Problem 1. Find a general solution to the differential equation \(y'' + 8y' + 16y = 0 \).

Solution. The associated auxiliary equation is \(X^2 + 8X + 16 = (X + 4)^2 \), whose only root is \(-4\) (with multiplicity 2), so the general solution is \(y(x) = c_1 e^{-4x} + c_2 x e^{-4x} \).

Problem 2. Solve the initial value problem: \(y'' + 2y' + y = 0, y(0) = 1, y'(0) = -3 \).

Solution. The associated auxiliary equation is \(X^2 + 2X + 1 = (X + 1)^2 \), whose only root is \(-1\) (with multiplicity 2), so the general solution is \(y(x) = c_1 e^{-x} + c_2 e^{-x} - c_2 x e^{-x} \) so \(y'(0) = -c_1 + c_2 \).

Solving the system \(c_1 = 1, -c_1 + c_2 = -3 \) gives \(c_1 = 1 \) and \(c_2 = -2 \), so our solution is \(y(x) = e^{-x} - 2e^{-x} \).

Problem 3. Find a general solution to the differential equation \(y'''' - y'' + 2y = 0 \).

Solution. The associated auxiliary equation is \(X^3 - X^2 + 2 = (X + 1)(X^2 - 2X + 2) = (X + 1)((X - 1)^2 + 1^2) \), whose roots are \(-1, 1 \pm i\), so the general solution is \(y(x) = c_1 \cos 2x + c_2 \sin 2x + c_3 \cos x + c_4 \sin x \).

(How to factor \(X^3 - X^2 + 2 \)? Look for factors of the form \(X - a \) where \(a \) is an integer. The Rational Root Theorem says that it suffices to check the integers \(a \) which divide the constant coefficient of \(X^3 - X^2 + 2 \), so it suffices to check only \(a \in \{\pm 1, \pm 2\} \).)

Problem 4. Find a general solution to the differential equation \(y^{(4)} + 13y'' + 36y = 0 \).

Solution. The associated auxiliary equation is \(X^4 + 13X^2 + 36 = (X^2 + 4)(X^2 + 9) \) which has roots \(\pm 2i, \pm 3i \), so the general solution is \(y(x) = c_1 \cos 2x + c_2 \sin 2x + c_3 \cos 3x + c_4 \sin 3x \).

(How to factor \(X^4 + 13X^2 + 36 \)? Treat it as a polynomial whose variable is \(X^2 \). Then it becomes a quadratic in \(X^2 \).)

Problem 5. True/False? Justify your answer. Let \(a \neq 0, b, c, d \) be constants, and let \(y_1, y_2, y_3 \) be solutions to \(ay'''' + by'' + cy' + dy = 0 \) on \(\mathbb{R} \). If \(W[y_1, y_2](x_0) = 0 \) for some \(x_0 \in \mathbb{R} \), then \(W[y_1, y_2, y_3](x_0) = 0 \).

Solution. False. Here is a counterexample. Consider the case \(a = 1, b = -1, c = 0, d = 0 \) so that the differential equation is \(y''' - y'' = 0 \). Two solutions to \(y''' - y'' = 0 \) are \(y_1(x) = x \) and \(y_2(x) = e^x \). We have

\[
W[y_1, y_2](x) = \begin{vmatrix} x & e^x \\ 1 & e^x \end{vmatrix} = (x - 1)e^x
\]

which has a root at \(x_0 = 0 \). Set \(y_3(x) = 1 \). Then

\[
W[y_1, y_2, y_3](x) = \begin{vmatrix} x & e^x & 1 \\ 1 & e^x & 0 \\ 0 & e^x & 0 \end{vmatrix} = e^x
\]

which does not vanish at \(x_0 = 1 \).

Problem 6. Show that \(\{1, \ln t, e^t, \sin t\} \) is linearly independent on \((0, \infty)\).

Solution. It suffices to show that the Wronskian \(W[1, \ln t, e^t, \sin t](t) \) does not vanish for some \(t \). We have

\[
W[1, \ln t, e^t, \sin t](t) = \begin{vmatrix} 1 & \ln t & e^t & \sin t \\ 0 & 1/t & e^t & \cos t \\ 0 & -1/t^2 & e^t & -\sin t \\ 0 & 2/t^3 & e^t & -\cos t \end{vmatrix} = \begin{vmatrix} 1/t & e^t & \cos t \\ 1/t^2 & e^t & -\sin t \\ 2/t^3 & e^t & -\cos t \end{vmatrix}
\]

To simplify computation (i.e. checking that the Wronskian does not vanish), we check values of \(t \) which will create the most zeros. If \(t \) is of the form \(n\pi - \frac{\pi}{2} \) for some integer \(n \), then \(\cos t = 0 \) and \(\sin t = \pm 1 \). Let’s choose \(t = \frac{\pi}{2} \). Then

\[
W[1, \ln t, e^t, \sin t](\frac{\pi}{2}) = \begin{vmatrix} 2/\pi & e^{\pi/2} \\ 16/\pi^3 & e^{\pi/2} \end{vmatrix} = e^{\pi/2}(\frac{2\pi^2 - 16}{\pi^3})
\]

which is nonzero since \(\pi \neq 2\sqrt{2} \).

1 Notation: \(W[y_1, \ldots, y_n](x) \) is the Wronskian of \(\{y_1, \ldots, y_n\} \).