Problem 1.

Let A be a commutative ring with 1, and let \mathcal{C} denote the category of A-algebras, i.e.

- Objects of \mathcal{C} are commutative rings B together with a ring homomorphism $A \to B$.
- Morphisms of C between A-algebras B and C are ring homomorphisms $B \to C$ that commute with the structure maps $A \to B$, $A \to C$.

Find objects to represent the following functors $\mathcal{C} \to \mathbf{Set}$.

- (a) $B \mapsto B^{\flat}$
- (b) $B \mapsto (B^{\flat})^n$ for $n \in \mathbb{N}$
- (c) $B \mapsto B^{\times}$, the set of units of B
- (d) $B \mapsto \operatorname{Gl}_n(B)$, the set of invertible linear transformations of B^n

Problem 1.

Problem 2.

Let \mathbf{Ab} be the category of abelian groups, whose morphisms are group homomorphisms. Then consider the "inclusion" functor $\iota : \mathbf{Ab} \to \mathbf{Grp}$ that maps both objects and morphisms to themselves. Prove that ι has a left adjoint. Draw a few pictures (diagrams) to help explain your point.