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34, Find fin) when n = 4", where § satisfies the recurrence 36, Find ri{n)when = 2*, where [ satisfies the recurrence
relation f{m) m & f{n/4)+ 6, with f(1}= L. relation f{n) = &7 (n/2)+n' with f{l) =1,

38, Estimate the size of [ in Exercise 34 if [ is an increasing 37, Estimate the size of f in Exercise 36 if f is an increasing
Pt tion. Function.
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Introduction

Generating functions are used to represent sequences efficiently by coding the terms of a se-
quence as coefficients of powers of a variable x in a formal power series. Generating functions
can be used to solve many types of counting problems, such as the number of ways to select
or distribute objects of different kinds, subject to a variety of constraints, and the number of
ways to make change for a dollar using coins of different denominations. Generating functions
can be used to solve recurrence relations by translating a recurrence relation for the terms of
4 sequence into an equation involving a generating function, This equation can then be solved
to find a closed form for the generating function. From this closed form, the coefficients of the
power series for the generating function can be found, solving the original recurrence relation.
Generating functions can also be used to prove combinatorial identities by taking advantage of
relatively simple relationships between functions that can be translated into identities involving
the terms of sequences, Generating functions are a helpful tool for studying many properties of
sequences besides those described in this section, such as their use for establishing asymptotic
formulae for the terms of & sequence.
We begin with the definition of the generating function for a sequence.

The generating function for the sequence do. @), ... di, ... of real numbers is the infinite
series

e
G{I}=ﬂ'{|+#|:+' '+'|I]t.:|'* +..-=Eﬂ}.’f*a
Ekmil

Remark: The generating function for [a¢} given in Definition | is sametimes called the ordinary
generating function of [a:) to distinguish it from other types of generating functions for this
SEgQUEnce.

The generating functions for the sequences (a;) with ay =3, ap =k + 1, and a; = 2% are
T2 3xh SRk + Lt and 355 2404, respectively. ..

We can define generating functions for finite sequences of real numbers by extending a finite
SBQUENCE gy, &1, . . . , fy N0 an infinite sequence by setting o, = [}, @yen = 0, and so on, The
generating function G{x) of this infinite sequence {2, | is a polvnomial of degree n bécause no
terms of the form a;x’ with § = » occur, that 15,

i

rl=ap+ajx - Fa,x.
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EXAMPLE 3

EXAMPLE 4

EXAMPLE 5

T4 Cienerstng Function: 485

What is the generating function for the sequence 1, 1, L 1. 1. 17
Solution: The generating functionof 1,1, 1,1, 1, 1is
14+ x4 b+ 2%
By Theorem | of Section 2.4 we have
- = =ldxtxr*+r? +x'+x°
when x 2 |, Consequently, G(x} = (x® — 1)/{x — 1) 15 the generating function of the sequence

1, 1,1, 1,1, 1. [Because the powers of x are only place holders for the terms of the sequence in
a generating function, we do not need to worry that (7( 1) is undefined. ] |

Let m be a positive integer. Let ay = C(m, k), for k=10, 1,2, ....m. What 15 the generating
function for the sequence o, @), . ... G’

Solurion: The generating function for this sequence is
Gix)=Clm, 0) + Clm. 1)x + Clm, 2 + -+ Clm, m)x™.

The Binomial Theorem shows that Gixh = (1 + x)™. L |

Useful Facts About Power Series

When generating functions are used to solve counting problems, they are usually considered to
be formal power series. Questions about the convergence of these series are ignored. However,
1o apply some results from calculus, it is sometimes important to consider for which x the power
series comverges, The fact that a function has & unique power series around x = 0 will also
be important. Generally, however, we will not be concerned with questions of convergence or
the uniquencss of power series in our discussions, Readers familiar with caleulus can consull
textbooks on this subject for details about power series, including the convergence of the series

we congider here,
We will now state some important facts about infinite series used when working with
generating functions, A discussion of these and related results can be found in calculus texts.

