Lecture II Rotational instability of minimal mass blow-up and backward-in-time construction of blow up
$\left(\operatorname{css}_{m}\right) \quad i \partial_{t} u-A_{t}[u] u+\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}\right) u-\frac{\left(m+A_{\theta}[u]\right)^{2}}{r^{2}} u+|u|^{2} u=0$.

$$
\begin{aligned}
& A_{\theta}(r)=A_{\theta}[u]:=-\frac{1}{2} \int_{0}^{r}|u|^{2} r^{\prime} d r^{\prime} \\
& A_{t}(r)=A_{t}[u]:=-\int_{r}^{\infty}\left(m+A_{\theta}[u]\right)|u|^{2} \frac{d r^{\prime}}{r^{\prime}}
\end{aligned}
$$

Solitons: $\quad Q_{\lambda, \gamma}:=e^{i \gamma} \frac{1}{\lambda} Q\left(\frac{n}{\lambda}\right)$
where $Q:=\sqrt{8}(m+1) \frac{r^{m}}{1+r^{2(m+1)}}$ if $m \geqslant 0$
Exact psendoconformal blow up

$$
S(t, x)=\frac{1}{|t|} Q\left(\frac{n}{|t|}\right) e^{-i \frac{r^{2}}{4 n t \mid}} \quad(t<0 .)
$$

Q. Dynamics near Q ? $(\longleftrightarrow$ dymmics near S by $C)$

First, linearized eqn! 0

Linearization of (CSSm) near Q [Lawrie-0.-Shahshahani, Kim-Kwon 1] Gaal: To arrive at "super-symuetric" form. (cf. [Raphaèi-Rodnianski])

$$
\left(B_{m}\right) \quad D_{u} u=0, \quad D_{u}=\partial_{r}-\frac{\left(m+A_{0}[u]\right)}{r}
$$

Linearization of $\left(B_{m}\right)$ (from Lectunc I)

$$
\begin{aligned}
& D_{w+\epsilon}(w+\epsilon)=D_{w} w+L_{w} \epsilon+(\cdots) \\
& \longrightarrow \quad \begin{array}{l}
L_{w} \epsilon=D_{w} \epsilon-\frac{2}{n} A_{\theta}[w, \epsilon] w, \\
A_{\theta}[v, w]=-\frac{1}{2} \int_{0}^{n} \operatorname{Re}(\bar{v} w) r^{\prime} d r^{\prime}
\end{array},
\end{aligned}
$$

Dual: $\left\langle L_{w} u, v\right\rangle=\left\langle u, L_{w}^{*} v\right\rangle$

$$
\begin{aligned}
L_{w}^{*} v= & D_{w}^{*} \epsilon \\
= & \left(-\partial_{r}-\frac{1}{r}\right) \epsilon
\end{aligned}
$$

(CSS)

$$
\begin{aligned}
& \partial_{t} u+i \nabla E[u]=0 \\
& E[u]=\frac{1}{2}\left\|D_{u} u\right\|_{L^{2}}^{2}
\end{aligned}
$$

(Hamiltonian form)

Note:

$$
\begin{aligned}
\langle\nabla E[u], v\rangle & =\left.\frac{d}{d s} E[u+s v]\right|_{s=0}=\left\langle D_{u} u, L_{u} v\right\rangle \\
& =\left\langle L_{u}^{*} D_{u} u, v\right\rangle
\end{aligned}
$$

$$
\rightarrow \quad \nabla E[u]=L_{u}^{*} D_{u} u
$$

Linearization of ∇E
Also $\nabla^{2} E[w]$, which is sym? ${ }^{b}$

$$
\nabla E[w+\varepsilon]=\nabla E[n]+2_{w} \epsilon+(\cdots)
$$

$$
\rightarrow \quad 2_{w} \epsilon=L_{N}^{*} L_{w} \epsilon+\left(L_{N+\epsilon}^{*}-L_{w}^{*}\right) D_{w} w
$$

