
1. Polynomial Rings

Recall that a polynomial ring in x over a field F , denoted F [x], is the set
of all finite polynomials a0 + a1x + ... + anx

n, where a0, ..., an, also known as the
coefficients of the polynomial, are in F . Let the degree of a polynomial be the
highest power xn with a nonzero coefficient. We see that this is a commutative ring
with unit. In fact, F [x] is a principal ideal domain: that is, if I is an ideal of F [x],
I can be generated by some element a ∈ I.

Define a polynomial p(x) to be irreducible if it cannot be expressed as p(x) =
a(x)b(x) for non-unit polynomials a(x) and b(x). Then we see that F [x] is also a
unique factorization domain, or a domain where every nonzero element r can
be written as a product of irreducibles p1...pn, unique up to a unit.

Theorem 1. An ideal ((p(x)) generated by a polynomial p(x) is a maximal ideal
if and only if p(x) is irreducible in F (x).

This theorem is important because it tells us exactly what the maximal ideals
of F [x] are. If M is a maximal ideal of F [x], F [x]/M is a field. This field contains
F (more precisely, it contains the field {a+M |a ∈ F}, which is isomorphic to F).
This allows us to construct fields F ⊂ K, where K is called an extension of F . We
would like to construct such fields K that allow a polynomial p(x) to have roots
in K.

Example 1. Q(
√

2) is an extension of the field Q. The polynomial x2 + 2 is

irreducible in Q, but in Q(
√

2), it has the roots
√

2 and −
√

2.

2. Field Extensions

Let F ⊂ K be two fields. We call K an extension of F , and F a subfield
of K. Note that K is in fact a vector space over F , because it satisfies the laws
for addition and scalar multiplication. Because of this, dimF (K) is well-defined. If
dimF (K) is finite, K is a finite extension of F , We will write dimF (K) as [K : F ],
called the degree of K over F .

Theorem 2. Let L ⊃ K ⊃ F be three fields such that both [L : K] and [K : F ] are
finite. Then L is a finite extension of F , and [L : F ] = [L : K][K : F ].

Now suppose K is a finite extension of F with degree n. Let u ∈ K. Then the
elements 1, u, ..., un must be linearly dependent over F . This means that we can
find a0, ..., an ∈ F , not all zero, so that a0 + a1u+ ...anu

n = 0.
Elements of a field extension satisfying this property are called algebraic, and

if all elements of K are algebraic, we say that K is an algebraic extension of F .
We have just seen that all finite extensions must be algebraic.

Note: The converse is not true. Can you find an example?

Example 2. Consider C ⊃ Q. This is an infinite-dimensional extension. Numbers

such as 1
2 , 1 + i,

√
1 +

3
√

1 +
√

2 are all algebraic over Q. On the other hand, e
and π are not algebraic; they are transcendental.

If a ∈ K is algebraic, let p(x) ∈ F [x] be the monic polynomial of smallest degree
such that p(a) = 0. We call p(x) the minimal polynomial of a. Note that p(x)
is uniquely defined, as well as irreducible.
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Theorem 3. If a is algebraic and has a minimal polynomial of degree n, then
[F (a) : F ] = n.

If p(x) is an irreducible polynomial in F [x], then M = ((p(x)) is a maximal ideal
of F [x]. This means that K = F [x]/M is a field that we can consider to be an
extension of F . We note that x+M is an element of K, and from calculations, we
can see that this is in fact a root of p(x). In fact, we claim that [K : F ] is actually
a finite extension.

Exercise 1. [K : F ] = n, where n is the degree of p(x).

If p(x) is a polynomial in F [x], we say that p(x) splits over K if p(x) has
a factorization into linear factors over K[x]. From the previous paragraph, we
deduce that for every polynomial p(x) in F [x], there is some extension K ⊃ F , of
degree at most n!, for which p(x) splits over K. We call a minimal such extension a
splitting field of p(x) over F ; this is unique up to isomorphism. A splitting field
of a collection of polynomials may be called a normal extension; the reasoning
behind this terminology should become more clear in the next section.

