Vector Analysis in Higher Dimensions

- 8.1 An Introduction to Differential Forms
- 8.2 Manifolds and Integrals of k-forms
- 8.3 The Generalized Stokes's Theorem

True/False Exercises for Chapter 8

Miscellaneous Exercises for Chapter 8

Introduction

In this concluding chapter, our goal is to find a way to unify and extend the three main theorems of vector analysis (namely, the theorems of Green, Gauss, and Stokes). To accomplish such a task, we need to develop the notion of a **differential form** whose integral embraces and generalizes line, surface, and volume integrals.

8.1 An Introduction to Differential Forms

Throughout this section, U will denote an open set in \mathbb{R}^n , where \mathbb{R}^n has coordinates (x_1, x_2, \dots, x_n) , as usual. Any functions that appear are assumed to be appropriately differentiable.

Differential Forms

We begin by giving a new name to an old friend. If $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is a scalar-valued function (of class C^k), we will also refer to f as a **differential 0-form**, or just a **0-form** for short. 0-forms can be added to one another and multiplied together, as well we know.

The next step is to describe differential 1-forms. Ultimately, we will see that a differential 1-form is a generalization of f(x)dx—that is, of something that can be integrated with respect to a single variable, such as with a line integral. More precisely, in \mathbf{R}^n , the **basic differential 1-forms** are denoted dx_1, dx_2, \ldots, dx_n . A general (**differential**) 1-form ω is an expression that is built from the basic 1-forms as

$$\omega = F_1(x_1, \dots, x_n) dx_1 + F_2(x_1, \dots, x_n) dx_2 + \dots + F_n(x_1, \dots, x_n) dx_n$$

where, for j = 1, ..., n, F_j is a scalar-valued function (of class C^k) on $U \subseteq \mathbf{R}^n$. Differential 1-forms can be added to one another, and we can multiply a 0-form f and a 1-form ω (both defined on $U \subseteq \mathbf{R}^n$) in the obvious way: If

$$\omega = F_1 dx_1 + F_2 dx_2 + \cdots + F_n dx_n,$$

then

$$f\omega = f F_1 dx_1 + f F_2 dx_2 + \dots + f F_n dx_n.$$

EXAMPLE 1 In \mathbb{R}^3 , let

$$\omega = xyz dx + z^2 \cos y dy + ze^x dz \text{ and } \eta = (y - z) dx + z^2 \sin y dy - 2 dz.$$

Then

$$\omega + \eta = (xyz + y - z) dx + z^{2}(\cos y + \sin y) dy + (ze^{x} - 2) dz.$$

If $f(x, y, z) = xe^y - z$, then

$$f\omega = (xe^y - z)xyz dx + (xe^y - z)z^2 \cos y dy + (xe^y - z)ze^x dz.$$

Thus far, we have described 1-forms merely as formal expressions in certain symbols. But 1-forms can also be thought of as functions. The basic 1-forms dx_1, \ldots, dx_n take as argument a vector $\mathbf{a} = (a_1, a_2, \ldots, a_n)$ in \mathbf{R}^n ; the value of dx_i on \mathbf{a} is

$$dx_i(\mathbf{a}) = a_i$$
.

In others words, dx_i extracts the *i*th component of the vector **a**.

More generally, for each $\mathbf{x}_0 \in U$, the 1-form ω gives rise to a combination $\omega_{\mathbf{x}_0}$ of basic 1-forms

$$\omega_{\mathbf{x}_0} = F_1(\mathbf{x}_0) dx_1 + \dots + F_n(\mathbf{x}_0) dx_n;$$

 $\omega_{\mathbf{x}_0}$ acts on the vector $\mathbf{a} \in \mathbf{R}^n$ as

$$\omega_{\mathbf{x}_0}(\mathbf{a}) = F_1(\mathbf{x}_0) dx_1(\mathbf{a}) + F_2(\mathbf{x}_0) dx_2(\mathbf{a}) + \dots + F_n(\mathbf{x}_0) dx_n(\mathbf{a}).$$