For $w=Q$ solving $D_{Q} Q=0$,

$$
2_{Q} \epsilon=L_{Q}^{*} L_{Q} \epsilon .
$$

(supersymen factorization)
$\operatorname{Lin-CSS} m$ around Q

$$
\left(l-\cos _{m}\right) \quad \partial_{t} \epsilon+i \alpha_{Q} \epsilon=0 . \quad \mathcal{L}_{Q}=L_{Q}^{\star} L_{Q} .
$$

Want:
Invariant subspaces \leftarrow generalised Neral of $2_{Q} .\left(\begin{array}{c}\text { Note: } \\ \left(i \alpha_{Q}\right)^{*} \\ =2_{Q}^{*}(-i) \\ \neq-i 2_{Q}^{*}\end{array}\right)$
We have (${ }^{3} \rho$ smith sit.)

$$
\Lambda=r d r+1
$$

symm:
pseudocionf.
symme.
and

$$
\begin{array}{ll}
L_{Q}(\Lambda Q)=0, & L_{Q}(i Q)=0 \\
L_{Q}^{*}\left(i \frac{n}{2} Q\right)=-i \wedge Q, & L_{Q}^{\star}\left(\frac{1}{2(m+1)} r Q\right)=Q \\
L_{Q}\left(i \frac{r^{2}}{4} Q\right)=i \frac{r}{2} Q, & L_{Q} \rho=\frac{1}{2(m+1)} r Q
\end{array}
$$

$$
\leadsto \quad \begin{aligned}
N_{g}\left(i 2_{Q}\right) & =\left(\Lambda Q, i Q, \frac{i}{4} r^{2} Q, p\right) \\
\& \quad N_{g}\left(\left(i 2_{Q}\right)^{*}\right) & =N_{g}\left(-2_{Q}^{*} i\right) \\
& =\left(i \wedge Q, Q, \frac{1}{4} r^{2} Q, i \rho\right)
\end{aligned}
$$

$$
\sim \begin{array}{lc}
\partial_{t}\langle\epsilon, i \wedge Q\rangle=0, \partial_{t}\langle\epsilon, Q\rangle=0 \\
\partial_{t}\left\langle\epsilon, \frac{1}{4} r^{2} Q\right\rangle & \partial_{t}\langle\epsilon, i \rho\rangle \\
=-\langle\epsilon, i \wedge Q\rangle & =\langle\epsilon, Q\rangle
\end{array}
$$

Note: We obtain decomposition of L^{2} into invariant spaces (under (e-cssm))

$$
L^{2}=N_{g}\left(i \alpha_{Q}\right) \oplus{ }^{\perp} N_{g}\left(\left(i \alpha_{Q}\right)^{*}\right)
$$

(when $m \geqslant 2$)

Dynamics near Q via generalized Kernel
What happens if we start with

$$
u_{0}=Q-i b_{0} \frac{r^{2}}{4} Q-(m+1) \psi_{0} p ?
$$

Then $\left.\quad \partial_{t} u\right|_{t=0}=-i \mathcal{L}_{Q}\left(-i b_{0} \frac{r^{2}}{4} Q-(m+1) \mu_{0} p\right)+\cdots$

$$
=b_{0} \Lambda Q+(m+1) \eta i Q+\cdots
$$

$\leadsto \quad u=\frac{e^{i \gamma(t)}}{\lambda(t)} Q(\dot{\lambda}(\dot{1})+\cdots$, where

$$
\left.\frac{\lambda_{t}}{\lambda}\right|_{t=0}=-b_{0},\left.\quad \gamma_{t}\right|_{t=0}=(m+1) y_{0}
$$

Q. Can ne construct exact sols $u=[P(b(s), \eta(s))]_{\lambda(t), \gamma(t)}$ with $P=Q-i b \frac{y^{2}}{4} Q-(m+1) y \rho+\cdots$
\& ODEs for λ, γ, b, η ?
A. Probably no for many models \square but YES for (CSS m) (also (NLS), [Merk-Raphaél-Szefte1]
This will reveal an interesting nonlinear. dynamics called rotational instability of blow up, which is (likely) relevant to WM, MM, SM, ...

