
SINGULARITY FORMATION IN EVOLUTIONARY PDES

SUNG-JIN OH

Abstract. This is an evolving set of lecture notes for Math 279 at UC Berkeley in Spring
2023.

1. Week 1: Introduction

Singularities are one of the most fundamental yet fascinating aspects of nonlinear PDEs.
Take, for instance, one of the simplest nonlinear PDEs, the inviscid Burgers equation (also
called Hopf’s equation)

∂tu+ u∂xu = 0, where u : It × Rx → R. (1.1)

Being a (nonlinear) scalar first-order PDE, it can be shown – for instance, using the method
of characteristics [?, Chapter 3]– that starting with regular initial data (e.g., u0 ∈ C∞(R;R))
there exists a unique regular solution for a short time (i.e., u ∈ C∞(I × R;R) solving the
PDE) that satisfies u(0, x) = u0(x). In general, however, such a regular solution cannot be
extended for all times, as the following simple argument shows.

Proposition 1.1. Let u : [0, T )t×Rx → R be a smooth solution to (1.1). If u0(x) = u(0, x)
is smooth and u′0(x0) < 0 at some x0 ∈ R, then it is impossible that T =∞.

Proof. Let us quickly reproduce the standard proof. One first notes that the solution u
is constant on each straight line passing through (0, X) with velocity u0(X) = u(0, X)
(characteristic curve, given by {x = X + u0(X)t}). Next, differentiating (1.1) in x, we
obtain

(∂xu)t + uuxx + (∂xu)2 = 0.

It follows that for v(t,X) := ∂xu(t,X + u0(X)t), we have

∂tv(t,X) + v2(t,X) = 0.

This is Ricatti’s equation; it is well-known that v(t,X) → −∞ in some finite time TX if

v(0, X) < 0. In fact, separation of variables tells us that v(t,X) = v(0,X)
1+v(0,X)t

and thus

TX = (−v(0, X))−1. In particular, v(0, x0) = ∂xu0(x0) < 0 by hypothesis, so it is impossible
that T > (−∂xu0(x0))−1. �

Under reasonable assumptions on the initial data, we are guaranteed to encounter sin-
gularity. For instance, if u0 is smooth and compactly supported, then, by the mean value
theorem, we are guaranteed to have a point where ∂xu0(x0) < 0. Hence, singularities are
generally unavoidable in this problem, and important mathematical questions for this PDE
and become that of understanding singularities: how do they look like, and how do we
reasonably continue the solution after singularity formation (the keywords here are shocks
and entropy solutions ; see [Hörmander, Lectures on nonlinear hyperbolic equations, Chapter
2][?, Ch. 2]). Singularities also have important ramification in the physics that the PDE is
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describing (shock waves in gas dynamics, in this case). The story is similar with many other
nonlinear PDEs of interest.

The goal of this course is to provide a survey of recent techniques and results pertaining to
the topic of singularities for nonlinear evolutionary PDEs. But before we proceed further,
we should clarify the meaning of the terminology “singularity” that we will adopt in the
remainder of this course.

Definition of singularity formation. In this course, we shall consider PDEs that admits an
Cauchy (initial value) problem formulation (i.e., there exists a notion of time t, and solutions
may be considered as t-dependent curves in a function space X), which is (locally) well-posed.
In particular, given any initial data u0 ∈ X, we may associate to it the unique well-posed
solution u ∈ Ct([0, T ), X) on some T = T (u0) > 0. The maximal time T+ > 0 until which
the well-posed solution is defined is called the (future) lifespan of u. For us, the working
definition of singularity formation will be:

Definition 1.2. We say that u forms singularity, or blows up in finite time, if it cannot be
extended indefinitely as a well-posed solution (i.e., T+ < +∞). In this case, we shall refer
to T+ as the singular time.

Later, we will give the precise statement of (locally) well-posed Cauchy problem for each
PDE we study in detail. However, we shall not delve into their proofs; these belong to a
different course. For those who are interested, we refer to [?] and [?] (for dispersive PDEs,
but similar ideas often apply to other evolutionary PDEs).

Some examples. In this course, I will attempt to provide a broad overview of the topic of
singularity formation, by demonstrating key ideas in some exemplar cases.

1. Inviscid Burger’s equation.

∂tu+ u∂xu = 0. (Burgers)

2. Euler equations.

∂tρ+∇ · (ρv) = 0,

∂tv + v · ∇v +
1

ρ
∇p = 0.

(Euler)

i. Compressible, isentropic. p = ργ.
ii. Incompressible. ρ ≡ 1. Then ∇·v = 0, and the pressure p has to be determined

by the divergence free condition.

3. Nonlinear Schrödinger/wave/heat equations.

i∂tu−∆u+ µ|u|p−1u = 0, (NLS)

∂2
t u−∆u+ µ|u|p−1u = 0, (NLW)

∂tu−∆u+ µ|u|p−1u = 0. (NLH)

4. Other examples. Later in the course, I will also discuss some geometric flows, such
as harmonic map heat flow, wave maps, Yang–Mills and (self-dual) Chern–Simons–
Schrödinger.
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Basic questions. We now list some basic questions concerning singularities.

1. Formation of singularity. Given a nonlinear evolutionary PDE whose Cauchy
problem is locally well-posed, the first question one should ask is whether singularity
formation is possible (i.e., is it possible that T+ < +∞?). If not, one says that the
Cauchy problem is globally well-posed.

2. Description of singularity formation. If singularity formation is possible, the
natural follow-up question is whether we can describe the formation of singularity in
more detail. I would like distinguish two different kinds of descriptions according to
the typical tools that are involved:

i. Qualitative description of singularities. One powerful way to analyze singulari-
ties is to use “soft” tools such as compactness, starting from conservation laws
and monotonicity formulas for the PDE. A “model” statement that could be
established with tools in this vein would be as follows:

Suppose T+ < +∞. Then for t close to T+, the solution u admits a
decomposition of the form

u(t, x) =
1

λ(t)β
Q

(
x−X
λ(t)

)
+ ε(t, x)

for some Q (blow-up profile), X (blow-up locus), λ(t) (blow-up or
characteristic scale) such that λ(t) → 0 as t ↗ T+, and ε(t, x) that
is “regular” near (T+, X).

This is a rather classical theme in parabolic PDEs (“bubbling” analysis). Anal-
ogous developments have been in achieved in hyperbolic and dispersive PDEs
recently (e.g., threshold theorems, soliton resolution conjecture).

ii. Quantitative description of singularities. Alternatively, one may restrict to a
specific solution exhibiting singularity formation and bring “hard” analysis tools
(i.e., linear stability analysis, multilinear estimates, etc.) to study that and
nearby solutions. Some exemplary problems that can be answered by such an
approach are:
• precise description of λ(t),
• stability of the singularity formation under initial data perturbations (with

estimates relating the perturbations with the solutions),
• stability of the singularity formation under perturbations of the equation.

3. Continuation beyond the first singularity. By its very definition, the Cauchy
problem fails to be well-posed when we encounter singularity. But a very interesting
question to ask is if there is a meaningful way to continue the solution beyond the
first singular time. The answer to this question would often require a precise un-
derstanding of singularity formation (i.e., precise answer to Question 2), as well as
a consideration of the physical/geometric origin of the PDE. A textbook example of
the study of this question would be the theory of entropy solution for the Burgers
equation; see [?, Ch. 2].

In this course, we will mostly be concerned with Question 1 (Formation of singularity)
and Question 2.ii (Quantitative description of singularities) for various evolutionary PDEs.
In fact, these two questions are inherently related: a powerful way to exhibit formation of
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singularity is to come up with a detailed quantitative blow-up scenario! This is a viewpoint
that will be emphasized throughout this course.

Classical, soft arguments for singularity formation. There are classical results that tell us
the existence of singularity formation, which goes through a soft contradiction argument.
Before we get to more quantitative approaches, let us have a quick review of the classical
arguments.

For concreteness, let us consider (NLS).

Lemma 1.3. Let u : It × Rd → C be a smooth solution to

i∂tu−∆u+ µ|u|p−1u = 0, (NLS)

satisfying |x|u(t, x) ∈ L2(Rd) for all t ∈ It. Assume also that µ < 0 (focusing).

(1) For each t ∈ It, we have

d

dt

∫
|x|2|u|2 dx =

∫
x · Im(u∇u) dx.

(2) For each t ∈ It, we have

d

dt

∫
Im(u∇u) dx = 16E −

d · p−1
2
− 2

p+ 1

∫
|u|p+1 dx,

where

E =

∫
1

2
|∇u|2 − 1

p+ 1
|u|p+1 dx.

Proposition 1.4. Let u : [0, T )t × Rd
x → C be a smooth solution to

i∂tu−∆u+ µ|u|p−1u = 0. (NLS)

where µ < 0 (focusing) and p ≥ 4
d

+ 1 (L2-supercritical).
Suppose that u0 ∈ H1, |x|u0 ∈ L2, and one of the following folds:

(1) E(u0) < 0,
(2) E(u0) = 0 and

∫
x · Im(u∇u) dx < 0, or

(3) E(u0) > 0 and
∫

x · Im(u∇u) dx < −
√

32E
∫
|x|2|u|2 dx,

Then T cannot be infinite.

Proof. Suppose that T =∞. Let

V (t) =

∫
|x|2|u|2(t, x) dx, F (t) =

∫
x · Im(u∇u) dx.

Thanks to the assumption p ≥ 4
d

+ 1, we have d · p−1
2
≥ 2 and thus

V (t)′′ ≤ 16E,

where we note that E = E(t) is conserved. Therefore,

V (t) ≤ 8Et2 + F (0)t+ V (0).

The above conditions ensure that the RHS becomes negative in finite time, which leads to a
contradiction. �



5

The advantage of this argument is its simplicity. The disadvantage, however, is that it
gives us very little information as to how the singularity formation actually looks like.

Exercise: NLW (Levine), compressible Euler (Sideris).
Remark: Penrose’s incompleteness theorem for Einstein’s equation.

Remark 1.5. It must be

Self-similar singularities. Another basic strategy for exhibiting singularity formation, which
is much more concrete, is to look for self-similar solutions.

x = λ(t)y, u = ν(t)U,

where we assume also that U depends only on y, i.e.,

U = U(y).

