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Introduction

The subject of this paper is the incompressible Euler equations:

oiu+u-Vu+Vp=0,
{ (1)

V- -u=0.

To eliminate the pressure, one introduces the vorticity w = V X u, which
obeys )

W= Q™)

O (T TG TD v
V-u=0, Vxu=uw.

Under reasonable assumptions on the decay of u at infinity, we have

u=(—A)"Y(V x w).

It is known classically that the IVP for (1) is locally well-posed for
u(t =0) = ug € CH* (equivalently, w € C%%) forany 0 < ar < 1
(Lichnerowicz, Giinther; recall Mohandas's talk).



Introduction

The main result of this paper is the existence of a self-similar, finite time
blow-up solution in a locally well-posed class:
Main Theorem Wo= VXUg

There exists 0 < a K LAnd a divergence-free initial data

[
up € C%*(RR3) Wito that the vorticity w of the unique
1 .

local solution u in C -7 x R3) has the form C

1 & X &
) (T (o) Qe
for some A > 0. In particular,
t
lim / |w(t)]|Lee dt’ = 0. (3)
t—=1— Jo
\ \

Note that (3) is the Beale-Kato—Majda blow-up criterion (cf. Ben's talk).



Introduction

e The decay at infinity is necessarily slow. Otherwise, there are rigidity
theorems for self-similar solutions to the Euler equationis.

e The solution will be axi-symmetric without swirl (details will come
soon). By the known global regularity results (cf.

IS necessary.

e Existence of a compactly supported initial data evetop finite
time singularity, locally modeled by the above behavior, will be
covered in Georgios's talk.

e A similar theorem (in particular, very rough initial data) was proved
for the axi-symmetric Euler without swirl away from the axis and the
Boussinesq equation by J. Chen—T. Hou.
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As alluded earlier, one restricts to the case of axi-symmetric, vanishing
swirl flow. Introduce the cylindrical coordinates (r, ¢, x3) by

N

c n
X1 = rcosy, Xpo = rsiny,xs = X3.

)

Y

Assume that (u, p) is independent of . With respect to the orthonormal
) — (8” r—lagoa 63)1
® )

frame (e, ey, €3

—_——

(0, (ru?) + (u"8, + u30,)(ru?) = 0, .

"1
\ r=1o,(ru") + Osu° = 0, @( U?‘: &p = (95“
Ow? + (u"0, + u38r)w90 — iy Py Cu"‘b'.@]

By the first equation, if u¥ (swirl) is zero initially, then it remains so (by
uniqueness). We assume this condition for the remainder of the talk.



Set-up

Assume furthermore that w? is odd with respect to x3. Then u must

have a hyperbolic stagnation point at the origin (r, x3) = (0,0)
sf
—

(cf. Mitchell's talk, where a similar configuration arose).

o

6=0
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6= T
Let us introduce the spherical polar coordinates (p, ¢, 0): &= ngoz

r=pcosf, ,p=¢, x> =psind.

We will work with profiles that are nice functions of p® for small «
(cf. Thibault's talk). To this end, also define R = p“.



e Look for a well-designed profile (at the level of w) that is merely
C%® at the origin.
e Use o as a smallness parameter to approximate the Euler equations

by a simpler model (fundamental model). Smallness of a will enter
in two flavors:

e To break the criticality and make the transport term u - Vw weaker
than the votex stretching term w - Vu (cf. Thibault's talk);

e Approximate the non-local Biot—Savart law w — u by a simpler
operator (cf. Mitchell's talk).

e |dentity a sufficiently rich class of self-similar solutions to the simpler
model problem. Then come back to the Euler equations by a
perturbation (i.e., implicit-function-theorem-like) argument.



Fundamental lemma

Fundamental lemma
One has

0r(x) = %rle(w) +0(a), ws(x) = —sslin(w) + O(a),

where for w = w¥(p, 0) (spherical coordinates),

00 o ' 0"Ysin 0’ 2 o’
Lin(w)(x) = 3/ / w(p’, )S|r/1 cos dp'df’.
x| J0

P

We'll follow Elgindi. See T. Tao's blog (Elgindi's approximation of the
Biot—Savart law) for an alternative derivation.