Key structure: Existence of S.

$$
\begin{aligned}
S(t, x) & =\frac{1}{|t|} Q\left(\frac{n}{|t|}\right) e^{-i \frac{r^{2}}{4 r \mid t}} \\
& =\left[Q e^{-i b \frac{y^{2}}{\psi}}\right]_{\lambda, \gamma} \quad \text { with } \quad \begin{array}{l}
\lambda=|t| \\
\end{array} \quad \gamma=|t| ; \quad \gamma=0.1
\end{aligned}
$$

Claim: Defining $P(y ; b, 0)=Q(y) e^{-i b \frac{y^{2}}{4}}$, and considering

$$
u(t, r)=[P(\cdot, b(t), 0)]_{\lambda(t), \gamma(t)},
$$

we can "derive" S.

Adapted coordinates (s, y, U) given $\lambda_{1} \gamma$

$$
d t=\lambda^{2} d s, \quad r=\lambda y, \quad u=\frac{e^{i \gamma}}{\lambda} U
$$

(iii., $\left.u=[U(s(t), \cdot)]_{\lambda, \gamma}\right)$

Notation: $u^{\triangleright}=U, U^{*}=u$
equ for $a \longleftrightarrow$

$$
\partial_{s} U-\frac{\lambda_{s}}{\lambda} \Lambda U+\gamma_{s} i U+i L_{U}^{*} D_{U} U=0
$$

from $\partial_{t} u$ from $i L_{u}^{*} D_{u} u$
Plug in $U \rightarrow P=Q(y) e^{-i b \frac{y^{2}}{4}}, \quad b=b(s)$.

$$
b_{s} \partial_{s} P-\frac{\lambda_{s}}{\lambda} \Lambda P+\gamma_{s} i P+i L_{P}^{*} D_{P} P=0
$$

Let us compute $L_{p}^{*} D_{p} P=0$ $A_{\theta}[Q]$ (\because phase rotation symmen)

$$
\begin{aligned}
D_{P} P & =\left(\partial_{y}-\frac{m+A_{\theta}\left[Q e^{-i b y^{2}}\right]}{y}\right)\left(Q e^{-i b \frac{y^{2}}{4}}\right) \\
& =\left(D_{Q Q}\right) e^{-i b \frac{y^{2}}{4}}+i b \frac{y}{2} Q e^{-i b \frac{y^{2}}{4}} \\
& =-i b \frac{y}{2} P
\end{aligned}
$$

$$
\begin{aligned}
& L_{p}^{*} D_{p} P=-L_{p}^{*}\left(i b \frac{y}{2} P\right) \\
&\left(\begin{array}{rl}
\operatorname{Recall}: L_{p}^{*} w & =-\partial_{y} w-\frac{1+m+A_{\theta}[P]}{y} w-\int_{y}^{\infty} \operatorname{Re}(\bar{P} w) d y^{\prime} P \\
\& D_{p} P & =\partial_{y} w-\frac{m+A_{\theta}[P]}{y} w \\
-L_{p}^{*}\left(i b \frac{y}{2} P\right)= & +i \frac{b}{2} P-b \frac{y}{2} L_{p}^{*}(i P) \\
= & +i \frac{b}{2} p-i b \frac{y}{2}\left(-2 \partial_{y}-\frac{1}{y}\right) P \\
& -i b \frac{y}{2} D_{p} P \quad+\int_{y}^{\infty} \operatorname{Re}(\bar{P} i P) d y^{\prime} P \\
= & +i b \Lambda P-b^{2} \frac{y^{2}}{4} P
\end{array}\right)
\end{aligned}
$$

$$
\leadsto \quad 0=-\frac{\lambda_{s}}{\lambda} \wedge P+\gamma_{s} i P-i b_{s} \frac{y^{2}}{4} P-b \wedge P-i b^{2} \frac{y^{2}}{4} P
$$

$\therefore u=\left[Q e^{-i b \frac{y^{2}}{4}}\right]_{\lambda_{1} \gamma}$ soln if