Often times, there are choices of λ(t) and ν(t), that has to do with the scaling invariance
properties of the PDE, that would lead to a simpler equation for U . We shall refer to the
resulting scenario as self-similar. Roughly speaking, any singularity formation that exhibits
the same λ(t) as self-similar will be called Type I.

Let us consider some examples.

Inviscid Burgers equation. (direct approach)

ut + uux = 0.

Consider the ansatz

x = λ(t)y, u = ν(t)Q

where we assume Q = Q(y) (exact self-similarity). Then

− λ̇ν
λ
yQy + ν̇Q+

ν2

λ
QQy = 0

Assume that λ(t) = (T − t)b for some b > 0, where T is the singular time. In order to the

same factor of (T − t) in front of each term, we impose ν(t) = λ(t)
T−t . We are led to

byQy − (b− 1)Q+QQy = 0.

Inviscid Burgers equation. (dimensional analysis)
We may also deduce the above definitions of y and Q using dimensional analysis. We

denote the dimensions of t, x and u by [t], [x] and [u]. Equating the dimension of all terms

in Burgers equation, we see that [u] = [x]
[t]

. We introduce y and Q to be dimensionless space

and dependent variables, respectively, adapted to the (time-dependent) characteristic spatial
scale λ(t) and temporal scale T − t. Then by we are motivated set

x = λ(t)y, u =
λ(t)

T − t
Q.

Nonlinear Schrödinger equation.

i∂tu+ ∆u− |u|p−1u = 0.

Assume radiality. By dimensional analysis, we have

[t] = [x]2, [u] = [t]−
1
p−1 = [x]−

2
p−1 .
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According to the first relation, we consider the characteristic scales λ(t) = a(T − t) 1
2 . By

the second relation, we are led to the change of variables

x = λ(t)y, u =
1

λ(t)
2
p−1

Q.

Assuming that Q = Q(y) (exactly self-similar), the equation for Q becomes

∂2
yQ+

d− 1

y
∂yQ−Q+ ia

(
2

p− 1
Q+ y∂yQ

)
+ |Q|p−1Q = 0.

Type II singularities. Any singularity formation that is not Type I will be referred to as Type
II. For us, the important distinction is that for Type II singularities, it is not possible to rely
on a reduced equation for their construction. Concretely, the determination of λ(t) is now a
part of the problem, which often has to be solved dynamically.

There are many problems where Type II singularities naturally occur. Consider again
(NLS). In the L2-critical case p = 4

d
+1, it can be shown that the radial self-similar equation

does not admit an H1 solution for any a > 0 [Sulem and Sulem, The nonlinear Schrodinger
equation. Self-focusing and wave collapse, Chapter 8]. Nevertheless, the virial argument
shows that singularity formation is possible, and in fact is generic (any initial data with
negative energy). We refer to Perelmen [?] and Merle–Raphaël [?, ?, ?, ?, ?] for the study
of Type II singularities in this problem.

To do:

• Summarize Perelman, Merle–Raphaël works.
• Other examples: Critical geometric wave/dispersive/heat equations. Here, there is

no soft argument for the existence of singularity formation; the very first construc-
tion of singularity formation had to deal with Type II singularities (Chang–Ding–Ye
[?] for HMHF; Krieger–Schlag–Tataru [?], Rodnianski–Sterbenz [?] and Raphaël–
Rodnianski [?] for WM).

Outline of the course.

1. Self-similar singularities and related topics.
i. Perturbation of self-similar singularities. We will follow my paper with Federico

Pasqualotto on showing the existence of singularity formation for perturbations
of the inviscid Burger’s equation:

∂tu+ u∂xu+ Γu = 0

as long as Γ is “of order less than 1”. The proof will be based on a detailed,
quantitative understanding of the self-similar blow-up solutions to (1.1) and its
stability properties. These ideas that will be introduced here will be rudimentary
(although in different forms) in the subsequent part of the course.

ii. Elgindi’s proof of singularity formation for the incompressible Euler equations.
Next, we will follow the groundbreaking paper of T. Elgindi on the existence of
(self-similar) singularity formation for the incompressible Euler equations.

2. Type II singularities near a soliton. (Model equation TBD)
To construct Type II singularities, the laws for λ(t) must be derived.
i. Backward construction. TBD
ii. Forward construction. TBD
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2. Weeks 2–6. Self-similar solutions to the inviscid Burgers equation,
their stability, and related topics

In the next few lectures, we shall focus on the inviscid Burgers equation

∂tu+ u∂xu = 0, (Burgers)

and variants of it.

2.1. Smooth self-similar solutions to Burgers equation. We start by studying the
exactly self-similar solutions to (Burgers). Recall that, with the change of variables

x = λ(t)y, u =
λ(t)

(T − t)
Q,

where λ(t) = (T − t)b for some b ∈ R and Q = Q(y), we arrive at the equation

by
dQ

dy
− (b− 1)Q+Q

dQ

dy
= 0. (2.1)

Observe that (2.1) remains invariant under the transformation Q 7→ −Q(−y). In view of
this symmetry, we shall look for odd solutions to (2.1).

The standard trick for solving (2.1) is to exchange the independent and dependent vari-
ables, which leads to an explicitly solvable linear equation. We remark that when performed
in the setting of 2× 2 systems, this trick is usually called the hodograph transformation; see
[?, Chapter 4].

Assume that Q = Q(y) is monotonic on an interval J . Inverting this relation, view y as a

function of Q on J = Q(J). Since dy
dQ

=
(

dQ
dy

)−1

, we have

by

(
dy

dQ

)−1

− (b− 1)Q+Q

(
dy

dQ

)−1

= 0.

Assuming dy
dQ

= (dQ
dy

)−1 6= 0, we arrive at

−(b− 1)Q
dy

dQ
+ by +Q = 0.

This is a first-order linear ODE, which we can explicitly solve.
When b = 1, we simply obtain

y = −Q.
For b 6= 1 and for Q 6= 0, this equation may be rewritten as

(b− 1)Q1+ b
b−1

d

dQ

(
Q−

b
b−1y

)
= Q,

or equivalently,
d

dQ

(
Q−

b
b−1y

)
=

1

b− 1
Q−

b
b−1 .

Hence,

y = Q
b
b−1

(
−Q−

1
b−1 − a

)
= −Q− aQ

b
b−1 ,

where a is an integration constant.
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We now observe that Q 7→ y is monotone and smooth (especially at Q = 0) when a > 0
and b

b−1
= 2k + 1 for some k ∈ Z≥0, or equivalently, b = 2k+1

2k
. It is useful to rewrite the

defining relation of the odd function Qk,a as

y = −Qk,a − aQ2k+1
k,a . (2.2)

From this relation, it is clear that
Qk,a
y
≥ −1 for all y. Moreover, implicit differentiation

gives ∂yQk,a = − 1
1+a(2k+1)Q2k

k,a
, which implies that ∂yQk,a ≥ −1.

Let us study the asymptotics of Q by looking at (2.2). When k ≥ 1, the integration
constant a is essentially the (2k+ 1)-th Taylor coefficient of Qk,a at 0. To wit, we (formally)

expand Qk,a =
∑

n≥0

Q
(n)
k,a(0)

n!
yn, plug it in (2.2), and observe the following:

• all even order Taylor coefficients are zero (obvious due to the odd symmetry),

• Q′k,a(0) = −1, and Q
(2j+1)
k,a (0) = 0 for all 0 ≤ j < k, and Q

(2k+1)
k,a (0) = a(2k + 1)!

Remark 2.1. The appearance of the integration constant a is natural, in view of the possibility
of modulating λ(t) = a′(T − t)b (Exercise: Show that a can be set equal to 1 by modifying
λ(t) into λ(t) = a′(a)(T − t)b).

Let us also discuss the asymptotics of Q as y →∞. Assume again that k ≥ 1 and a > 0.
It is clear from (2.2) that Qk,a → ∞ as y → ∞. This means that for large values of y,
aQ2k+1

k,a would dominate Q. Thus, our initial approximation is

Qk,a ≈ −
(y
a

) 1
2k+1

+ · · ·

More rigorously, it is not difficult to show that

lim
y→∞

Qk,a

−(y
a
)

1
2k+1

= 1.

Now plugging this approximation into (2.2), we can get the next order terms in the approx-
imation as follows:

Qk,a = −
(
y +Qk,a

a

) 1
2k+1

= −

(
y

a
− 1

a

(
y +Qk,a

a

) 1
2k+1

) 1
2k+1

= · · · (2.3)

We summarize our observations so far as a proposition.

Proposition 2.2. For every k ≥ 0 and a > 0, the odd function Qk,a defined by the implicit
relation

y = −Qk,a − aQ2k+1
k,a (2.2)

is a smooth solution to (2.1) with b = 2k+1
2k

. The following global bounds hold:

∂yQ ≥ −1,
Q

y
≥ −1. (2.4)

The Taylor expansion of Qk,a near y = 0 takes the form

Qk,a = −y − ay2k+1 +O(|y|2k+2).
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Higher order expansions can be obtained by studying (2.2). As y → ±∞, we have

lim
y→±∞

Qk,a

∓(y
a
)

1
2k+1

= 1.

More precise expansions can obtained through (2.3).

We now discuss how Qk,a looks like in the original variables t, x, and u. Let us start with
the case when k = 0 or a = 0, which is instructive but degenerate. In this case, Qk,a = −y,
so we simply have

u = − x

T − t
,

For every fixed x 6= 0, this solution blows up as t↗. This behavior is not so interesting since
it is very far from what we expect in shock formation; if we start with a bounded smooth
initial data, then by the conservation of the L∞ norm (or maximum principle), the solution
must be bounded all the way up to the singular time.

When k ≥ 1 and a > 0, we get something more interesting. We have

u(t, x) = (T − t)b−1Qk,a(
x

(T−t)b ), ∂xu(t, x) = (T − t)−1Q′k,a(
x

(T−t)b ).

Fix any x ∈ (0, 1) and take t↗ T . Then y = x
(T−t)b ↗∞, so

|u(t, x)| = |(T − t)b−1Qk,a(
x

(T−t)b )| . (T − t)b−1

(
x

a(T − t)b

) 1
2k+1

=
(x
a

) 1
2k+1

,

and we see that u(t, x) stays bounded as t↗ T . However, if we track the value of ∂xu(t, 0),
then

∂xu(t, 0) = (T − t)−1Q′k,a(0) = −(T − t)−1 → −∞ as t↗ T,

which is consistent with what one expects for the Burgers equation (recall Proposition 1.1)!
At this point, one might complain that the initial data for this u(t, x) is still not bounded.