The function fix)= 1/(1 = x)isthe generating function of the sequence 1, 1, L. L. .. .. because
Il =x)=14x+x"+-+
for |x| = 1, <

The function fix}= 1/{1 — ax) is the generating function of the sequence 1. a, o, &’
hecause

1l —ax)= | +ax +ax" 4.
when |ax| < 1. or equivalently, for [x] < 1/)a| fora £ 0. 4

We also will need some results on how to add and how to multiply two generating functions.
Proofs of these resufts can be found in caleulus texis.
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THEOREM 1

EXAMPLE &

DEFINITION 2

EXAMPLE 7

Let fix) =31 @’ and glx) = Y5 o bex”. Then

o) [ ] k
fix)+ gy =Y (ap+b)e’ and flx)glx) = ¥ (Z a;bt-;) X

E=0 kel N =0

Remark: Theorem 1 is valid only for power series that converge in an interval, as all series
considered in this section do. However, the theory of generating functions is not limited to such
series. It the case of series that do not converge, the statements in Theorem 1 can be taken as
definitions of addition and multiplication of generating functions.

We will illustrate how Theorem | can be used with Example 6.

Let fiix) =11~ 1), Use Example 4 to find the coefficients ag, &y, @z, . .- in the expansion
fl)= X5 gax’,

Solution: From Example 4 we sec that
il =x)st+x+xi+x" +00.
Hence, from Theorem 1, we have
. o0 K =
1441 —xr=E (E l) It = E{k+]‘].r‘.
k=l Y =0 k=0 |

Remark: This result also can be derived from Example 4 by differentiation. Taking derivatives is
a usefill technigue for producing new identities from existing identities for penerating functions.

To use generating functions to solve many impartant counting problems, we will need to

apply the Binomial Theorem for exponents that are not positive integers. Before we state an
extended version of the Binomial Theorem, we need to define extended binomial coefficients.

Let 1 be a real number and & a nonnegative integer. Then the extended binomial coefficient
(1) 15 defined by

u)_ il — 1)--(w—k+ 1)/ ifk =0,
| Vb ifk =10,

Find the values of the extended binomial coefficients {'32} and {'_ﬂ.

Solution: Taking v = —2 and k = 3 in Definition 2 gives us

(nz) e S
3.0 3! g
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Similarly, taking ¥ = 1/2 and & = 3 gives us

(lfl) a2 =152 = 2)
3 ) 3l

= {1/20-1/2-3/2)/6

= 1/16. 4

Example 8 provides a useful formula for extended binemial coefficients when the twop
parameter is a negative integer. It will be useful in our subsequent discussions,

EXAMPLES When the top parameter is a negative integer, the extended binomial coefficient can be expressed
in terms of an ordinary binomial coefficient. To see that this is the case, note that

(—.-r) _ (== =1)s = —r+ 1)

: b ke finiteen of exteisdod ool cocificsen
i F.

(=1Ynm+ 1) in+r—1)

= : Factomiag ot —1 o eseh-werm in the nomerator
Fl

_(=1fin+r—1)n +F =2} m

by thee commmnaiatye law for madipliciton

r!

(=I¥{n=+r—1)

= . y myilhplving bodh the mumeeaior and denomnaion
f-{ﬂ-l}. h_":-l-'\-' i
A+r—1 -
= I:—] :Ir( ) by the delmtion of Binemial cocsflicient:
F

=({=11"Ci{n=r=1,r} using abernative nomtien for baswtial

eorihcienis

We now state the axtended Binomial Theorem.

THEOREM 2  THE EXTENDED BINOMIAL THEOREM Let x be a real number with |x] = | and
let i be a real number. Then

(l+x) m i(:)x*

£=0

Theoremn 2 can be proved using the theory of the Maclaurin series. We leave its proof o the
reader with a familiarity with this part of caleulus.

Remark: When u is a positive integer, the extendad Binomial Theorem reduces to the Binomial
Theorem presented in Section 5.4, because in that case ({} = 0if & > «.