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\lambda_{s}}{\lambda}+b=0, \quad \gamma_{s}=0 \\
b_{s}+b^{2}=0
\end{array}\right. \\
& \ln t, \quad\left\{\begin{array}{l}
\partial_{t} \lambda+\frac{b}{\lambda}=0, \quad \gamma_{t}=0, \\
b_{t}+\frac{b^{2}}{\lambda^{2}}=0
\end{array}\right.
\end{aligned}
$$

Exercise: $\lambda=|t|, b=|t|, \quad 8=0$ is a sol'n.
Q. How about $P(; b, y)$ with $y \neq 0$?
(Recall: $\quad P=Q-i b \frac{y^{2}}{4} Q-(m+1) y p+\cdots$)
equ for $U=P(y ; b(s), y(s))$
\longrightarrow

$$
b_{s} \partial_{b} P+y_{s} \partial_{y} P-\frac{\lambda_{s}}{\lambda} \Lambda P+\gamma_{s} i P+i L_{P}^{*} D_{p} P=0 .
$$

Q. Can we construct family $P(; b, y)$ so that $i L_{P}^{*} D_{P} P$ is a linear combination of $\partial_{b} P, \partial_{\eta} P, \wedge P, i P$?
A. (Amazingly) YES ${ }_{\partial}^{D} \exists P$ that solves can be motivated by consideration. of solvability.

$$
\left\{\begin{array}{l}
i L_{p}^{*} D_{p} P=i\left(i b \Lambda P-(m+1) \eta P-\left(b^{2}+y^{2}\right) \frac{y^{2}}{4} P\right) \\
\& \quad \partial_{b} P=-i \frac{y^{2}}{4} P \quad\left(\Leftrightarrow P(\cdot ; b, \eta)=P(\cdot i 0, \eta) e^{-i b \frac{y^{2}}{4}}\right)
\end{array}\right.
$$

cf. NLS for $b=0, P$ is real \& note difference:

$$
-\Delta P+P+|P|^{2} P=-\eta \frac{y^{2}}{4} P, \quad P=Q+\eta \rho+\cdots
$$

is easier to solve since α_{Q} is invertible for real-valued fans.
But for (CSS), 2_{Q} is not invertible even for real-valued four, and it is difficult to solve the eqn.
(after imposing $-(m+1) y P,-y^{2}$ in front of $\frac{y^{2}}{4} P$ is motivated by solubility consideration.)
Idea of $\left[k_{\text {in }}-k_{\text {won }}\right]$: For $b=0, \eta>0$, solve

$$
D_{p} P=-(m+1) \upharpoonleft \frac{y}{2} P \quad \text { (which is easier) }
$$

then
$P(:: b, y)=P(: 0, y) e^{-i b \frac{y^{2}}{4}}$ solves the above.

$$
\begin{aligned}
& -i b_{s} \frac{y^{2}}{4} P+y_{s} \partial_{j} P-\frac{\lambda_{s}}{\lambda} \Lambda P+\gamma_{s} i P+i L_{P}^{*} D_{P} P=0 \\
& i L_{P}^{*} D_{P} P=-b \wedge P-i(m+1) \eta P-i\left(b^{2}+y^{2}\right) \frac{y^{2}}{4} P
\end{aligned}
$$

$\longrightarrow u$ is a sol'n if

$$
\begin{cases}\frac{\lambda_{s}}{\lambda}+b=0, & \gamma_{s}-(m+1) \eta=0 \\ b_{s}+b^{2}+\eta^{2}=0, & \eta_{s}=0\end{cases}
$$

Integration of this $O D E$.

$$
\left\{\begin{array}{lr}
\lambda_{t}+\frac{b}{\lambda}=0, & \gamma_{t}-(m+1) \frac{y}{\lambda^{2}}=0 \\
b_{t}+\frac{b^{2}+y^{2}}{\lambda^{2}}=0, & y_{t}=0
\end{array}\right.
$$