However, this issue can be easily fixed by a cut-off argument, along with some use of the
method of characteristics.
Exercise: Cut off the initial data for Qk,a with k ≥ 1, a > 0 to produce an H∞(R)(=
∩m≥0H

m(R)) initial data leading to a finite time blow-up.
Exercise: Explain why the same procedure does not work for Q0 = −y.

2.2. Perturbation of self-similar solutions to Burgers I: Introduction. Having stud-
ied exact self-similar blow up, now we wish to understand the dynamics around these solu-
tions.

2.2.1. Renormalized time variable, ]/[-notation. To study the dynamics, we want to intro-
duce a new set of variables with respect to which the exact self-similar solution looks simpler.
To this end, in addition to the renormalized space and dependent variables y and U , we in-
troduce a renormalized time (or self-similar time) variable s as follows: take t = t(s), where

dt = (T − t)ds.
The simple motivation behind this relation is that it leads to an s-derivative term without
extra factors of the characteristic scale in the resulting equation; see (2.5) below. Note that
it is also consistent with dimensional analysis (s is the dimensionless time, T − t has the
dimension of time).
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Normalizing s|t=T =∞, we have

s = − log(T − t).
Hence, λ = (T − t)b = e−bs. As before, we introduce

x = e−bsy, u(t, x) = e−(b−1)sU(s, y).

After a straightforward computation, we obtain the self-similar Burgers equation

∂sU − (b− 1)U + by∂yU + U∂yU = 0. (2.5)

To facilitate the transformation of the dependent variable, we introduce the ]/[-notation
of Kim and Kwon.

Definition 2.3. Given U = U(s, y), we will write U ](t, x) = e−(b−1)sU(s, y)
∣∣
(s=s(t),y=y(t,x))

(“going up to (t, x, u) variables”), and given u = u(t, x), we define u[(s, y) by the relation
u(t, x) = e−(b−1)su[(s, y)

∣∣
(s=s(t),y=y(t,x))

(“going down to (s, y, U) variables”).

2.2.2. Perturbation equation. Write U = Q + ε, where Q is one of the exact self-similar
solutions. Then

LQε = −ε∂yε,
where LQ is the linearized operator

LQε := ∂sε− (b− 1) ε+ by∂yε+ ε∂yQ+Q∂yε

2.2.3. Linear stability analysis. We now study the linear equation

LQε = f. (2.6)

The first question we might ask is whether LQ is stable, i.e., if solutions to (2.6) with
suitable initial data and f (e.g., f = 0) decay as s → ∞. Unfortunately, the answer turns
out to be no. To wit, consider a smooth solution ε to LQε = 0, and evaluate the equation at
y = 0. The value of ε(s, 0) satisfies the ODE

0 = ∂sε(s, 0)− (b− 1)ε(s, 0)− ε(s, 0) = ∂sε(s, 0)− bε(s, 0),

and since b > 0, we see that ε(s, 0) grows exponentially as s→∞.

Remark 2.4. One should not be surprised by the existence of an instability. In fact, some
degree of instability is naturally expected in this problem due to the symmetries of the
underlying equation! To wit, continuous symmetries of (Burgers) (e.g., space translation,
time translation, Galilean transformation) applied to Q] give rise to continuous deformations
ofQ] as solutions to (Burgers); differentiation along such a deformation gives rise to a solution
to the linearized equation LQϕ = 0, which may exhibit growth. Indeed, later we will see
that the growth of ε(s, 0) has to do with the Galilean invariance of (Burgers).

However, it must also be noted that there are instabilities that do not seem to come from
any symmetries in this problem as well. We will return to the discussion of instabilities
coming from symmetries later.

How do we then find parts of solutions that decay (as s→∞)? For this purpose we will
introduce a basic, but important, idea that will be useful throughout the course, namely, that
differentiating the equation with respect to y improves the decay as s → ∞. The heuristic
reason behind this phenomenon is the natural separation of scales (or red-shift effect) that
occurs in finite time blow-up problems.
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An explanation of this intuition in the concrete case of (2.6) is as follows. Note that LQ
resembles ∂s− (b− 1) + by∂y as |y| → ∞ (since |∂yQ| � |b− 1| and |Q| � |y|). But observe
that (∂s− (b− 1) + by∂y)ε = 0 is precisely ∂tε

] = 0 for t < T . Hence, the solution ε] does not
change in time in the original (t, x)-variables. On the other hand, if seen with respect to the
characteristic scale λ in the (s, y)-variables, then ε gets rescaled to have bigger and bigger
support as s→∞ (separation of scales 1 and λ); hence, ∂my ε decays better. Correspondingly,
in the language of Fourier transform, we see that the y-frequency support of ε shrinks to 0
as s→∞ (red-shift effect).

Having motivated the idea of taking ∂y’s, let us carry it out concretely. We begin with a
computation.

Lemma 2.5. Let ε be a smooth solution to (2.6). Then ∂my ε satisfies the equation

LQ;m∂
m
y ε =

∑
m′:0≤m′<m

αmm′∂
m+1−m′
y Q∂m

′

y ε+ ∂my f, (2.7)

where αmm′ are some constants and

LQ;mψ := ∂sψ + ((m− 1)b+ 1 + (m+ 1)∂yQ)ψ + (by +Q)∂yψ. (2.8)

Proof. Let us take ∂my of the both sides of LQε = f , and keep track of all terms involving

ε of order m and higher. We have [∂my , y] = my∂m−1
y and [∂m+1

y , Q] = (m + 1)∂yQ∂
m
y −∑m−1

m′=0 α
m
m′∂

m+1−m′
y Q∂m

′
y for some (combinatorial) constants αmm′ . Thus,

∂my f = ∂my (∂sε− (b− 1)ε+ by∂yε+ ∂y(Qε))

= ∂sψ + ((m− 1)b+ 1 + (m+ 1)∂yQ)ψ + (by +Q)∂yψ

−
m−1∑
m′=0

αmm′∂
m+1−m′
y Q∂m

′

y ε,

which proves the lemma. �

An easy way to see the positive effect of taking ∂y is to study the higher Taylor coefficients
of ε at y = 0. Introduce cm(s) = ∂my ε(s, 0). By the preceding lemma, we have:

Lemma 2.6. Let ε be a smooth solution to (2.6). Then cm(s) = ∂my ε(s, 0) satisfies the
equation

∂scm + ((m− 1)(b− 1)− 1) cm =
∑

m′:0≤m′<m

αmm′∂
m+1−m′
y Q(0)cm′ + ∂my f(s, 0) (2.9)

Note that ((m− 1)(b− 1)− 1) turns negative as soon as m ≥ 1!
Taking ∂y also improves the behavior of energy (i.e., L2)-type quantities. This phenomenon

can be most clearly seen at the level of LQ;m:

Lemma 2.7. For any ψ ∈ C∞t Sy, we have

1

2
∂s‖ψ‖2

L2 ≤ −βm‖ψ‖2
L2 + 〈ψ,LQ;mψ〉 (2.10)

where 〈ϕ, ψ〉 =
∫
ϕψ dy and

βm = (m− 3
2
)(b− 1)− 1.
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Proof. We start with 〈LQ;mψ, ψ〉 and proceed as follows:

〈LQ;mψ, ψ〉 = 〈∂sψ + ((m− 1)b+ 1 + (m+ 1)∂yQ)ψ + (by +Q)∂yψ, ψ〉

=
1

2
∂s‖ψ‖2 + 〈((m− 1)b−m+ (m+ 1)(∂yQ+ 1))ψ, ψ〉+ 〈(by +Q)∂yψ, ψ〉

=
1

2
∂s‖ψ‖2 + 〈((m− 1)b−m+ (m+ 1)(∂yQ+ 1))ψ, ψ〉+ 〈−(1

2
b+ 1

2
∂yQ)ψ, ψ〉

=
1

2
∂s‖ψ‖2 + 〈((m− 3

2
)(b− 1)− 1 + (m+ 1

2
)(∂yQ+ 1))ψ, ψ〉.

In particular, in the third equality, we used integration by parts to write

〈(by +Q)∂yψ, ψ〉 =

∫
(by +Q)

1

2
∂yψ

2 dy = −
∫

1

2
∂y(by +Q)ψ2 dy.

Recall from Proposition 2.2 that ∂yQ ≥ −1. Thus,

1

2
∂s‖ψ‖2 = −〈((m− 3

2
)(b− 1)− 1 + (m+ 1

2
)(∂yQ+ 1))ψ, ψ〉+ 〈LQ;mψ, ψ〉

≤ −〈((m− 3
2
)(b− 1)− 1)ψ, ψ〉+ 〈LQ;mψ, ψ〉,

as desired. �

We want to prove the following result.

Theorem 2.8. Let Q = Qk,a for some k ∈ Z≥1 and a > 0. The space

X2k+2 = {ψ ∈ Ḣ2k+2(R) : ∂my ψ(y = 0) = 0 for m = 0, 1, . . . , 2k + 1}

is an “invariant subspace” for LQε = f , in the sense that if ε(0, y) = ε0(y) ∈ X2k+2 and
f(s, y) ∈ X2k+2 for every s, then ε(s, y) ∈ X2k+2 for all s. Moreover, we have the following
“stability properties”:

‖∂2k+2
y ε(s)‖L2 . e−

1
4k
s‖∂2k+2

y ε0‖L2 +

∫ s

0

e−
1
4k

(s−s′)‖∂2k+2
y f(s′)‖L2 ds′.

Indeed, if f = 0, then the above theorem tells us that ε with ε(s = s0) ∈ X2k+2 decay to
zero as s→∞. Furthermore, ε decays if ‖∂2k+2

y f‖L2 decays as well; to see this, the following
computation is useful:

Lemma 2.9. For any α, β ∈ R and s > 0, we have

∫ s

0

e−α(s−s′)e−βs
′
ds′ '


e−βs if α > β,

e−αs if α < β,

se−αs if α = β.

Proof. We compute

∫ s′

0

e−α(s−s′)e−βs
′
ds′ = e−αs

∫ s′

0

e(α−β)s′ ds′ ' e−αs


e(α−β)s α > β,

s α = β

1 β < α.