EXAMPLE 2 Suppose ω is the 1-form defined on \mathbb{R}^3 by

$$\omega = x^2 vz dx + v^2 z dv - 3xvz dz.$$

If $\mathbf{x}_0 = (1, -2, 5)$ and $\mathbf{a} = (a_1, a_2, a_3)$, then

$$\omega_{(1,-2,5)}(\mathbf{a}) = -10 \, dx(\mathbf{a}) + 20 \, dy(\mathbf{a}) + 30 \, dz(\mathbf{a})$$
$$= -10a_1 + 20a_2 + 30a_3,$$

and, if $\mathbf{x}_0 = (3, 4, 6)$, then

$$\omega_{(3,4,6)}(\mathbf{a}) = 216 \, dx(\mathbf{a}) + 96 \, dy(\mathbf{a}) - 216 \, dz(\mathbf{a})$$

= $216a_1 + 96a_2 - 216a_3$.

The notation suggests that a 1-form is a function of the vector \mathbf{a} but that this function varies from point to point as \mathbf{x}_0 changes. Indeed, 1-forms are actually functions on vector fields.

A basic (differential) 2-form on \mathbb{R}^n is an expression of the form

$$dx_i \wedge dx_i$$
, $i, j = 1, \ldots, n$.

It is also a function that requires two vector arguments \mathbf{a} and \mathbf{b} , and we evaluate this function as

$$dx_i \wedge dx_j(\mathbf{a}, \mathbf{b}) = \begin{vmatrix} dx_i(\mathbf{a}) & dx_i(\mathbf{b}) \\ dx_i(\mathbf{a}) & dx_i(\mathbf{b}) \end{vmatrix}.$$

(The determinant represents, up to sign, the area of the parallelogram spanned by the projections of **a** and **b** in the $x_i x_j$ -plane.) It is not difficult to see that, for i, j = 1, ..., n,

$$dx_i \wedge dx_i = -dx_i \wedge dx_i \tag{1}$$

and

$$dx_i \wedge dx_i = 0. (2)$$

Formula (1) can be established by comparing $dx_i \wedge dx_j(\mathbf{a}, \mathbf{b})$ with $dx_j \wedge dx_i(\mathbf{a}, \mathbf{b})$. Formula (2) follows from formula (1). Given formulas (1) and (2), we see that we can generate all the linearly independent, nontrivial basic 2-forms on \mathbf{R}^n by listing all possible terms $dx_i \wedge dx_j$, where i and j are integers between 1 and n with i < j:

$$dx_1 \wedge dx_2, dx_1 \wedge dx_3, \dots, dx_1 \wedge dx_n,$$

 $dx_2 \wedge dx_3, \dots, dx_2 \wedge dx_n,$
 \vdots
 $dx_{n-1} \wedge dx_n.$

To count how many 2-forms are in this list, note that there are n choices for dx_i and n-1 choices for dx_j (so that $dx_i \neq dx_j$ in view of (2)), and a "correction" factor of 2 so as not to count both $dx_i \wedge dx_j$ and $dx_j \wedge dx_i$ in light of (1). Hence, there are n(n-1)/2 independent 2-forms.

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$. A general (**differential**) **2-form** on $U \subseteq \mathbf{R}^n$ is an expression

$$\omega = F_{12}(\mathbf{x}) dx_1 \wedge dx_2 + F_{13}(\mathbf{x}) dx_1 \wedge dx_3 + \cdots + F_{n-1n}(\mathbf{x}) dx_{n-1} \wedge dx_n$$

where each F_{ij} is a real-valued function F_{ij} : $U \subseteq \mathbf{R}^n \to \mathbf{R}$. The idea here is to generalize something that can be integrated with respect to two variables—such as with a surface integral.

EXAMPLE 3 In \mathbb{R}^3 , a general 2-form may be written as

$$F_1(x, y, z) dy \wedge dz + F_2(x, y, z) dz \wedge dx + F_3(x, y, z) dx \wedge dy$$
.

The reason for using this somewhat curious ordering of the terms in the sum will, we hope, become clear later in the chapter.