Observe:

$$
\begin{gathered}
\partial_{t}\left(\frac{b^{2}+\eta^{2}}{\lambda^{2}}\right)=\frac{2 b b_{t}}{\lambda^{2}}-\frac{2\left(b^{2}+\eta^{2}\right) \lambda_{t}}{\lambda^{3}}=0 p_{0}^{p} \\
l_{0}^{2}=\frac{b_{0}^{2}+\eta_{0}^{2}}{\lambda_{0}^{2}}>0 \rightarrow \begin{array}{l}
b=l_{0}^{2}(T-t), \quad \eta=\eta_{0} \\
\lambda=\sqrt{\frac{b^{2}+\eta^{2}}{l_{0}^{2}}=\sqrt{l_{0}^{2}(T-t)^{2}+\left(\frac{\eta_{t}}{l_{0}}\right)^{2}}} \\
\gamma_{t}=(m+1) \frac{l_{0}^{2} \eta_{0}}{b^{2}+\eta_{0}^{2}}=(m+1) \frac{l_{0}^{2} y_{0}}{\left(l_{0}^{2}(T-t)\right)^{2}+\eta_{0}^{2}} \\
\longrightarrow \gamma(t)=(m+1) \arctan \left(\frac{l_{0}^{2}}{\eta_{0}}(t-T)\right)
\end{array}, ~
\end{gathered}
$$

Nonlinear Rotational Instability of S

$$
\begin{aligned}
& b=l_{0}^{2}(T-t), \quad \eta=\eta_{0} \\
& \lambda=\sqrt{\frac{b^{2}+\eta^{2}}{l_{0}^{2}}}=\sqrt{l_{0}^{2}(T-t)^{2}+\left(\frac{\eta_{6}}{l_{0}}\right)^{2}} \\
& \gamma(t)=(m+1) \arctan \left(\frac{l_{0}^{2}}{\eta_{0}}(t-T)\right)
\end{aligned}
$$

$$
\rightarrow \lambda=l_{0}|T-t| \quad \eta_{0}=0
$$

In fact, a similar phenomenon has been predicted for smith blow up for: harmonic map heat flow, Schrodinger maps Wave maps, Yaug-Mills in the energy critical case [Van den Berg -Williams, Merle-Raphaël - Rodnian ski] up sol'ns, the story is differeurts See [Krigyer - Mas - Schlay]

For $S:$ rotational instability D.
Q. Other blow up sol'ns with similar dynamics?
often times, "backward" construction is a good first try. $\left(\begin{array}{c}\text { cf. [Baurgain-Wang }] \\ {[\text { Merle - Raphaë1-Szofte1] }} \\ \text { for (VLS) }\end{array}\right)$
Thus. [Kim-kwon] Let $m \geqslant 1 .{ }^{\exists} \alpha^{*}>0$ s.t. the following holds.

$$
z^{*}: \quad \partial_{r}^{m+4} z^{*}, r^{-(m+3)} z^{*} \in L
$$

(1) (backword construction) $\exists \mathbf{u}: \mathrm{H}_{m}^{\prime}$-sol to (css) on $(-\infty, 0)$ with

$$
u-s(t, r)-z^{*} \xrightarrow{t>0} 0 \text { in } H_{m}^{\prime} .
$$

(2) (${ }^{3}$ rotational instability of $\left.u\right)^{3}$ 1-parameter family $u^{(\eta)}$: H_{m}^{1}-soling to (CSS ${ }_{m}$) where $\eta \in\left[0, y^{*}\right]$, with
i) $u^{(0)}=u$
ii) $y \mapsto u^{\prime} \eta$) is carrinuous in H_{m}^{1-}
iii) for $\eta \neq 0, u^{(\eta)}$ scatters both forward \& backward in time
iv)

$$
u(\eta)=\left[P\left(\cdot ; b^{(\eta)} y\right)\right]_{\lambda^{(}(\eta) \gamma(\eta)}+\Delta_{H_{m}^{\prime}}\left(\alpha^{*}\right)
$$

with $\left\{\quad b^{(y)}=|t|\right.$,
$\lambda^{(\eta)}=\left(|t|^{2}+\eta^{2}\right)^{\frac{1}{2}}$,
$\gamma^{(0)}(-\tau)=O\left(\alpha^{*} \tau\right)$,

$$
\left|\lim _{\eta \sim 0} \sup \right| \gamma^{(\gamma)}(-\tau)=O\left(\alpha^{*} \tau\right),-\gamma^{(\eta)}(-\tau)-(m+1) \pi \mid=O\left(\alpha^{*} \tau\right)
$$

Taking e, we obtain:
Con. Let $m \geqslant 1$. Then $e u^{(0)}-Q-e^{i \Delta-m-2 t} u^{*} \rightarrow 0$ in. L^{2} but $e_{u}(\eta)$ scatters forward in time for $\eta>0$.

