Problem 1.

For any prime p and positive integer n, there exists a unique field (up to isomorphism) with p^{n} elements.
(a) Consider field $\mathbb{F}_{2} . \mathbb{F}_{2}$ has a field extension with 4 elements given by a root of a quadratic polynomial. Find this polynomial, and describe what the extension looks like. Can you further extend this field to a field of 8 or 16 elements?
(b) Consider field \mathbb{F}_{p} where p is an odd prime (choose a specific one, if you like). Demonstrate a field extension $\mathbb{F}_{p} \subsetneq K, K^{\prime} \subsetneq L$ where $K \neq K^{\prime}$ each have p^{2} elements and L has p^{3} elements. Demonstrate an isomorphism between K and K^{\prime}.