Example 3. The splitting field for (x2− 2)(x2− 3) is Q(
√

2,
√

3), a field of degree
4 over Q.

Example 4. The splitting field of x3 − 2 is not Q( 3
√

2), because the other roots of

the polynomial, such as 3
√

2(−1+i
√
3

2 ), are not in Q( 3
√

2). In fact, this splitting field

is Q( 3
√

2,
√
−3), which has degree 6 over Q.

Example 5. The splitting field of x4 + 4 is Q(i), a field of degree 2 over Q. Note
that x4 + 4 factors as (x2 − 2x+ 2)(x2 + 2x+ 2).

One may frequently draw diagrams for these fields, ordered by inclusion, to help
visualize their relationships.

3. Galois Theory

Define a polynomial f(x) over a field F to be separable if all of its roots are
distinct (in a splitting field). Note that a polynomial has a multiple root if and
only if the polynomial and its derivative are not relatively prime.

Exercise 2. Deduce that an irreducible polynomial must be separable.

Define a field K to be separable over F if every element of K is the root of
a separable polynomial over F (note that it suffices to show that every minimal
polynomial is separable).

Definition 1. Let K ⊃ F be a field extension. Define Aut(K/F ) to be the set of
automorphisms of K that keep all elements of F fixed.

We easily see that Aut(K/F ) is a subgroup of Aut(K), where the group operation
is composition. Now, we claim that

Theorem 4. Any permutation σ in Aut(K/F ) permutes the roots of irreducible
polynomials.

Example 6. In K = Q(
√

2), the two automorphisms of Aut(K/Q) are the identity

map and the map σ(a+ b
√

2) = a− b
√

2.
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Example 7. In K = Q( 3
√

2), we have Aut(K/Q) is the trivial group, because any

such automorphism must fix 3
√

2 since the other two roots of x3 − 2 = 0 are not in
the field extension.

Now, let H ≤ Aut(K) be a subgroup of Aut(K). Then the collection L of
elements of K fixed by all member of H is a subfield of K, and is called the fixed
field of H. We note that this relation is inclusion-reversing; that is,

Theorem 5. 1) If F1 ⊆ F2 ⊆ K, then Aut(K/F2) ≤ Aut(K/F1).
2) If H1 ≤ H2 ≤ Aut(K) with fixed fields F1 and F2 respectively, then F2 ⊆ F1.

Let K/F be a finite extension. We say that K is Galois over F if |Aut(K/F )| =
[K : F ], and we denote Aut(K/F ) by Gal(K/F ). We may show that this con-
dition is equivalent to saying to K is the splitting field over F of some separable
polynomial.

To show our final result, we will look at the duality of subgroups of the Galois
group and the diagram of their corresponding fixed fields. For each of the examples
we have given so far, we see that the diagrams of inclusion have a strong similarity,
provided that one of them is flipped.

The Fundamental Theorem of Galois Theory states that this is not a coincidence
- in fact, it holds for every Galois extension. We first have that

Theorem 6. If G is a subgroup of Aut(K) and F is its fixed field, then [K : F ] =
|G|.

Thus, |Aut(K/F )| ≤ [K : F ], and equality holds if and only if F is the fixed
field of Aut(K/F ). Conversely, if G is a finite subgroup of Aut(K) with fixed field
F , then Aut(K/F ) = G.

From this, we obtain the Fundamental Theorem of Galois Theory:

Theorem 7. Let K/F be a Galois extension, and let G = Gal(K/F ). There is
a natural bijection between subfields E ⊃ F of K and subgroups H of G, given by
E → {elements fixing E} and H → {fixed field of H}.

Essentially, this gives us that lattice of subfields of K containing F and the
lattice of subgroups of G are dual posets.