Given a point $\mathbf{x}_0 \in U \subseteq \mathbf{R}^n$, to evaluate a general 2-form on the ordered pair (\mathbf{a}, \mathbf{b}) of vectors, we have

$$\omega_{\mathbf{x}_0}(\mathbf{a}, \mathbf{b}) = F_{12}(\mathbf{x}_0) dx_1 \wedge dx_2(\mathbf{a}, \mathbf{b}) + F_{13}(\mathbf{x}_0) dx_1 \wedge dx_3(\mathbf{a}, \mathbf{b}) + \dots + F_{n-1n}(\mathbf{x}_0) dx_{n-1} \wedge dx_n(\mathbf{a}, \mathbf{b}).$$

EXAMPLE 4 In \mathbb{R}^3 , let $\omega = 3xy \, dy \wedge dz + (2y+z) \, dz \wedge dx + (x-z) \, dx \wedge dy$. Then

$$\omega_{(1,2,-3)}(\mathbf{a}, \mathbf{b}) = 6 \, dy \wedge dz(\mathbf{a}, \mathbf{b}) + dz \wedge dx(\mathbf{a}, \mathbf{b}) + 4 \, dx \wedge dy(\mathbf{a}, \mathbf{b})$$

$$= 6 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} + \begin{vmatrix} a_3 & b_3 \\ a_1 & b_1 \end{vmatrix} + 4 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

$$= 6(a_2b_3 - a_3b_2) + (a_3b_1 - a_1b_3) + 4(a_1b_2 - a_2b_1).$$

Finally, we generalize the notions of 1-forms and 2-forms to provide a definition of a *k*-form.

DEFINITION 1.1 Let k be a positive integer. A **basic** (**differential**) k-form on \mathbb{R}^n is an expression of the form

$$dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_k}$$
,

where $1 \le i_j \le n$ for j = 1, ..., k. The basic k-forms are also functions that require k vector arguments $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_k$ and are evaluated as

$$dx_{i_1} \wedge \cdots \wedge dx_{i_k}(\mathbf{a}_1, \dots, \mathbf{a}_k) = \det \begin{bmatrix} dx_{i_1}(\mathbf{a}_1) & dx_{i_1}(\mathbf{a}_2) & \cdots & dx_{i_1}(\mathbf{a}_k) \\ dx_{i_2}(\mathbf{a}_1) & dx_{i_2}(\mathbf{a}_2) & \cdots & dx_{i_2}(\mathbf{a}_k) \\ \vdots & \vdots & \ddots & \vdots \\ dx_{i_k}(\mathbf{a}_1) & dx_{i_k}(\mathbf{a}_2) & \cdots & dx_{i_k}(\mathbf{a}_k) \end{bmatrix}.$$

EXAMPLE 5 Let

 $\mathbf{a}_1 = (1, 2, -1, 3, 0), \quad \mathbf{a}_2 = (5, 4, 3, 2, 1), \quad \text{and} \quad \mathbf{a}_3 = (0, 1, 3, -2, 0)$ be three vectors in \mathbf{R}^5 . Then we have

$$dx_1 \wedge dx_3 \wedge dx_5(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = \det \begin{bmatrix} 1 & 5 & 0 \\ -1 & 3 & 3 \\ 0 & 1 & 0 \end{bmatrix} = -3.$$

Using properties of determinants, we can show that

$$dx_{i_1} \wedge \cdots \wedge dx_{i_j} \wedge \cdots \wedge dx_{i_l} \wedge \cdots \wedge dx_{i_k}$$

$$= -dx_{i_1} \wedge \cdots \wedge dx_{i_l} \wedge \cdots \wedge dx_{i_i} \wedge \cdots \wedge dx_{i_k}$$
(3)

and

$$dx_{i_1} \wedge \cdots \wedge dx_{i_j} \wedge \cdots \wedge dx_{i_j} \wedge \ldots \wedge dx_{i_k} = 0.$$
 (4)

Formula (3) says that switching two terms (namely, dx_{i_j} and dx_{i_l}) in the basic k-form $dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ causes a sign change, and formula (4) says that a basic k-form containing two identical terms is zero. Formulas (3) and (4) generalize formulas (1) and (2).

