spatially localized objects, e.g., black holes or solitons.

For this, it is important to allow for dynamical spacetimes and nonlinear

equation. Also, d = 3 is of interest.

Interestingly, it turns out that

• the fact that d = 3 is odd makes the late time tail behavior

nontrivial to determine, even for the linear wave equation on

stationary black hole spacetimes (see Price’s law, see below);

• for higher spin fields (i.e., tensor-valued waves such as

electromagnetic or gravitational fields), late time tails behave very

differently in the presence of nonlinear and/or dynamic (i.e.,

nonstationary) background (as our work shows).
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Even vs. odd space dimensions

To see why the parity of d matters, consider again

(−∂2t +∆)ϕ = 0 in R1+d

with (ϕ, ∂tϕ) ↾t=0= (g , h) ∈ C∞
c (Rd), supp(g , h) ⊆ BR(0).

When d ≥ 2 is even

ϕ(t, x) ∼ Ct−(d−1) as t → ∞

for x fixed as t → ∞; C ̸= 0

generically.

This is the expected rate from

scaling: d − 1 = (d + 1)− 2.

This rate is expected to be stable

under perturbations (Gajic (2023),

Hintz (2023), ...).

When d ≥ 3 is odd

ϕ(t, x) = 0

for x fixed as t large enough, due

to the Strong Huygens Principle

(SHP).

In fact, ϕ ≡ 0 in the entire region

where |x | < t − R.

SHP is expected to be unstable,

but no easy expectation for the

rate.
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Instability of SHP and generation of late time tail

Let d ≥ 3 be odd. While SHP holds for □ϕ = 0, it is highly unstable!

In (u = t − r , r , θ ∈ Sd−1) coordinates, consider

□ϕ+ a(r)∂2r ϕ = 0 in Rd+1

where a = ϵr−1χ>1(r) and ϵ is constant. Then as long as ϵ ̸= 0,

ϕ(t, x) ∼ Ct−d as t → ∞

for x fixed as t → ∞; C ̸= 0 generically.

Note that a tail is generated, but it is faster than the even dimensional

case!

For data supported on the ℓ-th spherical harmonics, (if ϵ ̸= 0)

ϕ(t, x) ∼ Ct−d−2ℓ as t → ∞

for x fixed as t → ∞; C ̸= 0 generically.

13



Price’s law

Schwarzschild black hole exterior: M = (0,∞)t × (2M,∞)r × S2,

gM = −(1− 2M
r )dt2 + (1− 2M

r )−1dr2 + r2gS2 .

“Price’s law” on (3 + 1)-dimensional Schwarzschild black holes

Assume:

• □gMϕ = 0,

• ϕ initially compactly supported,

• ϕ supported on the spherical harmonics of degree ℓ.

Then Price’s prediction was: |ϕ(t, r , θ)| ≃ t−2ℓ−3.
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Through the work of many contributors in the past few decades, Price’s

prediction had been made into a theorem.

Consider □gMϕ = 0 on Schwarzschild spacetime, ϕ initially smooth and

compactly supported.

Theorem (Price’s law)

1. (Dafermos–Rodnianski (2005), Tataru (2013), Donninger–Schlag–Soffer (2012),

Metcalfe–Tataru–Tohaneanu (2012))

|ϕ(t, r , θ)| ≤ C (r)t−3.

2. (Angelopoulos–Aretakis–Gajic (2018, 2021), Hintz (2020)) Generic ϕ

supported on spherical harmonics ≥ ℓ obeys, for some c ̸= 0,

ϕ(t, r , θ) = ct−3−2ℓYℓ(θ) + Or (t
−3−2ℓ−δ),

where Yℓ is a spherical harmonic.
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Theorem (Price’s law)

For □gMϕ = 0, ϕ initially smooth and compactly supported:

1. |ϕ|(t, r , θ) ≤ C (r)t−3.

2. Generic ϕ supported on spherical harmonics ≥ ℓ obeys

ϕ(t, r , θ) = ct−3−2ℓYℓ(θ) + Or (t
−3−2ℓ−δ).

Remarks:

1. More generally in (3 + 1) dimensions:

• Theorem holds on a large class of asymptotically flat, stationary (and

spherically symmetric in case ℓ ≥ 1) spacetimes, including Kerr.

• Upper bound also holds on dynamical spacetimes.

2. Restriction to spherical harmonics ≥ ℓ is a proxy for considering

spin-ℓ fields (e.g., electromagnetic and gravitational fields, which are

spin 1 and 2 respectively).