Example 9 illustrates the use of Theorem 2 when the exponent is a negative integer.
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EXAMPLE 9

EXAMPLE 10

Find the generating functions for {1 +x)™ and (I — )™, where nisa positive integer. using
the extended Binomial Theorem.

Salution: By the extended Binomial Theorem, it follows that
e [ —t
| e .l:I
(1 +x) E( . )x
Using Example 8, which provides a simple formula for (7"}, we obtain
a0
(142" =Y (—1FCln+ & = 1 k.
k=
Replacing x by —x, we find that

(1—x)" =Y Clr+k—1,ka"
k=0 L |

Table | presents a useful summary of some generating functions that arise frequently.

Remark: Note that the second and third formulae in this 1able can be deduced from the first
formula by substituting ax and x” for x, respectively. Similarly, the sixth and seventh formulae
can he deduced from the fifth formula using the same substitutions. The tenth and eleventh can
he deduced from the ninth formula by substituting —x and ax for x, respectively, Also, some
of the formulae in this table can be derived from other formulae using methods from calculus
fsuch as differentiation and integration). Students are encouraged (o know the core formulae in
this table (that is, formulae from which the others can be derived, perhaps the first, fourth, fifth,
eighth, ninth, twelfth, and thirteenth formulae) and understand how to derive the other formulae
from these core formulae.

Counting Problems and Generating Functions

Generating functions can be used to solve a wide variety of counting problems. In particular, they
can be used to count the number of combinations of various types. In Chapter 5 we developed
techniques to count the r-combinations from a set with # clements when repetition is allowed
and additional constraints may exist. Such problems are equivalent to counting the solutions to
equations of the form

i+t be =0,

where € is a constant and each &, is a nonnegative integer that may be subject to a specified
constraint. Generating functions can also be used to solve counting problems of this type, as
Examples 1012 show.

Find the number of solutions of
ey + x4+ ey = 17,

where e, e, and e are nonnegative integers with2 < ¢ = S,y <fandd e =T
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TABLE 1 Useful Generating Functions.

dmil
=14+Cin, 1Jax+Cin, 2pa*x® 4+ - 4 a"z"

Grix) ay

{142y =ic{m,ih" Cin, £)
- llTE‘[ﬂ. I 4 Cfn 2hrd oo b a®

(I'+ax) = i{.'[n..l':ur*x‘ Cin, ket

(142 =y Cln, k"

=l
=14 Cir, 1" & Cla, 2% 44 x™

Cim, kefeyif e | kD otheowise

1_-.‘.!1-] n t
s =Ex*=lw.1.'—.1"+ oo " 1ifk = m; 0 otherwise
-3
k=t
I. 0
i 1
. =E.r =|l+x+5" 4+ |
=X li=e
I - =
[ 2o
I =Eﬂ.‘|’t=[+ﬂ.'l'-'-l.l'.‘r i at
—ax =

b =d
e =Er"=l—..1"+.rl'+---
— &

k=1

L ife | & 0 otherwise

=1 4Cin, oy +Cla4+1, 2 x” + -

S
s =y (k+ 1 =1+2x+3% 4. E+1
(=¥ =i
: % ' | |
= Cim+ k-1, kit Cip+k=1,0=Cind+k=1.m=1)
il—xp E { ¥
= 1O L+ O+ 1, 2+
| o
=Er¢n+.rr—1,&u—u*.r' (—1FCm+k— LBy =(—1FCin +&— 1,0 = 1)
I:I+:j" e
=1 =ClH x £ T+ 1, 28 = .
I - P e & k
=% k— 1% Cln+k—1.0e =Cln+k—1.n—1
T E in+ Jatx i 1o i i T

Fall

| % gl 1 BT
=Y =T oy 1/ k!
A =il
o 1l ¥ ;] &
(=1 ¥ x x
Inl1+x) = =i e e e | (=T
e R e s e (=157

Mare: The series Bar this [as) two gereraling Rimclioes G b Toasd in most caleulos bocks when power series are discussed,
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EXAMPLEN

EXAMPLE 12

Safunion: The number of solutions with the indicated constraints is the coefficient of x'7 in the
expansion of

T 1 LA s A )

This follows because we obtain a term equal to x'7 in the product by picking a term in the first
sum 1%, a term in the second sum x*, and a term in the third sum x*, where the exponents
&1, ¢, and e; satisfy the eguation e; + €2 + €1 = 17 and the given constraints.