DEFINITION 1.2 A general (**differential**) k-form on $U \subseteq \mathbb{R}^n$ is an expression of the form

$$\omega = \sum_{i_1,\dots,i_k=1}^n F_{i_1\dots i_k}(\mathbf{x}) \, dx_{i_1} \wedge \dots \wedge dx_{i_k},$$

where each $F_{i_1...i_k}$ is a real-valued function $F_{i_1...i_k}$: $U \to \mathbf{R}$. Given a point $\mathbf{x}_0 \in U$, we evaluate ω on an ordered k-tuple $(\mathbf{a}_1, \ldots, \mathbf{a}_k)$ of vectors as

$$\omega_{\mathbf{x}_0}(\mathbf{a}_1,\ldots,\mathbf{a}_k) = \sum_{i_1,\ldots,i_k=1}^n F_{i_1\ldots i_k}(\mathbf{x}_0) dx_{i_1} \wedge \cdots \wedge dx_{i_k}(\mathbf{a}_1,\ldots,\mathbf{a}_k).$$

Note that a 0-form is so named because, in order to be consistent with a 1-form or 2-form, it must take zero vector arguments!

In view of formulas (3) and (4), we write a general k-form as

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} F_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$

(That is, the sum may be taken over strictly increasing indices i_1, \ldots, i_k .) For example, the 4-form

$$\omega = x_2 dx_1 \wedge dx_3 \wedge dx_4 \wedge dx_5 + (x_3 - x_5^2) dx_1 \wedge dx_2 \wedge dx_5 \wedge dx_3 + x_1 x_3 dx_5 \wedge dx_3 \wedge dx_4 \wedge dx_1$$

may be written in the "standard form" with increasing indices as

$$\omega = (x_2 - x_1 x_3) dx_1 \wedge dx_3 \wedge dx_4 \wedge dx_5 + (x_5^2 - x_3) dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5.$$

Two k-forms may be added in the obvious way, and the product of a 0-form f and a k-form ω is analogous to the product of a 0-form and a 1-form.

Exterior Product

The symbol \land that we have been using does, in fact, denote a type of multiplication called the **exterior** (or **wedge**) **product**. The exterior product can be extended to general differential forms in the following manner:

DEFINITION 1.3 Let $U \subseteq \mathbb{R}^n$ be open. Let f denote a 0-form on U. Let $\omega = \sum F_{i_1...i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ denote a k-form on U and $\eta = \sum G_{j_1...j_l} dx_{j_1} \wedge \cdots \wedge dx_{j_l}$ an l-form. Then we define

$$f \wedge \omega = f \omega = \sum_{i=1,\dots,i_k} f F_{i_1\dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k},$$

$$\omega \wedge \eta = \sum_{i=1,\dots,i_k} F_{i_1\dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} \wedge dx_{j_1} \wedge \dots \wedge dx_{j_l}.$$

Thus, the wedge product of a k-form and an l-form is a (k + l)-form.

EXAMPLE 6 Let

$$\omega = x_1^2 dx_1 \wedge dx_2 + (2x_3 - x_2) dx_1 \wedge dx_3 + e^{x_3} dx_3 \wedge dx_4$$

and

$$\eta = x_4 dx_1 \wedge dx_3 \wedge dx_5 + x_6 dx_2 \wedge dx_4 \wedge dx_6$$

be, respectively, a 2-form and a 3-form on \mathbb{R}^6 . Then Definition 1.3 yields

$$\omega \wedge \eta = x_1^2 x_4 dx_1 \wedge dx_2 \wedge dx_1 \wedge dx_3 \wedge dx_5 + (2x_3 - x_2)x_4 dx_1 \wedge dx_3 \wedge dx_1 \wedge dx_3 \wedge dx_5 + e^{x_3} x_4 dx_3 \wedge dx_4 \wedge dx_1 \wedge dx_3 \wedge dx_5 + x_1^2 x_6 dx_1 \wedge dx_2 \wedge dx_2 \wedge dx_4 \wedge dx_6 + (2x_3 - x_2)x_6 dx_1 \wedge dx_3 \wedge dx_2 \wedge dx_4 \wedge dx_6 + e^{x_3} x_6 dx_3 \wedge dx_4 \wedge dx_2 \wedge dx_4 \wedge dx_6.$$

Because of formula (4), most of the terms in this sum are zero. In fact,

$$\omega \wedge \eta = (2x_3 - x_2)x_6 dx_1 \wedge dx_3 \wedge dx_2 \wedge dx_4 \wedge dx_6$$

= $(x_2 - 2x_3)x_6 dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 \wedge dx_6$,

using formula (3).