�
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Now we turn to the proof. What we have is almost enough, except that we need to
consider the contribution of αmm′∂

m+1−m′
y Q∂m

′
y ε for the Ḣ2k+2-norm bound. I will use an

elegant approach due to Ely Sandine, which consists of commuting also with negative powers
of y and using induction. We need the following computation:

Lemma 2.10. Let ε be a smooth solution to (2.6) satisfying ∂m
′

y ε(s, 0) = 0 for m′ =

0, . . . ,m− 1. Then y−`∂m−`y ε satisfies the equation

LQ;m,`(y
−`∂m−`y ε) =

m−`−1∑
m′=0

αm,`
m′ (y)∂m

′

y ε+ y−`∂m−`y f, (2.11)

where

LQ;m,`ψ = ∂sψ +
(
(m− 1)b+ 1 + `y−1Q+ (m− `+ 1)∂yQ

)
ψ + (b+ y−1Q)y∂yψ,

αm,`
m′ (y) is smooth and

|αm,`
m′ (y)| . 〈y〉

1
2k+1

−m−1+m′ .

Moreover, for any ` = 0, . . . ,m,

1

2
∂s‖ψ‖2

L2 ≤ −βm‖ψ‖2
L2 + 〈ψ,LQ;m,`ψ〉 (2.12)

where βm is as before.

Proof. We compute

y−mf = y−m (∂sε− (b− 1)ε+ by∂yε+ ε∂yQ+Q∂yε)

= ∂s(y
−mε)− (b− 1)(y−mε) + by∂y(y

−mε) +mb(y−mε)

+y−mε∂yQ+
Q

y
y∂y(y

−mε) +m
Q

y
(y−mε).

For the second part, use that y−1Q ≥ −1 from Proposition 2.2. �

We also need Hardy’s inequality.

Lemma 2.11 (Hardy’s inequality). Let m ≥ 1.

(1) If f is smooth and f(0) = · · · = ∂m−1
y f(0) = 0, we have

‖|y|−mf‖L2 . ‖∂my f‖L2 .

(2) More generally, if f ∈ Ḣm and r > 0, we have

‖(r + |y|)−mf‖L2 . r−m‖f‖L2(|y|≤r) + ‖∂my f‖L2 .

Proof. We start with (1). It will be sufficient to work on the positive half-line. We first prove
an intermediate bound. We have

0 ≤
∫ y1

y0

(∂yf − cy−1f)2y−d dy

=

∫ y1

y0

(
(∂yf)2 − 2cy−1∂yf

2 + c2y−2f 2
)
y−d dy

=

∫ y1

y0

(
(∂yf)2 − c(d+ 1)y−2f 2 + c2y−2f 2

)
dy − cy−1f 2(y)

∣∣y1
y0
,
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where we used integration by parts in the last equality. We choose c so that c(d+ 1− c) > 0
and c > 0, e.g., c = d+1

2
. Then

c(d+ 1− c)
∫ y1

y0

y−d−2f 2 dy + cy−d−1
1 f 2(y1) ≤

∫ y1

y0

y−d(∂yf)2 dy + cy−d−1
0 f 2(y0).

Provided that f vanishes to a sufficiently high order at y = 0 so that limy0→0+ y
−d−1
0 f 2(y0). =

0, we obtain

c(d+ 1− c)
∫ ∞

0

y−d−2f 2 dy ≤
∫ ∞

0

y−d(∂yf)2 dy.

Indeed, when m = 1, the desired inequality follows by taking d = 0 and observing that
y−1

0 f 2(y0) → 0 if f is smooth and f(0) = 0. For higher m, we concatenate the above
inequality (with different choices of f and d) and estimate∫ ∞

0

y−2mf 2 dy .
∫ ∞

0

y−2m+2(∂yf)2 dy .
∫ ∞

0

y−2m+4(∂2
yf)2 dy . · · · .

∫ ∞
0

(∂my f)2 dy.

To prove (2), we first notice that, by scaling, we may set r = 1 without loss of generality.
Assuming this, we simply split f = χf + (1 − χ)f , where χ is a smooth bump function
supported in {|y| < 1}. We then apply (1) to (1 − χ)f , and use ‖f‖L2(|y|≤1) to bound the
contribution of χf . �

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. To close the ‖·‖Ḣ2k+2 bound for ε, start with ‖|y|−2k−2ε‖L2 , which goes
through. Then work with ‖y−2k−1∂yε‖L2 , where the extra term on the RHS can be dealt with
using ‖|y|−2k−2ε‖L2 . Continue inductively.

This procedure gives us the desired theorem with ‖|y|−mf(s′)‖L2 + · · · ‖∂my f(s′)‖L2 on the
RHS. Since f(s′) satisfies the vanishing conditions at y = 0, we can use Hardy’s inequality
to bound this from above by ‖∂my f(s′)‖L2 . �

Remark 2.12. Observe that the simple proof of (1) goes through since f is assumed to also
obey the vanishing condition at y = 0 up to the (2k + 1)-th derivative (i.e., f(s, ·) ∈ X for
all s). In the nonlinear analysis below, however, we would need to relax this assumption on
f while assuming only that ε(s, ·) ∈ X for all s.

Remark 2.13. In fact, the eigenfunctions can be computed, and we can obtain a direct sum
decomposition of the space Ḣ2k+2(R) into invariant subspaces: unstable, center and stable;
see the appendix below. However, as we shall see, such a refined decomposition is not needed
for nonlinear stability results!

Appendix: Identification of unstable and center linear subspaces. Introduce

HQψ := (b− 1)ψ − by∂yψ − ∂yQψ −Q∂yψ.
We wish to solve the eigenvalue equation

HQψ = νψ.

For concreteness, fix Q = Qk,1. The trick for solving this equation is to use y = −Q−Q2k+1

and make the change of variables from y to Q [?]. Then

ψ
(
( 1

2k
− ν)(1 + (2k + 1)Q2k) + 1

)
= dψ

dQ

(
1
2k
Q+ 2k+1

2k
Q2k+1

)
.



15

Integrating this equation, we obtain (formally and up to normalization)

ψ =
Q2k+1−2kν

1 + (2k + 1)Q2k
=

1

2k + 2− 2kν
∂yQ

2k+2−2kν .

Observe that ψ is smooth at the origin if and only if 2k + 1− 2kν is a nonnegative integer.
We therefore define the numbers

νm =
2k + 1−m

2k
, m = 0, 1, 2, . . . .

and smooth eigenfunctions

ψm =
Qm

1 + (2k + 1)Q2k
.

Note that these numbers agree with the rates for cm that we computed. We may define the
unstable and center linear invariant subspaces of Ḣs as

Xs
u = span(ψ0, . . . , ψ2k), Xs

c = span(ψ2k+1).

Exercise: Prove the direct sum decomposition

Ḣ2k+2 = X2k+2
u ⊕X2k+2

c ⊕X2k+2,

where X2k+2 is as before.

Remark 2.14. It is also instructive to carry out a similar computation for the adjoint H∗Q.
We have

H∗Qϕ = (b− 1)ϕ+ b∂y(yϕ)− ∂yQϕ+ ∂y(Qϕ) = (2b− 1)ϕ+ by∂yϕ+Q∂yϕ.

If ϕ solves H∗Qϕ = νϕ, we have

(−2b+ 1 + ν)ϕ = (by +Q)∂yϕ = (by +Q)∂yQ∂Qϕ

=
(b− 1)Q+ bQ2k+1

1 + (2k + 1)Q2k
∂Qϕ =

Q

2k
∂Qϕ.

Thus, formally and up to normalization,

ϕ = Q−2k−2+2kν .

2.3. Perturbation of self-similar solutions to Burgers II: Stability modulo finitely
many unstable directions.

2.3.1. Formulation of stability results. Explain further:

• Recall: Stable manifold theorem from ODEs. We wish to do something similar.
• What do we need to worry about when adding nonlinearity? That our function space

admits product estimate. This will be okay. The key is to control ∂yε ∈ L∞.
• What do we need to worry about when modifying the equation (so that Q is not

the self-similar solution anymore)? Contribution of ΓQ], where Q] = λ(t)
T−tQ( x

λ(t)
).

Compare strengths of each term in the equation:

∂tQ
] ∼ (T − t)−1(T − t)b−1 = (T − t)b−2,

Q]∂xQ
] ∼ (T − t)2(b−1)(T − t)−b = (T − t)b−2,

ΓQ] ∼ (T − t)b−1(T − t)−αb = (T − t)(1−α)b−1.
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We expect the last term to be smaller than the first two if (1 − α)b − 1 > b − 2, or
equivalently, 1 > αb. Indeed, this turns out to be a correct sufficient condition; see
the theorem below.
• References:

– (compressible Euler) Buckmaster–Shkoller–Vicol (k = 1), Buckmaster–Iyer (k >
1)

– (Whitham equation, fKdV, Burgers–Hilbert) Γ =
√

tanh |∂x||∂x|∂x: V. Hur–
L. Tao, V. Hur (different methods); Γ = |∂x|−1∂x: R. Yang (k = 1, 2)

– (fractal Burgers) Alibaud–Drouniot–Vovelle (very different method), Chickering–
Morano-Vasquez–Pandya (similar method, more L∞-based, k = 1)

– (Burgers with transverse viscosity) Collot–Ghoul–Masmoudi.

Let χ be a smooth cutoff adapted to (−1, 1); assume also that χ is even, 0 ≤ χ ≤ 1, and
suppχ ⊆ (−2, 2). We also use the shorthand Qk = Qk,1 (i.e., y = −Qk −Q2k+1

k ).

