MATH 55 WORKSHEET 07/11/17

SHIYU LI

- 1. Prove using induction that $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers n. What is the base case and the inductive step?
- 2. Prove using induction that $n! < n^n$ when n is an integer greater than 1.
- 3. Let $H_n = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$ denote the *n*th harmonic number. Prove that $H_1 + \dots + H_n = (n+1)H_n n$.
- 4. Prove that a set with n elements has $\frac{n(n-1)}{2}$ subsets of size 2 whenever $n \ge 2$. 5. Show that if n is a positive integer, then

$$\sum_{\{a_1,...,a_k\}\subset\{1,...,n\}} \frac{1}{a_1a_2...a_k} = n.$$

(Note that this sum is over all nonempty subsets of the set $\{1,...,n\}.)$