Fundamental lemma

To derive Biot—Savart's law, one introduces the stream function
Y = 1(r, x3) solving,

1
(_as Lo o2y r_2) b= w?.
r
with ¥(0,x3) = 0 and +(r,0) = 0 (oddness w.r.t. x3). Then

1
u =y, uz= —;¢ — 0.

To make use of small «, pass to the spherical coordinates (p, ¢, 6) and
introduce the variable R = p®. We write w?(r, x3) = Q(p, ) and

Y(r,x3) = p*VY(p,0). Then
— &?R?02V — o5 + a)RORV — OV + Op(tan V) — 6V = Q,
u, = p(2sin OV + cos 0y WV + asin ORORV) ,

1
us = p (— W — 2cosOV + sin 00y WV — « cos HR(J?R\U) .
cos 0



Fundamental lemma

Recap:
LoV = —a?R?05V — a5 + a)RORV — 03V + Og(tan W) — 6W = Q.

The idea is to formally take ae = 0; then only the angular part of L,
remains:
Lo(V) = -3V + Og(tan V) — 6V,

for which sin 26 is in the kernel, and sin @ cos? 6 is in the kernel of the
formal L7-adjoint. Hence, we expect a uniform-in-a (angular derivative!)
estimates for L,V = F if [ F(R,0)sinfcos*df = 0 for every R. In
general, one writes U = W 4+ G(p)sin(260) and observes that

Lo(U) = F + (0®?R?0%2G + a5 + a)ROR G) sin(26).

Requiring the angular orthogonality condition for the RHS at every R
(

leads to an ODE for G, which we can solve* en we arrive at
1
G = —4—L12(F) + O(g).
« i

2
when F &€ Lp,e 9



Fundamental model

Recap:
Ow? + (u-V)w? = r tuw?.

By the fundamental lemma,

g = %ng(w) + 0()

Plugging this in, and ignoring the transport term (cf. Thibault's talk), we
arrive at the fundamental model:

atf(pa ‘97 t) — f(p, ‘97 t)ng(f)(p, t),

where f ~ w?.
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Fundamental model

Now let us focus on the model

Ocf(p,0,t) = f(p, 0, t)L1a(f)(p, 1),

00 2m - / 2 0/ 1l
sinf cos“ ' f(p',0,t
p 0 P
Amusingly, this equation is explicitly solvable! Change (p,0) — (p”,0"),

where

sin 9’/ cos 29"

mutiply by and integrate on (p”,0") € [p,0) x [0,27]. Then

1
OrL1af (p, t) = §L12 f(p,t)?,

which is explicitly solvable. Moreover,

f(p,0,t) _foP,Q)QeXP(/ Liaf (', 0,t)dp )

SO —\

f(-)
f(p,0,t)= :
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Fundamental model

Recap:
Ocf(p,0,t) = f(p,0,t)L12(F)(p, t),

27 / 2 n! ! 0l
0 O'f(p',0,t
Lio(F :/ / sin §’ cos p/ (0,0, )dﬁ’dp’,
P

For f(p,0,0) = fo(p, 0),

f'
f(p,0,t) = °

(1 — %tL12f6)2 .

From this explicit formula, we see that the fundamental model admits the
following family of self-similar solutions (I is s.t. cr # 0):

o) 1 p“
f 0 t :2——F>|< ra 9 F* ra — 9
(/07 ) ) a 1—t - d (1 — t) , d(z) (1—|—Z)2

2m
= / sin § cos? O (#) d6.
0
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Set-up of the perturbative scheme, naive formulation

Now the aim is to view the Euler equations in self-similar coordinates as
a perturbation of the fundamental model.