Theorem 2.15. Consider

ut + uux + Γu = 0, (2.13)

where either Γ̂f = |ξ|α−1iξf (fKdV) or |ξ|αf (fractal Burgers) with 0 ≤ α < 1. Given
k ∈ Z≥1, if

α <
2k

2k + 1
(equivalently, bα < 1),

then there exists δ0 > 0 and γ0 > 0 such that the following holds. For any s0 > δ−1
0

and ε0 ∈ H2k+1(R) with ‖ε0‖H2k+3 < e−4γ0s0 and ε0(0) = · · · = ∂2k
x ε0 = 0, there exists

c0 = (c0;0, . . . , c0;2k) ∈ {c ∈ R2k+1 : |c| < e−γ0s0} such that the initial data

u0 = e−(b−1)s0

(
χ(x)Qk(s0, e

bs0x) + χ(ebs0x)
2k∑
m=0

c0;me
mbs0xm + ε0(ebsx)

)
lead to a well-posed H2k+3 solution u that blows up at time T = e−s0. In self-similar coordi-
nates (s, y, U) with (t = T − e−s, x = (T − t)by, u = (T − t)b−1U), we have the asymptotics∥∥∂y(U − χ((T − t)by)Qk)

∥∥
L2
y

+
∥∥∂2k+3

y

(
U − χ((T − t)by)Qk

)∥∥
L2
y
→ 0 as s→∞.

Remark 2.16. In the original (t, x) variables, the asymptotics become

(T − t)−
1
2
b+1
∥∥∂x(u− χ(x)(T − t)b−1Qk((T − t)−bx))

∥∥
L2
x

+ (T − t)(2k+3)b− 3
2
b+1
∥∥∂2k+3

x

(
u− χ(x)(T − t)b−1Qk((T − t)−bx)

)∥∥
L2
x
→ 0

as t → T . This control is sufficient to establish blow-up. However, the above control does
not give a uniform control on ‖u‖L∞ as t→ T .

On the other hand, we know a lot more about the regularity of u near the singular time
in the base case of the inviscid Burgers equation. Indeed, in that case we expect u to stay
bounded for all times until T by the maximum principle. Moreover, an explicit computation
shows that the exact self-similar solution (T − t)b−1Q((T − t)−bx) stays uniformly bounded

in C
1

2k+1 .
In fact, these conclusions can be extended to (2.13) by using an adequate weighted L2-

Sobolev space; we shall discuss this in an appendix.
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Aside: Singularity formation for defocusing energy supercritical NLS. TO DO: Fill in details

i∂tu+ ∆u− |u|p−1u = 0.

Madelung transform:

u(t, x) = ρ(t, x)eiφ(t,x)

and define

u = ∇φ.
Then

∂tρ+∇ · (ρu) = 0,

∂tu + u · ∇u = −∇(ρp−1 + PQ),

where PQ = −1
2

∆
√
ρ

√
ρ

. If we omit PQ (quantum pressure), then in view of

∇ρp−1 =
p− 1

p
ρ−1∇ρp,

the resulting equation is precisely the (irrotational) compressible Euler equations with equa-
tion of state P = p−1

p
ρp (ideal polytropic gas)!

TO DO: Cite the rates b of self-similar solutions to compressible Euler from [?]. Make the
heuristic computation in the present case, and see in which case the quantum pressure PQ is
weaker; compare with [?]. Also look at [?] (dissipative perturbation of compressible Euler).

2.3.2. Preparations. We now collect some preparations for the proof of Theorem 2.15.
Perturbed equation in self-similar variables. We compute

∂sU − (b− 1)U + by∂yU + U∂yU + e−(1−bα)sΓU = 0. (2.14)

Profile. We shall write Q = Qk. We begin by defining the profile.

P (s, y) = χ(e−bsy)Q(y)

Note that (∂s + by∂y)χ(e−bsy) = 0. Hence,

∂sP − (b− 1)P + (by + P )∂yP = −χ(e−bsy)Q∂y
(
(1− χ(e−bsy))Q

)
=: ΨB

Indeed,

∂sP − (b− 1)P + by∂yP + P∂yP = χ(e−bsy)(∂sQ− (b− 1)Q+ by∂yQ) + P∂yP

= −χ(e−bsy)Q∂yQ+ χ(e−bsy)Q∂yP.

Lemma 2.17. With the profile P and the Burgers profile error ΨB defined as above, we have

ΨB = 0 for all s > 0 in a neighborhood of y = 0,

‖∂my ΨB‖L2 .m e(−m− 1
2

+ 2
2k+1

)bs.

Proof. The first property is clear from the support property of Ψ. The second property

follows from the asymptotics ∂my Q ≈ −y
1

2k+1
−m for y � 1. �

With respect to the perturbed equation (2.13), we defined the full profile error Ψ as

∂sP − (b− 1)P + (by + P )∂yP + e−(1−bα)sΓP = ΨB + e−(1−bα)sΓP =: Ψ.
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Lemma 2.18. Let 0 ≤ α < 1
b
. With the profile P defined as above, we have

e−(1−bα)s‖∂my ΓP‖L2 .m,δ e
−(1−bα)s max{e( 1

2
+ 1

2k+1
−m−α+δ)bs, 1},

e−(1−bα)s|∂my ΓP (0)| .m,δ e−(1−bα)s max{e( 1
2k+1

−m−α+δ)bs, 1}.

In the first estimate, we may take δ = 0 if 1
2

+ 1
2k+1
−m− α is not an integer. Similarly, in

the second estimate, we may take δ = 0 if 1
2k+1
−m− α is not an integer.

Proof. Given R ∈ 2Z≥0 , let χ1(y) = χ(y) and χR(y) = χ(R−1y) − χ(2R−1y), so that {χR}
forms a smooth partition of unity. By the asymptotics of Q, we have

‖∂my (χR(y)P )‖L2 . R−m+ 1
2

+ 1
2k+1 ,

By interpolation and Sobolev,

‖∂my Γ(χR(y)P )‖L2 . R−m−α+ 1
2

+ 1
2k+1 , ‖∂my Γ(χR(y)P )‖L∞ . R−m−α+ 1

2k+1 .

Note moreover that χRP = 0 if R� 2bs by the support properties of P . The desired bounds
follow by summation in R ∈ 2Z≥0 . �

Corollary 2.19. For 0 ≤ α < 1
b

and M > 0, there exists µ > 0 such that, for any
0 ≤ m ≤M ,

e−(1−bα)s‖∂my ΓP‖L2 . e−µs,

e−(1−bα)s|∂my ΓP (0)| . e−µs,

‖〈y〉m∂1+m
y (P −Q)‖L∞ . e−µs,

‖∂1+m
y ΨB‖L2 .m e−µs.

Furthermore,

‖ΨB‖L2 .m e
3−2k
4k

s.

Initial data and decomposition of the solution. In the self-similar variables, we look
for a solution U(s, y) of the form

U = P (s, y) +M(s, y) + ε(s, y)

where M(s, y) is given as

M(s, y) := χ(y)
2k+1∑
m=0

cm(s)ym,

the remainder ε satisfies the vanishing conditions

ε(s, 0) = · · · = ∂2k+1
y ε(s, 0) = 0,

with the following initial data at s = s0:

U(s0, y) = P (s0, y) +
2k+1∑
m=0

c0;my
mχ(y) + ε0(y),

cm(s0) = c0;m for m = 0, 1, . . . , 2k + 1.

Indeed, the RHS is exactly the initial data in Theorem 2.15 expressed in the self-similar
coordinates. We will also use the notation

W (s, y) = U(s, y)− P (s, y) = M(s, y) + ε(s, y).
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2.3.3. Main bootstrap argument.

Proposition 2.20 (Main bootstrap argument). There exist γ0, γ1, γ2 > 0 and δ0 > 0 such
that

0 < γ2 < γ1 < γ0 <
1
2

min{2− b, 1− bα, µ}, (2.15)

where µ > 0 is as in Corollary 2.19, and the following holds. Assume that U exists as a
H2k+3 well-posed solution on [s0, s1], satisfies the trapping assumption

‖c(s)‖ ≤ e−γ0s for s ∈ [s0, s1], (2.16)

and the bootstrap assumptions

‖∂2k+2
y ε(s)‖L2 ≤ 2e−γ1s for s ∈ [s0, s1], (2.17)

‖∂2k+3
y ε(s)‖L2 + ‖∂yε(s)‖L2 ≤ 2e−γ2s for s ∈ [s0, s1], (2.18)

e−(1−bα)s‖Γε(s)‖L∞(|y|≤1) ≤ 2e−2γ0s for s ∈ [s0, s1]. (2.19)

For s0 > δ−1
0 , ‖ε0‖H2k+3 < e−4γ0s0, we have the following improvement of the bootstrap

assumptions:

‖∂2k+2
y ε(s)‖L2 ≤ e−γ1s for s ∈ [s0, s1], (2.20)

‖∂2k+3
y ε(s)‖L2 + ‖∂yε(s)‖L2 ≤ e−γ2s for s ∈ [s0, s1], (2.21)

e−(1−bα)s‖Γε(s)‖L∞(|y|≤1) ≤ e−2γ0(s−s0)e−2γ0s0 for s ∈ [s0, s1]. (2.22)

We emphasize the distinction between the bootstrap assumptions – which are improved
– and the trapping assumption – which is not improved! As we will see soon, the role
of Proposition 2.20 is to reduce the proof of global-in-s existence of U (along with global
bounds) to just verifying (2.16) concerning a finite-dimensional vector c. We will then employ
a topological argument to find an adequate initial data for c that guarantees (2.16) for all
times.

2.3.4. Proof of Theorem 2.15 assuming Proposition 2.20. To deduce Theorem 2.15 assuming
Proposition 2.20, we will follow the standard shooting argument, which goes back at least to
[?]. We first introduce two definitions.

Definition 2.21. A solution U is trapped on [s0, s1] if all hypotheses of Proposition 2.20
hold.

Definition 2.22. Given an initial data U0 of the form as above, we define the (first) exit
time sexit = sexit(U0) to be the smallest s1 such that |c(s1)| = e−γ0s1 but |c(s)| < e−γ0s for
all s ∈ [s0, s1) (here, c(s) is defined from the solution U arising from U0). If |c(s0)| = e−γ0s0 ,
then we just set sexit = s0.

As a consequence of the main bootstrap argument (Proposition 2.20 and continuous in-
duction), it follows that if s0 > δ−1

0 and ‖ε0‖H2k+3 < e−4γ0s0 , then sexit(U0) is well-defined
and U is trapped on [s0, sexit]. (Exercise: Prove this assertion by a continuous induction
on s.) In particular, the improved bootstrap bounds (2.20)–(2.21) hold for all s ∈ [s0, sexit].
If we could show that sexit = +∞ for some choice of c0 ∈ B(0; e−γ0s0), then the proof of
Theorem 2.15 would be complete.