Backward construction. (d. [Bourgain-Wang], [Merle-Raphaël-Şefte1])

1. Main decomposition

$$
\begin{aligned}
u^{(y)} & =[P(\cdot ; b(t), y)+\epsilon]_{\lambda(t), \gamma(t)}+z \\
\left(\Leftrightarrow U^{(y)}\right. & =P(y ; b, y)+\epsilon+z^{b}
\end{aligned}
$$

Will specify $\lambda, \gamma, b, z \&$ solve for ϵ from $t=0$.
2. Construction of z Need to take the nonbibal interaction btw $P_{\lambda, \gamma} \& \&\binom{$ of. }{ Lecture I } solve $\left\{\begin{aligned} \partial t z+\tilde{L}_{z} \tilde{D}_{z} z & =0 \\ z(t=0) & =z^{*}\end{aligned} \quad\left(\begin{array}{c}\tilde{D}_{z}, \tilde{L}_{z}^{*} \text { defied with } \tilde{A}_{\theta}, \text { where } \\ \tilde{A}_{\theta}[z]= \\ -\frac{1}{2} \int_{0}^{\infty}|Q|^{2} r^{\prime} d r^{\prime} \\ +A_{\theta}[z]\end{array}\right)\right.$

Since z^{*} is vanishing rapidly as $r \rightarrow 0 \quad k$ is regalan, so does $z:$

$$
\sup _{t \in[-1,0]}\left(\left|\partial_{r}^{e} z\right|+\left|\frac{1}{r^{e} z}\right|\right) \leqslant \alpha^{*} \min \left\{r^{m+2-e}, 1\right\}
$$

3. Equation for $\epsilon \quad W=Q+z^{b}$

$$
\begin{aligned}
& \leadsto \quad \partial_{s} \epsilon+i \mathcal{L}_{w} \epsilon+b \Lambda \epsilon+i(m+1) \eta \epsilon \\
&=\left(\frac{\lambda_{s}}{\lambda}+b\right) \Lambda(p+\epsilon)+\left(b_{s}+b^{2}+\eta^{2}\right) \frac{|y|^{2}}{4} p \\
&-i\left(\gamma_{s}+\theta_{z^{b} \rightarrow p}-(m+1) \eta\right) P-i\left(\gamma_{s}-(m+1) \eta\right) \epsilon \\
&-i \tilde{R}_{p, z} \quad+(\text { better nonlinear terms })
\end{aligned}
$$

nonlinear interaction btw $P \& \&$; vanishing of z of $t=0, r=0$ nonlinear interaction btw $P \& \& ;$ makes this error term small (there is also $\tilde{L_{z}} \tilde{D}_{z} z-L_{z} D_{z} z$ in (z CSS))

When $y=0$,

$$
\begin{aligned}
& \partial_{s} \epsilon+i \mathcal{L}_{w} \epsilon+b \Lambda \epsilon+i(m+1) \eta \epsilon \\
&=\left(-2\left(\frac{\lambda s}{\lambda}+b\right) b+\left(b_{s}+b^{2}+\eta^{2}\right)\right) \frac{(y)^{2}}{4} Q e^{-i b \frac{y^{2}}{4}} \\
&+\left(\frac{\lambda_{s}}{\lambda}+b\right)\left(\Lambda Q e^{-i b \psi^{2}}+\epsilon\right) \\
&- i\left(\gamma_{s}+\theta_{z b}-(m+1) \eta\right) Q e^{-i b y^{2}} \psi^{2}-c\left(\gamma_{s}-(m+1) \eta\right) \epsilon \\
&- i \tilde{R}_{P, z}
\end{aligned}
$$