It is not hard to see that the coefficient of x!7 in this product is 3. Hence, there are three
solutions. (Note that the calculating of this coefficient mvolves about as much work as enumer-
ating all the solutions of the equation with the given constraints, However, the method that this
illustrates often can be used to solve wide classes of counting problems with special formu-
lae, as we will see. Furthermore, a computer algebea system can be used to do such computa-
tions. ) 4

In how many different ways can eight identical cookies be distributed among three distinct
children if cach child receives at least two cookies and no more than four cookies?

Salution: Because each child receives at least two but no more than four cookies, for each child
there is a factor equal o

P S

in the generating function for the sequence (¢, |, where ¢, is the number of ways to distribute n
cookies, Because there are three children, this generating function is

k] _xi]3.

(x*+x
We need the coefficient of x* in this product. The reason is that the x¥ terms in the expansion
correspond to the ways that three terms can be sefected, with one from each factor, that have
exponents adding up to 8. Furthermore, the exponents of the term from the first, second, and
third Factors are the numbers of cookics the first, second, and third children receive, respectively,
Computation shows that this coefficient equals 6. Hence, there are gix ways to distribute the
cookies so that each child receives at least two, but no more than four, cookies, 4

Use generating functions to determine the number of ways to insert tokens worth 51, 52, and
$5 into @ vending machine to pay for an item that costs ¢ dollars in both the cases when the
arder in which the tokens are inserted does not matter and when the order does matter. (For
gxample, there are two ways to pay for an item that costs 53 when the order in which the tokens
are inserted does not matter: inserting three $1 tokens or one S1 token and a $2 token, When
the order matters, there are three ways: inserting three 51 tokens, inserting a 51 token and then
1 52 token, or inserting a 52 token and then a 51 token. )

Solution: Consider the case when the order in which the tokens are nserted does not matter.
Here. all we care about is the number of each token used to produce a total of » dollars. Because
we can use any number of §1 tokens, any number of $2 tokens, and any number of $3 tokens,
the answer is the coefficient of x* in the generating function

I R TIPS Ll
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{ The first factor in this product represents the 51 tokens used, the second the 52 tokens used, and
the third the £35 tokens used.) For example, the number of ways (0 pay for an item costing 37
using $1, 2, and $5 tokens is given by the coefficient of 1 in this expansion, which equals 6.

When the order in which the tokens are inserted matters, the number of ways (o insarn
exactly » tokens to produce a total of r dollars is the coefficient of ©° in

(x+2? +257,

because each of the » tokens may be a 31 token, a 32 token, or a $5 token. Because any number
of tokens may be inserted, the number of ways to produce » dollars using %1, 52, or 35 tokens,
when the order in which the tokens are inserted matters, is the coefficient of x™ in

|
| = (x + 2!+ x)
1

| =x=xl'=x¥

]

I+ +x +x )+ + a7+

where we have added the number of ways to insert 0 tokens, | token, 2 tokens, 3 tokens, and
s0 on, and where we have used the identity 1/(] — x)= 1 + x + £* + - --with x replaced with
x + x* 4 x°. For example, the number of ways to pay for an item costing 57 uging 31, 52, and
%5 tokens, when the order in which the tokens are used matters, is the coefficient of x7 in this
expansion, which equals 26. [Hine: To see that this coefficient equals 26 requires the addition
of the cocfficients of x” in the expansions (x + x* + '} for 2 < & < 7. This can be done by
hand with considerable computation, or a computer algebra system can be used. | 4

Example 13 shows the versatility of generating functions when used to solve problems with
differing assumptions.