In order to prove the existence of c0 such that sexit = +∞, we will assume otherwise and
derive a contradiction using a topological argument (shooting argument).
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The key information we need on the unstable coefficients c(s) is the following “outgoing
property” near the boundary.

Lemma 2.23 (Outgoing property of unstable ODEs). There exists c0 > 0 such that, for
s0 sufficiently large, the following holds. Let U be a trapped solution on [s0, s1]. For any
s ∈ [s0, s1] such that

1

2
e−γ0s < |c(s)| ≤ e−γ0s,

we have

∂s(e
2γ0s|c(s)|2) ≥ 2c0e

2γ0s|c(s)|2

In words, if U is near the boundary of the trapped region, then it definitely will exit soon
(with also a quantitative bound on the rate). We defer the proof until next time. For now,
let us proceed with the shooting argument.

Proof of Theorem 2.15 assuming Proposition 2.20 (shooting argument). For each |c0| ≤ e−γ0s0 ,
denote by Uc0(s, y) the solution with initial data at s = s0 induced by c0 and ε0. For the
purpose of contradiction, suppose that for all c0 ∈ B(0; e−γ0s0), sexit(Uc0) < +∞.

Claim: The map H : B(0; e−γ0s0)→ ∂B(0; 1), c0 7→ e−γ0sexit(c0)cc0(sexit(c0)) is continuous.
Assuming the claim, the proof is easy to conclude. Note that the map x 7→ H(e−γ0s0x)

defines a continuous map from B(0; 1) to ∂B(0; 1), which is also the identity map on the
boundary (obvious by definition). But such a map (retraction of B(0; 1) to the boundary)
does not exist (cf. the proof of Brouwer’s fixed point theorem), which completes the proof.

We now turn to the proof of the claim. We divide the proof into two subclaims:

Subclaim 1: (s, c0) 7→ cc0(s) is continuous.
Idea: Transfer bootstrap assumptions on [s, sexit] to a uniform H2k+3 bound on [t, t(sexit)]

in the (t, x) coordinates. Using standard local well-posedness theory in the (t, x)-coordinates
(but transforming it back to the (s, y) coordinates), we will have the Lipschitz continuity
of (s, c0) 7→ Uc0(s) ∈ H2k+2 for s ∈ [s0, sexit]. In particular, by the Sobolev embedding,
(s, c0) 7→ cc0(s) is continuous for s ∈ [s0, sexit(U0)].

Subclaim 2: c0 7→ sexit(c0) is continuous.
It remains to show that c0 7→ sexit(c0) is continuous; this part is the crux of the proof.

By Lemma 2.23, for any ε > 0, if Uc0 is trapped on [s0, s1] and eγ0s1|cc0(s1)| > e−c0ε, then
|sexit(c0)− s1| < ε.

When c0 6∈ ∂B(0, e−γ0s0), sexit(c0) > s0. Clearly, there exists s1 such that s0 < s1 <
sexit(c0) such that e−c0ε < eγ0s1|cc0(s1)| < 1. By Subclaim 1, for c′0 sufficiently close to c0,
we will have e−c0ε < eγ0s1|cc′0

(s1)| < 1 as well, which implies that |sexit(c0)− sexit(c
′
0)| <

|sexit(c0)− s1|+ |sexit(c
′
0)− s1| < 2ε; this establishes the desired continuity.

Now the claim follows, by composition, from the two subclaims. �

2.3.5. Closing the bootstrap assumptions. We now prove Proposition 2.20 (Main Bootstrap)
and Lemma 2.23 (Outgoing Property).

Equations of motion. We begin by deriving the equations of motion. Using the decompo-
sition U = P +W , we have

LPW + e−(1−bα)ΓW = −Ψ−W∂yW. (2.23)
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where LP is the linearized (inviscid) Burgers operator around P :

LP = ∂s − (b− 1) + by∂y + (∂yP ) + P∂y = LQ + (∂y(P −Q)) + (P −Q)∂y.

Further decomposing W = χ
∑2k+1

m=0 cm(s)ym + ε, and putting all the terms involving P −Q
and ε on the RHS, we arrive at the following equation for ε:

LQε = −Ψ− LPM −M∂yM − e−(1−bα)sΓM

−(∂y(P −Q))ε− (P −Q)∂yε− e−(1−bα)sΓε−M∂yε− ε∂yM − ε∂yε.
(2.24)

At this point, we remind the reader the key condition for ε (i.e., ε is in the linear stable
subspace for LQ):

ε(s, 0) = · · · = ∂2k+1
y ε(s, 0) = 0. (2.25)

Next, to derive the equations for c, we evaluate (2.23) and its derivatives up to order
2k + 1 at y = 0.

∂scm + ((m− 1)(b− 1)− 1) cm =
∑

m′:0≤m′<m

αmm′∂
m+1−m′
y Q(0)cm′

−(m!)e−(1−bα)s∂my Γ(P +M + ε)(0)

−m!

2
∂m+1
y ((M + ε)2)(0).

(2.26)

Indeed, this equation follows by applying Lemma 2.6 to

LQW + e−(1−bα)ΓW = −Ψ− (∂y(P −Q))W − (P −Q)∂yW −W∂yW,

where −(∂y(P − Q))W − (P − Q)∂yW vanish near 0 and Ψ(0) = e−(1−bα)sΓP (0). At this
point, it is useful to make the following observation:

Lemma 2.24. We have1

|∂ny (LPM +M∂yM)| .
(
|c|+ |c|2

)
min{|y|2k+2−n, 1}1|y|≤2

+e−(1−bα)s

2k+1∑
m=0

|∂my Γ(P + ε)(0)|min{|y|m−n, 1}1|y|≤2.

Proof. The key observation is that (2.26) ensures that

LQ

(
2k+1∑
m=0

cm(s)ym

)
+

(
2k+1∑
m=0

cm(s)ym

)
∂y

(
2k+1∑
m=0

cm(s)ym

)

= O
((
|c|+ |c|2

))
y2k+2 + e−(1−bα)s

2k+1∑
m=0

O
(
e−(1−bα)s|∂my Γ(P + ε)(0)|

)
ym,

where the factors of the form O(·) are all functions of s. To complete the proof, also
incorporate the cutoff χ. �

1We remark that, in fact, the weaker version with the min’s below by 1 follows easily by simply using
(2.26) to eliminate ∂scm, and it is only this weaker version that is needed in our argument.
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A robust Ḣ2k+2 energy estimate. We begin with LQε = f . Our main result is the follow-

ing more robust version of the Ḣ2k+2-energy estimate (Theorem 2.8), where the dependence
on the vanishing conditions is less rigid.

Proposition 2.25. Let ε, f solve LQε = f , where ε(s, 0) = · · · = ∂2k+1
y ε(s, 0) = 0 for all

s ∈ [s0, s1]. For c1 > 0 sufficiently small, we have

‖∂2k+2
y ε(s)‖2

L2 . e−2c1(s−s0)
(
‖∂2k+2

y ε(s0)‖2
L2 + ‖〈y〉−2k−2ε(s0)‖2

L2

)
+

∫ s

s0

e−2c1(s−s′) (|〈∂2k+2
y f, ∂2k+2

y ε〉(s′)|+ ‖〈y〉−2k−2f(s′)‖2
L2

)
ds′.

As we shall see, this energy estimate is at the heart of our proof of Proposition 2.20 (Main
Bootstrap). It is a technical improvement over Theorem 2.8, where (i) the dependence on
∂2k+2
y f is made more explicit so that we can perform integration by parts, and (ii) we do

not require f to satisfy the vanishing conditions. The basic ideas are similar to those of
Theorem 2.8, namely, commuting with ∂2k+2

y and using an appropriate weight to take care
of the lower order terms. Since we do not want to impose the vanishing conditions for f at
y = 0, however, we need to be a bit more careful in the designing of the weight.

We shall divide the proof into smaller pieces. We begin by recording an energy inequality
that we will use for ∂2k+2

y ε, with a little more attention paid to the lower order terms:

Lemma 2.26. Let ψ ∈ C∞t Sx. Then for any m ≥ 0 and η > 0, there exist C = C(m, η) and
R = R(m, η) such that

1

2
∂s‖∂my ψ‖2

L2 ≤ −(βm − η)‖∂my ψ‖2
L2 + C‖〈y〉−m−1+ 1

2k+1ψ‖2
L2(|y|≤R) + 〈∂my LQψ, ∂my ψ〉.

where βm = (m− 3
2
)(b− 1)− 1.

An ingredient for the proof is the following interpolation lemma:

Lemma 2.27. For any 0 ≤ m′ ≤ m and a ∈ R,

‖〈y〉a−j∂jyf‖L2 . ‖〈y〉af‖1− j
2k+2

L2 ‖∂2k+2
y f‖

j
2k+2

L2

Proof. We decompose the LHS into ‖· · ·‖L2(|y|≤1) +
∑∞

`=0 ‖· · ·‖L2(2`≤|y|≤2`+1). Then by rescal-
ing, the estimate reduces to the unit scale bounds

‖∂jyf‖L2(I) ≤ ‖f‖
1− j

2k+2

L2(I) ‖∂
2k+2
y f‖

j
2k+2

L2(I)

for I = {|y| ≤ 1} or {1 ≤ |y| ≤ 2}. This follows from the standard Gagliardo–Nirenberg
inequality. �

We are now ready to prove Lemma 2.26.

Proof of Lemma 2.26. By Lemma 2.5,

∂my LQψ = LQ,m∂my ψ −
m−1∑
m′=0

αmm′∂
m+1−m′
y Q∂m

′

y ψ.

By Lemma 2.7, it follows that

1

2
∂s‖∂my ψ‖2

L2 ≤ −βm‖∂my ψ‖2
L2 + 〈ψ, ∂my LQψ〉+

m−1∑
m′=0

|αmm′ |
∣∣∣∂m+1−m′
y Q∂m

′

y ψ, ∂my ψ
∣∣∣
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≤ −βm‖∂my ψ‖2
L2 + 〈ψ, ∂my LQψ〉+

m−1∑
m′=0

|αmm′ |‖〈y〉
−m−1+m′+ 1

2k+1∂m
′

y ψ‖L2‖∂my ψ‖L2 ,

where we used |∂m+1−m′
y Q| . 〈y〉−m−1+m′+ 1

2k+1 on the last line. By the interpolation lemma
(Lemma 2.27) and Young’s inequality,

|αmm′|‖〈y〉
−m−1+m′+ 1

2k+1∂m
′

y ψ‖L2‖∂my ψ‖L2 ≤ C‖〈y〉−m−1+ 1
2k+1ψ‖1−m

′
m

L2 ‖∂my ψ‖
1+m′

m

L2

≤ 1

2m
η‖∂my ψ‖2

L2 + Cη‖〈y〉−m−1+ 1
2k+1ψ‖2

L2 ,

by which we arrive at

1
2
∂s‖∂my ψ‖2

L2 ≤ −(βm − 1
2
η)‖∂my ψ‖2

L2 + Cη‖〈y〉−m−1+ 1
2k+1ψ‖2

L2 + 〈∂my LQψ, ∂my ψ〉.