4. Equations for $\lambda_{1} \gamma, b$ \& energy-virial frail.

We can speafy three equs (use implicit for the).
Use: $\left\langle\epsilon, Z_{1}\right\rangle=\left\langle\epsilon, Z_{2}\right\rangle=0 \quad$ (Lecture I)
\& the coefficient in front of least decaying term on the RHS (which is important when $y=0$)

$$
-2\left(\frac{\lambda s}{\lambda}+b\right) b+\left(b_{s}+b^{2}+y^{2}\right)=0
$$

Test against Z_{1}, Z_{2} to derive equs for λ_{s}, γ_{s} (Lecture I)
For 6: energy method starts with

$$
\begin{aligned}
& \left\langle i \partial_{s} \epsilon+\mathcal{L}_{w} \epsilon-i b \Lambda \epsilon+(m+1) \eta \epsilon, \partial_{s} \epsilon\right\rangle \\
& =\lambda^{2} \partial_{s}\left[\lambda^{-2}\left(E_{\|}^{(q d)}[\epsilon]+b \frac{\tilde{\Phi}}{\text { l }^{(1)}}[\epsilon]+\frac{(m+1)}{2} \eta M[\epsilon)\right)\right]+(\text { better }) \\
& \begin{array}{c}
E[\omega+\epsilon]-E[\omega]-\langle\nabla E[\omega], \epsilon\rangle) \frac{b}{2} \int \operatorname{lm}\left(\dot{\epsilon} \cdot \rho_{r} \epsilon\right) \\
\sim
\end{array}
\end{aligned}
$$

In reality, $\tilde{\Phi}$ is not well-defined for $\epsilon \in H_{m}^{\prime},\binom{[$ Raphaël-Szeftel $]}{$ cf. Muñoz's Lecture }
so perform truncation $\sim \Phi$.

Then $\mathcal{L}(s)=\lambda^{-2}\left(E_{W}^{(q d)}[\epsilon]+b \tilde{\Phi}[\epsilon]+\frac{(m+1)}{2} y M[\epsilon]\right.$

$$
\gtrsim\|\epsilon\|_{\dot{K}_{m}^{\prime}} \quad \text { if } \quad\left\langle\epsilon, z_{1}\right\rangle=\left\langle\epsilon, z_{2}\right\rangle=0
$$

$$
\& b \text { small \& } y \geqslant 0 \text {. }
$$

$$
\&-\lambda^{2} \partial_{s} \mathcal{F}(s) \lesssim\left\|\tilde{R}_{p, z}\right\|_{\dot{H}_{m}^{\prime}}+\text { (acceptable) }
$$

Now bootstrap Db Thanks to
$\left\|\tilde{R}_{p, z}\right\|_{H_{m}^{\prime}} \lesssim \lambda^{M}$ for M large \& (expect) λ is smallest of $t=0$ \& we are integrating backwards,
we can establish decay of $\bar{\alpha}$ \& close.
$m=0$? z^{*} exerts national effect on the ODES.

$$
z^{*}=q r^{\nu} x_{\Sigma 1}(r) . \quad \nu \in \mathbb{C}, \operatorname{Rev}>0 . \quad\left(\text { Note: } z^{*} \in H^{1+\nu-}\right)
$$

Then $\exists_{u}: H_{m}^{\prime}-$ sol ln $_{n}^{\prime}$ to (CSS ${ }_{m}$) with $T_{t}=0$ sit.

$$
u-Q_{\lambda_{1} \gamma}-z^{* t \lambda T_{+}} 0
$$

where

$$
\lambda(t) e^{i \gamma(t)}=-\frac{\sqrt{2}}{4} \frac{\Gamma\left(\frac{v}{2}\right)}{\operatorname{Rev}+1} q \frac{(4 i t)^{\frac{\nu}{2}+1}}{|\log | t| |}
$$

Idea: Run backward construction but $\tilde{R}_{P, \mathbb{Z}^{b}}$ does NOT vanish very fast, $\left(\begin{array}{l}c t \text {. [Jendrej] } \\ {[\text { Jendrej - Laurie }}\end{array}\right.$ instead forces modulation equs.