3. Restriction to spherical harmonics ≥ 1 is similar to considering

d > 3 odd. Indeed, if ϕ supported on spherical harmonics ℓ, then

□R1+3ϕ = 0 ⇔ □R1+3+2ℓ(r−ℓϕ) = 0.
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See also:

Barack–Ori, Bičák, Bizoń–Chmaj–Rostworowski, Blaksley–Burko,

Burko–Khanna, Casals–Ottewill, Ching–Leung–Suen–Young,

Gómez–Winicour–Schmidt, Gundlach–Price–Pullin, Hod,

Krivan–Laguna–Papadopoulos–Andersson, Leaver,

Lucietti–Murata–Reall–Tanahashi, Marsa–Choptuik, Poisson, Szpak,

Zenginoǧlu–Khanna–Burko, ..., Aretakis, Baskin–Vasy–Wunsch,

Dafermos–Rodnianski, Donninger–Schlag–Tataru, Gajic,

Gajic–Kehrberger, Guillarmou–Hassell–Sikora, Kehrberger, Lindblad, Looi,

Looi–Xiong, Luk–O., Ma, Ma–Zhang, Millet, Morgan, Morgan–Wunsch,

Moschidis, Oliver–Sterbenz, Schlue, Van de Moortel, ...
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Main questions

Question 1: Going beyond Price’s law

What happens to Price’s law if we change the setting?

In particular, what happens if we go beyond the (1 + 3)-dimensional,

linear, and stationary setting? More generally,

Question 2: Determination of late-time asymptotics

Given a general (nonlinear) wave equation in odd space dimension, how

are the late-time asymptotics determined?

Later, I will present our Main Theorem, which answers Question 2 for a

large class of nonlinear wave equations on dynamical background.

But first, I will present several applications of the Main Theorem to

answer Question 1, which turns out to be quite subtle.
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Examples & some conjectures



Example 0: Anomalous decay in the linear stationary case

Consider

□ϕ = c(r)ϕ in Rd+1,

c small, smooth, c(r) = ϵr−3 for large r , ϵ constant.

• When d = 3, ϕ ∼ ϵC (r)t−3 .

So ϕ ∼ ϵC (r)t−5 when d = 5?

No!

Theorem (Luk–O. (2024))

When d = 5,

|ϕ| ∼ ϵC (r)t−6,

where C ̸= 0 generically.
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Example 0: Anomalous decay in the linear stationary case

Consider

□ϕ = c(r)ϕ in Rd+1,

c small, smooth, c(r) = ϵr−3 for large r , ϵ constant.

• When d = 3, ϕ ∼ ϵC (r)t−3 .

So ϕ ∼ ϵC (r)t−5 when d = 5? No!

Theorem (Luk–O. (2024))

When d = 5,

|ϕ| ∼ ϵC (r)t−6,

where C ̸= 0 generically.
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Example 1: Anomalous decay in the linear stationary case

Consider higher dimensional Schwarzschild black holes:

gM = −
(
1− 2M

rd−2

)
dt2 +

(
1− 2M

rd−2

)−1

dr2 + r2gSd−1 .

For generic stationary metrics with r−d+2 decay, solution has t−2d+3 tail.

• So ϕ ∼ Ct−7 on (1 + 5)-dimensional Schwarzschild?

No!

In fact, heuristic/numerical arguments suggest anomalous faster decay

Cardoso–Yoshida–Dias–Lemos (2003), Bizoń– Chmaj–Rostworowski (2007). Indeed,

we prove

Theorem (Luk–O. (2024))

Solutions arising from compactly supported data to □gMϕ = 0 on

(5 + 1)-dimensional Schwarzschild spacetime satisfies

ϕ(t, r , θ) ∼ Ct−10,

where c ̸= 0 generically.
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Example 1: Anomalous decay in the linear stationary case

Consider higher dimensional Schwarzschild black holes:

gM = −
(
1− 2M

rd−2

)
dt2 +

(
1− 2M

rd−2

)−1

dr2 + r2gSd−1 .

For generic stationary metrics with r−d+2 decay, solution has t−2d+3 tail.

• So ϕ ∼ Ct−7 on (1 + 5)-dimensional Schwarzschild? No!

In fact, heuristic/numerical arguments suggest anomalous faster decay

Cardoso–Yoshida–Dias–Lemos (2003), Bizoń– Chmaj–Rostworowski (2007). Indeed,

we prove

Theorem (Luk–O. (2024))

Solutions arising from compactly supported data to □gMϕ = 0 on

(5 + 1)-dimensional Schwarzschild spacetime satisfies

ϕ(t, r , θ) ∼ Ct−10,

where c ̸= 0 generically.
20



Example 2: Dynamical black hole background

However, on dynamical backgrounds, slower tails emerge! For □ϕ = cϕ,

if c = ϵ(u,r)
r3 on R1+5, then if ∂uϵ ̸= 0, ϕ ∼ ϵC (r)t−4 (Luk–O. (2024);

cf. t−6 when ∂uϵ = 0).