To proceed further, by Hardy’s inequality (Lemma 2.11.(2)), for any R > 1 we may write

‖〈y〉−m−1+ 1
2k+1ψ‖2

L2(|y|≥R) ≤ CR
1

2k+1
−1‖〈y〉−mψ‖2

L2(|y|≥R)

≤ CR
1

2k+1
−1
(
‖∂my ψ‖L2 + ‖ψ‖L2(|y|≤1)

)2
.

Choosing R = R(m, η) large enough so that CηCR
1

2k+1
−1 < 1

2
η, and trivially estimating

‖ψ‖L2(|y|≤1) ≤ ‖〈y〉−m−1+ 1
2k+1ψ‖L2(|y|≥R), we arrive at the desired conclusion. �

Next, we record an energy inequality for w
1
2ψ, where w is an s-independent weight.

Lemma 2.28. Let ψ ∈ C∞t Sx, and let w = w(y) be a positive C1 function such that
(i) y∂yw ≤ 0 everywhere and (ii) w grows at most polynomially as |y| → ∞. Then for
every η > 0, there exists C = C(w, η) such that

1

2
∂s‖wψ‖2

L2 ≤ −〈((−y∂yw

w
− 3

2
)(b− 1)− 1)wψ,wψ〉+ ‖wLQψ‖2

L2 .

In particular, if there exist mw ∈ R, Cw > 0 and y0 > 0 such that

y∂yw

w
≤ −mw for |y| ≥ y0,

then we have
1

2
∂s‖wψ‖2

L2 ≤ −((mw − 3
2
)(b− 1)− 1)‖wψ‖2

L2 + |mw|‖wψ‖2
L2(|y|≤y0) + ‖wLQψ‖2

L2 .

Proof. We compute

〈LQψ,w2ψ〉
= 〈∂sψ + (−(b− 1) + ∂yQ)ψ + (by +Q)∂yψ,w

2ψ〉
= 1

2
∂s〈wψ,wψ〉+ 〈(−(b− 1) + ∂yQ)wψ,wψ〉+ 〈(by +Q)∂yψ,w

2ψ〉

= 1
2
∂s〈wψ,wψ〉+ 〈(−(b− 1) + ∂yQ)wψ,wψ〉 − 1

2
〈(b+ ∂yQ+ 2(b+ y−1Q)y∂yw

w
)wψ,wψ〉

= 1
2
∂s〈wψ,wψ〉+ 〈((−y∂yw

w
− 3

2
)(b− 1)− 1 + 1

2
(∂yQ+ 1)− (y−1Q+ 1)y∂yw

w
)wψ,wψ〉

≥ 1
2
∂s〈wψ,wψ〉+ 〈((−y∂yw

w
− 3

2
)(b− 1)− 1)wψ,wψ〉,

where we used ∂yQ ≥ −1, y−1Q ≥ −1 and y∂yw ≤ 0 on the last line. The second statement
follows immediately from the first. �
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We are now ready to prove Proposition 2.25.

Proof of Proposition 2.25. Applying Lemma 2.26 to ε with m = 2k + 2, we have

1

2
∂s‖∂2k+2

y ε‖2
L2 ≤ −(β2k+2 − η1)‖∂2k+2

y ε‖2
L2 + C1‖〈y〉−2k−3+ 1

2k+1 ε‖2
L2(|y|≤R) + 〈∂2k+2

y f, ∂2k+2
y ε〉.

where we observe that β2k+2 > 0.
Next, given y0 > 0 and η2 > 0, we shall construct a positive weight w that it even

(w(y) = w(−y)) and normalized so that w(1) = 1. Introduce mw = 2k+ 3
2

+ 2kη2; note that

(mw − 3
2
)(b − 1) − 1 = η2. For y0 < y < 1, we choose y∂yw

w
= −mw and then transition (so

that y∂yw ≤ 0 everywhere) to y∂yw = 0 for 0 < y < y0
2

. For y > 1, choose y∂yw

w
= −2k − 2

(which is less than −mw for η2 small). By Lemma 2.28, we obtain

1

2
∂s‖wε‖2

L2 ≤ −η2‖wε‖2
L2 + C|mw|‖y

−2k− 3
2
−2kη2

0 ε‖2
L2(|y|≤y0) + ‖wf‖2

L2 ,

where we used the fact that w ' y−mw0 for |y| ≤ y0. Introducing a positive number a > 0
and adding these two inequalities up, we obtain

1

2
∂s
(
a‖∂2k+2

y ε‖2
L2 + ‖wε‖2

L2

)
≤ −a(β2k+2 − η1)‖∂2k+2

y ε‖2
L2 −

1

2
η2‖wε‖2

L2

+aC1‖〈y〉−2k−3+ 1
2k+1 ε‖2

L2(|y|≤R + CC|mw|‖y
−2k− 3

2
−2kη2

0 ε‖2
L2(|y|≤y0)

+a〈∂2k+2
y f, ∂2k+2

y ε〉+ ‖wf‖2
L2

≤ −a(β2k+2 − η1)‖∂2k+2
y ε‖2

L2 − (1
2
η2 − aC1C2)‖wε‖2

L2

+a〈∂2k+2
y f, ∂2k+2

y ε〉+ ‖wf‖2
L2

+C|mw||y0|
1
2
−2kη2‖y−2k−2

0 ε‖2
L2(|y|≤y0).

where we used C2w ≥ 〈y〉−2k−3+ 1
2k+1 for some C2 > 0. Fixing the small constants η1, η2 and

a in order, we may find c1, c2 > 0 and C > 0 such that

1

2
∂s
(
a‖∂2k+2

y ε‖2
L2 + ‖wε‖2

L2

)
≤ −c1

(
a‖∂2k+2

y ε‖2
L2 + ‖wε‖2

L2

)
+ a〈∂2k+2

y f, ∂2k+2
y ε〉+ ‖wf‖2

L2

−ac1‖∂2k+2
y ε‖2

L2 + C|y0|c2‖y−2k−2
0 ε‖2

L2(|y|≤y0).

At this point, we invoke the vanishing conditions on ε and Hardy’s inequality (Lemma 2.11.(1)),
which implies that the last line is nonpositive if |y0| is chosen small enough. �

We are ready to close the first bootstrap assumption. It will be convenient to recall (2.24):

LQε = −Ψ− LPM −M∂yM − e−(1−bα)sΓM

−(∂y(P −Q))ε− (P −Q)∂yε− e−(1−bα)sΓε−M∂yε− ε∂yM − ε∂yε.

Proof of (2.20). In what follows, we will estimate each term on the RHS of (2.24) in either

(1) ‖∂2k+2
y (·)‖L2 + ‖·‖L2(|y|≤1) . e−cs, or

(2) |〈∂2k+2
y (·), ∂2k+2

y ε〉|+ ‖〈y〉−2k−2(·)‖2
L2 . e−(c+γ1)s

for some c. Moreover, we will often use Hölder to bound ‖·‖L2(|y|≤1) ≤ ‖·‖L∞ and control
the L∞ norm. In view of Proposition 2.25 (as well as Lemma 2.9), we would succeed in
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improving the bootstrap (for s0 large enough and ‖ε0‖H2k+3 small enough) if we can achieve
the above for every term with

c > γ1.

We treat each term on the RHS of (2.24) as follows.

• −Ψ: Using Corollary 2.19,

‖∂2k+2
y Ψ‖L2 + ‖Ψ‖L∞ . e−µs,

which is acceptable by (2.15).
• LPM +M∂yM : By Lemma 2.24,

|∂2k+2
y (LPM +M∂yM)| .

(
|c|+ |c|2

)
1|y|≤2 + e−(1−bα)s

2k+1∑
m=0

|∂my Γ(P + ε)(0)|1|y|≤2.

Hence,

‖∂2k+2
y (LPM +M∂yM)‖L2 .

(
|c|+ |c|2

)
+ e−(1−bα)s

2k+1∑
m=0

(
|∂my ΓP (0)|+ |∂my Γε(0)|

)
.e−γ0s + e−(1−bα)s

(
e−µs + e−2γ0s + e−γ2s

)
,

which is acceptable. The L2(|y| ≤ 1) norm is controlled similarly.
• e−(1−bα)sΓM : We have

e−(1−bα)s
(
‖∂2k+2

y ΓM‖L2 + ‖ΓM‖L2(|y|≤1)

)
. e−(1−bα)s|c| . e−(1−bα+γ0)s.

• e−(1−bα)sΓε: We have

e−(1−bα)s‖∂2k+2
y Γε‖L2 . e−(1−bα)se−γ2s,

as well as
e−(1−bα)s‖Γε‖L2(|y|≤1) . e−(1−bα)s‖Γε‖L∞(|y|≤1) ≤ 2e−2γ0s.

• (∂y(P −Q) + ∂yM)ε: By Gagliardo–Nirenberg interpolation and Hardy, we have

‖∂2k+2
y ((∂y(P −Q) + ∂yM)ε)‖L2 + ‖|y|−2k−2((∂y(P −Q) + ∂yM)ε)‖L2 . (e−µs + e−γ0s)e−γ1s

• ((P −Q) +M + ε)∂yε
In ∂2k+2

y (((P −Q) +M + ε)∂yε), the only new case to consider is

(P −Q) +M + ε)∂y∂
2k+2
y ε,

since all the other terms are treated like in the previous case, with bounds (e−µs + e−γ0s +
e−γ2s)e−γ1s (here, e−γ2se−γ1s arises from ε∂yε. For this term, we integrate by parts:

|〈(P −Q) +M + ε)∂y∂
2k+2
y ε, ∂2k+2

y ε〉|
= |〈∂y(P −Q) + ∂yM + ∂yε)∂

2k+2
y ε, ∂2k+2

y ε〉|
. (‖∂y(P −Q)‖L∞ + ‖∂yM‖L∞ + ‖∂yε‖L∞) ‖∂2k+2

y ε‖L2

. (e−µs + e−γ0s + e−γ2s)e−γ1s.

