
1. Topology

Today, we are going to talk about point-set topology. Point-set topology de-
scribes most structures using the concept of continuity, which makes it a general
concept with many applications, from measure theory to even abstract algebra.
First, let’s begin by defining what we mean when we say ”topology”.

Definition 1. Given a set X, a topology T ⊂ P(X) is a collection of subsets of X
satisfying

(1) ∅ and X are in T .
(2) Given an arbitrary I ⊂ T , ⋃

S∈I
S ∈ T .

(3) Given a finite S ⊂ T , ⋂
S∈S

S ∈ T .

That is, the topology is closed under arbitrary unions and finite intersections.
These sets in T are referred to as the open sets of our topological space. A set
Y ⊂ X is called closed if its complement X \ Y is an element of T .

Equivalently, one may define a topological space by specifying a collection of
closed sets. In fact, there are three other fundamental ways to define a topology on
a space - one may define an interior operation on subsets of the space. Intuitively,
the interior is the largest open set contained in the subset. Similarly, one may talk
about a closure operation as the smallest closed set containing the subset. Finally,
another method to create a topology is to define neighborhoods of points p ∈ X.

1.1. Examples.

• Our first example is the discrete topology. In this topology, all sets are
open, and thus all sets are closed.
• Another example is the trivial topology, where the only sets that are open

or closed are ∅ and X.
• The standard topology on R is generated by the open intervals of R. Simi-

larly, we can generate a topology on Rn with the open balls.
• In general, any metric space has a natural topology with respect to the

given metric - the open sets are those generated by the open balls given by
the metric.
• Define the spectrum of a ring R to be the set of all prime ideals of R. Then

there is a topology, called the Zariski topology, on R, where the closed
sets are given by sets of the form V (I), which is the set of all prime ideals
containing some given ideal I. Note that V (I) is nonempty if I is a proper
ideal.

We say that a topology T1 is finer than T2 if T1 ⊃ T2. Then, T2 is coarser than
T1. The discrete topology is the finest topology on any set, and the trivial topology
is the coarsest.

2. Continuity

Let f : X → Y be a mapping between topological spaces. We say that f is contin-
uous at point p ∈ X if for any neighborhood N of f(p), there exists a neighborhood
M of p such that f(M) ⊂ N . This is equivalent to saying that the pre-image of

1



2

any neighborhood of f(p) is a neighborhood of p. We say f is continuous if f is
continuous at every point p ∈ X.

Theorem 1. The following are equivalent:

• f is continuous.
• The preimage of any open set is open.
• The preimage of any closed set is closed.
• For any E ⊂ X, we have f(E) ⊂ f(E).

A homeomorphism is a map between topologies whose inverse is also contin-
uous.

3. Convergence and Separability Criteria

Let xn be a sequence in X. We say that xn converges to a point p ∈ X if for
every neighborhood Up, we can pick N such that when n > N , xn ∈ U .

3.1. Examples.

• In the familiar Euclidean topology of Rn, this notion of convergence agrees
with the usual notion of convergence.
• If a set has the trivial topology, every sequence converges to every point

in the set. This example shows that topological convergence need not be
unique.
• In a set equipped with the discrete topology, the only convergent sequences

are those that become eventually constant.

Note that a closed subset of a topological space must contain the limits of all
its convergent sequences. However, the converse is not necessarily true. We tie
together this notion of convergence with our earlier discussion of continuity with
the following theorem:

Theorem 2. Let f : X → Y be a continuous function between two topological
spaces. If xi ∈ X is a convergent sequence with limxi = p then f(xi) ∈ Y is also a
convergent sequence with lim f(xi) = f(p).

The separability properties are a series of criteria a space may satisfy, relating
to how well differentiated the points are. For example, the points inside the trivial
topology are indistinguishable with respect to the topology.

Definition 2. X is a T0 space if for any points p 6= q ∈ X, there exists an open
set U ⊂ X which contains only one of those points.

Definition 3. X is T1 if for any points p 6= q ∈ X, there exists an open set Up ⊂ X
which contains p but not q, and an open set Uq ∈ X which contains q but not p.

Note that T1 is a stricter criteria than T0. X is a T1 space if all singleton sets in
X are closed.

Definition 4. X is T2 if for any points p 6= q ∈ X there exist open sets Up, Uq ⊂ X
such that p ∈ Up, q ∈ Uq, and Up ∩ Uq = ∅.

T2 spaces are also known as Hausdorff or separable spaces. If a space is
Hausdorff, we can know that every sequence in the space converges to at most one
point.
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Definition 5. A T3 space is a T1 space satisfying the property that for any point
p ∈ X and a closed subset p /∈ Q ⊂ X, there exist open sets Up, Uq ⊂ X such that
p ∈ Up, Q ⊂ Uq, and Up ∩ Uq = ∅.

Definition 6. A T4 space is a T1 space satisfying the property that for any disjoint
closed subsets P,QsubsetX, there exist open sets Up, Uq ⊂ X such that P ⊂ Up,
Q ⊂ Uq, and Up ∩ Uq = ∅.

4. Products and Quotients

Definition 7. The product of a family of topological spaces {(Xi, Ti)}i∈I is defined
as the product ΠXi equipped with the coarsest topology for which the canonical
projections are continuous.

Definition 8. Let (X,T ) be a topological space and ∼ be an equivalence relation
on X. If π : X → X/ ∼ denotes the canonical quotient map, then π(T ) is called the
quotient topology. It is the finest topology on X/ ∼ for which the canonical quotient
map is continuous.