For a generic dynamical spacetime tending to the (5 + 1)-dimensional

Schwarzschild spacetime, ϕ ∼ ϵt−6 (Luk–O. (2024); cf. t−10 in the

stationary case)

More interesting is the next example from general relativity in dimension

(1 + 3).
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Example 2: Dynamical black hole background

Theorem (Luk–O. (2024))

Let (M, g) be a “generic” (1 + 3)-dimensional spherically symmetric

spacetime converging to Schwarzschild. Consider ϕ solving □gϕ = 0

with compactly supported data supported in spherical harmonics ≥ ℓ.

Then

ϕ(t, r , θ) =

{
ct−3 + O(t−3−δ) ℓ = 0,

ct−2−2ℓYℓ(θ) + O(t−2−2ℓ−δ) ℓ ≥ 1,

where “generically” c ̸= 0.

Observe that the ℓ = 0 tail remains the same. This was also verified for

the spherically symmetric Einstein–Maxwell–Scalar Field system by

Gautam (2024), leading to a stronger version of SCC (mass inflation).

However, when ℓ ̸= 0, the tail is slower than Price’s law decay (which was

t−3−2ℓ); these should be relevant for higher spin fields!
22



Our result rigorously verifies (and settles) the scenario suggested by

Bizoń–Chmaj–Rostworowski, etc., and numerically observed by

Gundlach–Price–Pullin (1994).

Indeed, from Gundlach–Price–Pullin (1994) (revisited by Bizoń–

Chmaj–Rostworowski (2008)):
 

Recall: Price’s law on exact

Schwarzschild is

ϕ(≥ℓ) ∼ Ct−3−2ℓYℓ.
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Generalization of Price’s law

As we have seen, nonstationarity (i.e., dynamical spacetime) should lead

to a behavior different from the linear stationary case. In fact,

nonlinearity also has a similar effect (see Ex. 3). Hence, we make:

Conjecture

Generic solutions to the Einstein vacuum equations which converge to

an asymptotically flat stationary solution (e.g., Kerr) decay with an

exact rate of t−6.

Price’s law predicts t−7 for linearized gravity around Schwarzschild; see

Ma–Zhang (2021) and Millet (2023) for proofs. Both predictions are

based on the idea that dynamic gravitational perturbations are supported

in spherical modes ℓ ≥ 2.

We make an analogous conjecture for Maxwell with t−4 decay (Price’s

law predicts t−5; see Ma–Zhang (2021), Millet (2023)). This is

consistent with the general upper bound proved by Metcalfe–Tataru–

Tohaneanu (2017). 24



Example 3: Effect of nonlinearity

Nonlinear equation with “null condition’” in (3 + 1) dimensions:

□ϕI = ΓIJK (ϕ)(∂tϕ
J∂tϕ

K −
3∑

i=1

∂iϕ
J∂iϕ

K ), I , J,K = 1, · · · ,N.

Theorem (Christodoulou, Klainerman (1986))

Suppose the initial data (ϕ, ∂tϕ) are C∞
c and sufficiently small, then

the solutions are global-in-time and decay.

Nonlinear decay of O(t−2) is known by Christodoulou.

But in many interesting cases, this is not the generic tail. In

determination of the tail, both dispersion and structure of nonlinearity are

important!

Example: There are equations for which ϕ = O(t−∞). (e.g.,

□ϕ = (∂tϕ)
2 −

∑3
i=3(∂iϕ)

2, equivalent to □ψ = 0 for ϕ = eψ.)
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Consider the wave map system:

• (Σ, h) a 2-dimensional Riemannian manifold

• ϕ : R3+1 → Σ a wave map:

□ϕI = ΓIJK (ϕ)(∂tϕ
J∂tϕ

K −
3∑

i=1

∂iϕ
J∂iϕ

K ).

Perturbations of the constant map R3 7→ p ∈ Σ satisfies the global

stability theorem.
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For wave maps, late time tail depends on curvature of (Σ, h) at p!

ϕ : R3+1 → Σ a wave map, perturbation of the constant map to p ∈ Σ.

Theorem (Luk–O. (2024))

1. Suppose the Gauss curvature K (p) ̸= 0. Then, for an open and

dense subclass of small initial data, the solution obeys

t−3 ≲ dist(ϕ(t, x), p) ≲ t−3.

2. Suppose K (p) = 0. Then small-data solutions obey

dist(ϕ(t, x), p) ≲ t−4.
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Thank you for your attention!
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