Next, we estimate

‖〈y〉−2k−2(P −Q) +M + ε)∂yε‖L2 . ‖〈y〉−1((P −Q) +M + ε)〈y〉−2k−1∂yε‖L2

. ‖〈y〉−1((P −Q) +M + ε)‖L∞‖|y|−2k−1∂yε‖L2

. (e−µs + e−γ0s + e−γ2s)e−γ1s,
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where we used Hardy’s inequality for |y|−2k−1∂yε and

‖〈y〉−1ε‖L∞ . ‖〈y〉−1ε‖
1
2

L2‖∂y(〈y〉−1ε)‖
1
2 . ‖∂yε‖

1
2

L2‖∂2
yε‖

1
2 ,

by Gagliardo–Nirenberg interpolation and Hardy. �

Ḣ2k+3 and Ḣ1 energy estimates. Next, we establish control on ‖∂2k+3
y u‖L2 and ‖∂yu‖L2 .

Our argument will be similar to the proof of (2.20), with the important distinction being
that in order to close the top-order energy estimate, we will use the fact that ∂t + Γ is either
dispersive or dissipative.

Proof of (2.21) for ∂2k+3
y ε. By Lemma 2.26 with m = 2k + 3 and 0 < η � β2k+3 fixed, we

have
1

2
∂s‖∂2k+3

y ε‖2
L2 ≤ −(β2k+3 − η)‖∂2k+3

y ε‖2
L2 + C‖ε‖2

L2(|y|≤R) + 〈∂2k+3
y LQε, ∂2k+3

y ε〉,

where we simply used 〈y〉−2k−4+ 1
2k+1 .R 1.

For the second term on the right-hand side, we use Hardy’s inequality and (2.17) to bound

‖ε‖2
L2(|y|≤R) . e−γ1s,

which is acceptable since γ1 < γ2.
We treat 〈∂2k+3

y LQε, ∂2k+3
y ε〉 as in the proof of (2.21). The only significant difference is

that we need to use

〈−e−(1−bα)sΓ∂2k+3
y ε, ∂2k+3

y ε〉

{
= 0 if Γ = |∂y|α−1∂y,

≤ 0 if Γ = |∂y|α.

�

Proof of (2.21) for ∂yε. Here, the observation is that we need to only close χ|y|&Rε, since we
may use (2.17) for the rest. Then the energy estimate for ∂yχ|y|&Rε goes though, essentially
because LQ ≈ ∂s − (b− 1) + by∂y. �

Estimate for Γε. We finally turn to (2.19) concerning Γε – we remark that if Γ = 0, then
our proof will be complete at this point! The key point in the proof here is to retrieve the
exponentially decay e−2γ0s, which is stronger than the two bootstrap assumptions that we
closed (i.e., 2γ0 > γ1, γ2).

We begin by using the integral kernel of Γ to write Γf(y) in terms of f .

Lemma 2.29. For y ∈ [−1, 1], we have

|Γf(y)| .
∫
|y′|≤4

1

|y − y′|α
|∂yf(y′)| dy′ +

∫
|y′|≥2

1

|y′|1+α
|f(y′)| dy′.

Proof. With either option for Γ, we have

Γε(y) =

∫
K(y, y′)∂yε(y

′) dy′,

where

|K(y, y′)| . 1

|y − y′|α
, |∂y′K(y, y′)| . 1

|y − y′|1+α
.

In fact, when Γ = |∂y|α−1∂y, K(y, y′) = c|y − y′|−α (integral kernel for the fractional inte-
gration of order 1 − α). The desired lemma follows by splitting ∂yf(y′) = χ(y′)∂yf + (1 −
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χ(y′))∂yf , integrating ∂y by parts away from f for the contribution of (1 − χ(y′))∂yf , and
observing that |y′ − y| ' |y′| if |y′| ≥ 2. �

Consider e−(1−bα)sΓε(y), written out using the above decomposition. The contribution of
∂yε is already good, since it will decay and we have additional factor e−(1−bα)s. We would need
to look at the equation to derive estimates for ε. Here, an important technical observation is
that we can establish almost optimal control on ε itself (without any derivatives and possibly
with slowly decaying weight), as long as the expectation is worse than e−γ2s (which is the
case).

Lemma 2.30. Under the hypotheses of Proposition 2.20, we have, for all s ∈ [s0, s1],

‖〈y〉−
3
2

+ 1
b
− γ2

b ε‖L2 + e(1− 3
2
b−γ2)s‖ε‖L2 . 1.

This bound is almost optimal in the sense that, if (∂s − (b − 1) + by∂y)ε = 0, then the
above estimate with γ2 = 0 would be sharp.

Proof. Carry out! Again, it suffices to consider ε = χ|y|&Rε. Use the usual energy inequality
and weighted energy inequality. �

We are now ready to improve the last bootstrap assumption.

Proof of (2.22). Fix s ∈ [s0, s1]. Using Lemma 2.29, for |y| ≤ 1, we will estimate

|Γε(y)| .
∫
|y′|≤4

1

|y − y′|α
|∂yε(y′)| dy′ +

∫
2≤|y′|≤ebs

1

|y′|1+α
|ε(y′)| dy′

+

∫
|y′|≥ebs

1

|y′|1+α
|ε(y′)| dy′

. ‖∂yε‖L∞ + (1 + e(−1−α+ 3
2
− 1
b
+
γ2
b

+ 1
2

)bs)‖〈y′〉−
3
2

+ 1
b
− γ2

b ε‖L2 + e−( 1
2

+α)bs‖ε‖L2

. 1 + e((1−α)b−1+γ2)s,

where we used ‖∂yε‖L∞ . e−γ2s . 1 and Lemma 2.30 on the last line. Thus,

e−(1−bα)s|Γε(y)| . e−(1−bα)s + e−(2−b−γ2)s,

so since 1− bα > γ0 and (2− b)− γ2 > 2γ0 (which follows from (2.15)), we obtain (2.22) by
taking s0 large enough. �

Remark 2.31. Conceptually, the basic reason why this proof works is because e−(1−bα)s|Γε(y)|
is expected to decay; indeed, if (∂s − (b− 1) + by∂y)ε = 0, then e−(1−bα)s|Γε(y)| . e−(2−b)s.

Analysis of the unstable ODEs.

Proof of Lemma 2.23. Sketch:

• Write the ODEs as upper triangular system.
• Diagonalize the ODE.
• Using the lower bound, absorb everything.

�

Appendix: Sharp pointwise bounds. Weighted Hk bounds from O.–Pasqualotto.
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2.4. Perturbation of self-similar solutions to Burgers III: Modulation theory.

• Fix k = 1.
• Identify instabilities with symmetries. Space translation, time translation, Galilean

transformation, a (rescaling)
• State: Asymptotic stability result. Key: Modulation
• Introduce

t = τ − e−s, x = λy + ξ, u =
λ

τ − t
U + κ.

(We expect κ to be related to ξs in view of Galilean transformation. In fact, we
shall naturally derive this relation when we derive the evolutionary equations for the
modulation parameters.)
•

0 = ∂sU − (b− 1)U + by∂yU +
(
−ebsξs + (1 + esτs)e

(b−1)sκ
)
∂yU + e(b−1)sκs

+(1 + esτs)U∂yU + (1 + esτs)e
−s(1−bα)ΓU.

• Also add in Qa and vary in a. Derive equations for ε.
• Now set ε(s, 0) = ∂yε(s, 0) = ∂2

yε(s, 0) = ∂3
yε(s, 0) = 0. Get ODEs for ξ (ebsξs − (1 +

esτs)e
(b−1)sκ), τ (esτs), κ (e(b−1)sκs) and a (as), estimate the RHS’s.

(For k > 1, use W (s, 0) = ∂yW (s, 0) = ∂2k
y W (s, 0) = ∂2k+1

y W (s, 0) = 0. For
c2, . . . , c2k−1, we need to use a shooting argument)
• Redo the bootstrap argument. When k = 1, there are no trapped assumptions!

Appendix: ODE blow-up. Consider the ODE

∂tu = |u|p−1u.

Assume that u depends also on x, i.e., u = u(t, x). We may consider the self-similar variables
(s, y, U) adapted to the characteristic scale λ(t) = (T − t)b:

dt = (T − t)ds, x = λ(t)y, u =
1

(T − t)
1
p−1

U.

Then U solves

∂sU +
1

p− 1
U + by∂yU = |U |p−1U. (2.27)

Consider a positive stationary solution to (2.28), which solves

1

p− 1
Q+ by∂yQ = Qp. (2.28)

This is an explicitly solvable ODE (Bernoulli’s ODE)! We have

Lemma 2.32. For k = 0, 1, 2, . . ., p > 1 and a > 0, the function

Q(y) =
(
(p− 1) + ay2k

)− 1
p−1 .

is a smooth solution to (2.28) with

b =
1

2k
.

Furthermore, all smooth positive solutions are of the above form.
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Proof. We follow the standard procedure for solving Bernoulli’s ODE. We rewrite the equa-
tion as

∂yQ+
1

p− 1

1

by
Q =

1

by
Qp,

and introduce
Z = Q1−p.

Then

∂yZ = (1− p)Q−p∂yQ =
1

by
Z − p− 1

by
.

We now perform the method of integrating factors. We may write

y
1
b ∂y(y

− 1
bZ) = −p− 1

b
y−1

Hence,

∂y(y
− 1
bZ) = −p− 1

b
y−

1
b
−1.

Upon integration, we immediately get

Z = (p− 1) + ay
1
b ,

where a is an integration constant. Changing back to Q = Z−
1
p−1 , and introducing 2k = 1

b
,

we obtain the above result. �

Exercise: Develop linear stability theory when p is an odd integer.
Exercise [?]: Prove the existence of smooth blow-up for ∂tu = ∆u + up with p an odd

integer such that p > 2 (Hint: use k > 1). For the stable case (k = 1), see [?].

3. Weeks 7–8. Singularity formation for the incompressible Euler equation
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