Use generating functions to find the number of k-combinations of a set with » elements, Assume
that the Binomual Theorem has already been established.

Solution: Each of the o elements in the set contributes the term (1 4 x) to the penerating

function f{x) = %7 _, axx®, Here f(x)is the generating function for a:), where a; represents
the number of k-combinations of a set with o elements, Hence,

fix)=(1+x).
But by the Binomial Theorem, we have
A n '
Jix)= :;j(k)x :

where

n n!
(J:) TG

Hence, Cin, &), the number of k-combimations of a set with # elements, 5

il

Eln — k) |
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EXAMPLE 14

EXAMPLE 15

Remark: We proved the Binomial Theorem in Section 5.4 using the formula for the number of
r-combinations of a set with n elements, This example shows that the Binomial Theorem, which
can he proved by mathematical induction, can be used o derive the formula for the number of
r-combinations of a set with # elements.

Use penerating functions to find the number of r-combinations from a set with » elements when
repetition of clements is allowed.

Solution: Let G(x) be the generating function for the sequence {a.}, where a, cquals
the number of #-combinations of a set with » elements with repetitions allowed. That is,
Gix) = Y, a.x". Because we can select any number of a particular member of the set with »
elements when we form an r-combination with repetition allowed, each of the » elements con-
tributes {1 + x + 1 + x? 4 -- .} 1o a product expansion for G(x). Each element contributes this
factor because it may be selected zero times, one time, two times, three times, and so on, when
an r-combination is formed (with a total of r elements sclected). Because there are n clements
in the set and each contributes this same factor o Gix ), we have

Gixy=(1+x +x24+--.
Aslongas |x| < I, wehave ] +x + 3% +--- = 1J{l = x}, 50
Gix)=1/(l=x)"=({1-x)".

Applying the extended Bmomial Theorem (Thearem 2), it follows that

(l=x) = (L) =3 ('r") {~x).

r=ll

The number of r-combinations of a set with » elemens with repetitions allowed, when » 15 a
positive integer, is the coefficient o, of x7 in this sum. Consequently, using Example 8 we find
that a, equals

(_rn)'f—”" = (=1 +r—Lrp{=1F

=(wn+r—1.r) &

Mote that the result in Example |4 is the same result we siated as Theorem 2 in Section 5.5,

Use generating functions to find the number of ways to select r objects of » different kinds if
we must select at least one object of each kind.

Solution: Becausge we need to select at least one abject of each kind, each of the # kinds of objects
contributes the factar (x + x* + x? + - - -} to the generating function (x ) for the sequence [a,. |,
where a, is the number of ways to select r ohjects of n different kinds if we need at least one
ohject of each kind. Hence,

i) =t +x1+ 3 4 =xl +x+ 2+ F=x"f1-x)",
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ERiMR
ERmIHHES

Using the extended Binomial Theorem and Example B, we have

Gzl =541 —x)y

=x"-{]l —x)y"

- i (_r") (=x)

(=1 Clnr4r=LrN=17x"

n+r— 1t

o)
r”z
r=Il
oo
¥ o
1

Clr =1, =nmix’

I
[~

_.,
]

"

Cir—1.r—ni",

1}
]2

r

n
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We have shifted the summation in the next-to-last equality by setting t = n + r sothatr =»
whenr=0andn ++ — 1 =t — |, and then we replaced ¢ by r as the index of summation in
the last equality to return to our original notation, Hence, there are Cir — 1. r = n} ways to
select r objects of n different Kinds if we must select at least one object of each kind, 4

Using Generating Functions to Solve Recurrence Relations

We can find the solution to a recurrence relation and its initial conditions by finding an explicit
formula for the associated generating function. This is illustrated in Examples 16 and 17,

Solve the recurrence relation ay = 3oy fork =1, 2, 3, . . . and imtial condition ay = 2.