From the various definitions and observations made so far, we can establish the following results, which are useful when computing with differential forms:

PROPOSITION 1.4 (PROPERTIES OF THE EXTERIOR PRODUCT) Assume that all the differential forms that follow are defined on $U \subseteq \mathbb{R}^n$:

1. **Distributivity.** If ω_1 and ω_2 are k-forms and η is an l-form, then

$$(\omega_1 + \omega_2) \wedge \eta = \omega_1 \wedge \eta + \omega_2 \wedge \eta.$$

2. Anticommutativity. If ω is a k-form and η an l-form, then

$$\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega.$$

3. Associativity. If ω is a k-form, η an l-form, and τ a p-form, then

$$(\omega \wedge \eta) \wedge \tau = \omega \wedge (\eta \wedge \tau).$$

4. Homogeneity. If ω is a k-form, η an l-form, and f a 0-form, then

$$(f\omega) \wedge \eta = f(\omega \wedge \eta) = \omega \wedge (f\eta).$$

8.1 Exercises

Determine the values of the following differential forms on the ordered sets of vectors indicated in Exercises 1–7.

- **1.** $dx_1 3 dx_2$; **a** = (7, 3)
- **2.** 2 dx + 6 dy 5 dz; **a** = (1, -1, -2)
- **3.** $3 dx_1 \wedge dx_2$; **a** = (4, -1), **b** = (2, 0)
- **4.** $4 dx \wedge dy 7 dy \wedge dz$; **a** = (0, 1, -1), **b** = (1, 3, 2)
- **5.** $7 dx \wedge dy \wedge dz$; **a** = (1, 0, 3), **b** = (2, -1, 0), **c** = (5, 2, 1)
- **6.** $dx_1 \wedge dx_2 + 2 dx_2 \wedge dx_3 + 3 dx_3 \wedge dx_4$; **a** = (1, 2, 3, 4), **b** = (4, 3, 2, 1)
- **7.** $2 dx_1 \wedge dx_3 \wedge dx_4 + dx_2 \wedge dx_3 \wedge dx_5$; **a** = (1, 0, -1, 4, 2), **b** = (0, 0, 9, 1, -1), **c** = (5, 0, 0, 0, -2)
- **8.** Let ω be the 1-form on \mathbb{R}^3 defined by

$$\omega = x^2 y dx + y^2 z dy + z^3 x dz.$$

Find $\omega_{(3,-1,4)}(\mathbf{a})$, where $\mathbf{a} = (a_1, a_2, a_3)$.

9. Let ω be the 2-form on \mathbb{R}^4 given by

$$\omega = x_1 x_3 dx_1 \wedge dx_3 - x_2 x_4 dx_2 \wedge dx_4.$$

Find $\omega_{(2,-1,-3,1)}(\mathbf{a},\mathbf{b})$.

10. Let ω be the 2-form on \mathbb{R}^3 given by

$$\omega = \cos x dx \wedge dy - \sin z dy \wedge dz + (y^2 + 3) dx \wedge dz.$$

Find $\omega_{(0,-1,\pi/2)}(\mathbf{a},\mathbf{b})$, where $\mathbf{a}=(a_1,a_2,a_3)$ and $\mathbf{b}=(b_1,b_2,b_3)$.

- **11.** Let ω be as in Exercise 10. Find $\omega_{(x,y,z)}((2,0,-1),(1,7,5))$.
- **12.** Let ω be the 3-form on \mathbb{R}^3 given by

$$\omega = (e^x \cos y + (y^2 + 2)e^{2z}) dx \wedge dy \wedge dz.$$

Find $\omega_{(0,0,0)}(\mathbf{a}, \mathbf{b}, \mathbf{c})$, where $\mathbf{a} = (a_1, a_2, a_3)$, $\mathbf{b} = (b_1, b_2, b_3)$, and $\mathbf{c} = (c_1, c_2, c_3)$.

13. Let ω be as in Exercise 12. Find $\omega_{(x,y,z)}((1,0,0), (0,2,0), (0,0,3)).$

In Exercises 14–19, determine $\omega \wedge \eta$.

- **14.** On \mathbb{R}^3 : $\omega = 3 dx + 2 dy x dz$; $\eta = x^2 dx \cos y dy + 7 dz$.
- **15.** On \mathbb{R}^3 : $\omega = y dx x dy$; $\eta = z dx \wedge dy + y dx \wedge dz + x dy \wedge dz$.