Recap: w(r,x3) = Q(R,0), ¥(r,x3) = p*WY(R,0). The vorticity tranport
equation becomes

0t + (—3V — aRORWV)0pQ + (0pV — tan OW)aRORN

= c0159 (2sin OV + cos 0090y V + arsin ROg V) (2.
Recall:
V(R,0) = —% sin20L12(F) + O(«).
Thus,
9,0 — % in(20) L15(Q)0pQ + L12(2)(cos(26) — sin® 6)RIRQ
= éle(Q)Q + .-
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Set-up of the perturbative scheme, naive formulation

Now introduce the ansatz

1 R 1 R
o ﬁF(ﬁ’@) TV=1° (ﬁe)

and introduce the self-similar variable z = %. Then

F+ z0,F — éle(F)F — 23 sin(20) L1o(F)0y F + (cos(26) — sin® 8) L1o(F)zd, F

(8%
yys
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Set-up of the perturbative scheme, naive formulation

Introduce the ansatz

r(0), =z

F—F.+g, F.=2 .
T8 P

Then, since F, + z0,F, — %le(F*)F* =0,

g 2zI(0) 3 .
g — 2 — L — — 20)L1-( F.
g +20: — 27— (1t 2 12(g) — 5 sin(20)L12(F+)Opg
3

= 5 sin(20)L1>(F.)0y F. — (cos(20) — sin? 0)L1o(F,)z0,F, + N

Now choosing
[(6) = sin®0 cos**0

makes the transport terms (first two terms on the RHS) small.
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Coercivity of the linearized operator & elliptic estimates

We wish to study the linear operator

g 2zI(0) 3

T __ _| L o A3 i —
£ g = g+20.6-2 75— E Luale) 1 > Bsin(20) Lia( . )ohe) = F.

where P is a suitable projection (to be detailed later).

e Ignoring the second two terms, looking at

2799 d&
)‘S\lT (JF(HE—J&%ﬁrilﬁLZ@ : Tﬂ %‘ -

142’

we are motivated to remove = by conjugating with the weight [a

Wy — (1+z) . Thus, we need g(O) g’(0) = 0 and correspondingly ‘lfa

F(0) = F’(O) 0.

~ 2
e Taking the second to last term into account, we also need to impose fa '

leg) =0 (lel—j

e Finally, the last term comes with P to ensure the preceding vanishing
conditions (i.e., L12g(0) = 0 = L12(L/ g)(0) = 0).
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Coercivity of the linearized operator & elliptic estimates

e One commutes with Dg = ROgr and Dy =-sin(260)0y and proves an

estimate with respect to the norm: %7
o<
5 C
w
Ifllze =) | D&f -
k=0 sin®~ (20)| , 2.
(20) Lae
+ 3 DEDLf Y
_ . . 1410~ 1o
(kd)=(1,1),(k.j)=(2,0) \/ sin 201 % e

e We need the singular weights so that(H? < L>, which in turn
allows us to prove algebra estimates for treating nonlinear terms.
Note that ['(#) = sin®f cos?®f. Small « is used for commuting with
D9 = sin(29)89.

e Need to also upgrade the fundamental lemma (i.e., approximation of
Biot—Savart) so that one has good elliptic bounds in H? for the
remainder.
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Set-up of the perturbative scheme, modulation

Now we come back to the equation for g; note that we need to ensure
the vanishing conditions.

Introduce modulation parameters p, A:

1 R
e T ((1—(1+u)t)1“’0)°

Correspondingly, the self-similar variable takes the form

R
(1= (14 p)t)t+A

and ®(z,0) = (1 — (1 + p)t)V(z,0).
Then

Llg =—pF - (p+ A+ p\)20.Fl + N
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Set-up of the perturbative scheme, modulation

Recap:

Llg=—puF, — (u+ X+ uN\)z0,F, + N

The set-up gives L] g(0) = 0 for free; one sets A, u so that
(L1 g)'(0) = Lio(£] g)(0) = 0.

Setting [(0) = sin® 6 cos®>* § kills the main transport terms
(cf. Thibault’s talk).

The rest are easy to handle. As a result, one obtains an a-priori bound of
the form

lelsa < o %yw = O(x)

The a-priori bound can be upgraded to existence via soft argument.
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