Safution; Let Gi{x ) be the generating function for the sequence {a; ), that1s, Gix) = ) Pl

First mote that

B g
rx)= meh] = Ea.;--,.r*.
k=1

k=0

Using the recurrence relation, we see that

[ e
Gix) = IxG(x} = ‘Zﬂt:* —lz.u*_|.r"
E=10

k=il

bl
=ay + E[m L

b |

%
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because oy = 2 and ay = 3. Thus,

Gix)— 3xGix) = (1 = I )G (x)= 2.

Solving for G{x ) shows that G{x) = 2/(1 — 3x ). Using the identity 1/{1 —ax} = T
from Table 1, we have

= T
Gley=3Y =Y 200"
k=1 Kol

Consequently, ay = 2 - 3.

EXAMPLE 17 Suppose that a valid codeword is an n-digit number in decimal notation containing an even
number of s, Let g, denate the number of valid codewards of length i, In Example 7 of Section
7.1 we showed that the sequence {a, | satisfics the recurrence relation

dy = Bag_y + 107
and the initial condition a; = 9. Use generating functions to find an explicit formula for a,.

Sofution: To make our work with generating functions simpler, we extend this sequence by
seftting &y = 1; when we assign this value to a; and use the recarrence relation, we have @) =
Ry + 10" = & + | =9, which is consistent with our original initial condition. {1t also makes
sense because there is one code word of length 0—the empty string. )

We multiply both sides of the recurrence relation by x to obtain

a2 = By x” + 10" x",

Let G(x) = 5o, aux" be the generating function of the sequence ay, a1, a2, . . - We sum both
sides of the last equation starting with # = 1, to find that

fa s
Gix)—1= Ea,:" = E.;Eﬂx_ﬂﬂ + 10"

=] Amel

=H§ iun_m" + i 1=
pamaT

=]
o]

=8x Zu"_m""' +x i 1 s

ne=| Al

e g
= Hx E anx" +x E [0 x"
a=ll ]
= BxGix) + x /(1 - 10x),
where we have used Example § to evaluate the second summation, Therefore, we have

Gix) — 1 = BxGix) + 2 /(1 = Tx).

Solving for Orix ) shows that

1 —4x
(1 —H&xN1 — 10x)

Gilx) =
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Expanding the right-hand side of this equation into partial fractions (as is done in the integration
of rational functions studied in calculus) gives

T R ST )
"‘z(l—ﬂx I—10z}"

Using Example 5 twice (once with & = 8 and once with a = 10} gives

Gix) = é (i B 4 i l-l}".vr“)

n=M =i

= i %iﬂ" + 10",

Consequently, we have shown that

l
fy = EIE“ + 107} <

Proving Identities via Generating Functions

In Chapter 5 we saw how combinatorial identities could be established using combinatorial
proofs. Hete we will show that such identities, as well as identities for extended binomial coef-
ficients, can be proved using generating functions. Sometimes the generating function approach
is simpler than other approaches, especially when it 15 simpler fo work with the closed form
of & generating function than with the terms of the sequence themselves. We illustrate how
generating functions can be used to prove identities with Example 18.

Use generating functions to show that
s
z Cin kY = C(2n,n)
k=0

whenever 7 15 4 positive infeger.

Solution: First note that by the Binomial Theorem C{2n, ) is the coefficient of x" in (1 + x P,
Howwever, we glso have

{14 =[+x)F
= [C{n, )+ Cin, Dx + Clan, 0 + -0 + Cm. nlx"]

The coefficient of x" in this expression is
Cin, M. my+Cin, NC{, 1 — 1)+ Cln, 200 (r, 1 — 2+ -+ Cln, mC{m. O

This equals ;:_“C{n.ﬂl. because Cin,n — k)= C(n, k). Because both C{(2#.n) and
30 _o Cin, &) represent the coefficient of x™ in (1 4 x)*", they must be equal. |

Exercises 42 and 43 at the end of this section ask that Pascal’s identity and Vandermonde's
identity be proved using generating functions,



