Problem 1. Consider the square matrix

\[
A = \begin{bmatrix}
-1 & -2 & -2 \\
4 & 1 & 2 \\
0 & 2 & 1
\end{bmatrix}.
\]

(a) Calculate its characteristic polynomial and its eigenvalues.

(b) Find the eigenvectors of \(A\).

(c) Diagonalize the matrix \(A\).

Solution.

(a) The characteristic polynomial of \(A\) is

\[
p_A(t) = \det(A - t \cdot I_3)
\]

\[
= \det \begin{bmatrix}
-1 - t & -2 & -2 \\
4 & 1 - t & 2 \\
0 & 2 & 1 - t
\end{bmatrix}
\]

\[
= (-1 - t) \det \begin{bmatrix}
1 - t & 2 \\
2 & 1 - t
\end{bmatrix} - 4 \det \begin{bmatrix}
-2 & -2 \\
2 & 1 - t
\end{bmatrix}
\]

\[
= (-1 - t)((1 - t)^2 - 2^2) - 4(-2(1 - t) + 2^2)
\]

\[
= (-1 - t)((1 - t)^2 - 2^2) + 8(1 - t)
\]

\[
= (-1 - t)((t - 1)^2 + 4)
\]

\[
= -(t^3 - t^2 + 3t + 5)
\]

hence the eigenvalues of \(A\) are \(-1, 1 \pm 2i\).

(b) We have

\[
E_{-1} = \text{Nul}(A - (-1)I_3) \quad \text{row reduction } \quad \text{Nul} \left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array} \right] = \text{Span} \left\{ v_1 = \left[\begin{array}{c}
0 \\
1 \\
-1
\end{array} \right] \right\}
\]

\[
E_{1+2i} = \text{Nul}(A - (1 + 2i)I_3) \quad \text{row reduction } \quad \text{Nul} \left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -i \\
0 & 0 & 0
\end{array} \right] = \text{Span} \left\{ v_2 = \left[\begin{array}{c}
-1 \\
i \\
1
\end{array} \right] \right\}
\]

\[
E_{1-2i} = \text{Nul}(A - (1 - 2i)I_3) \quad \text{row reduction } \quad \text{Nul} \left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & i \\
0 & 0 & 0
\end{array} \right] = \text{Span} \left\{ v_3 = \left[\begin{array}{c}
-1 \\
-i \\
1
\end{array} \right] \right\}
\]

(c) Let \(\lambda = 1 - 2i\). An eigenvector corresponding to \(\lambda\) is \(v_3\). We have

\[
\text{Re}v_3 = \left[\begin{array}{c}
-1 \\
0 \\
1
\end{array} \right] \quad \text{and} \quad \text{Im}v_3 = \left[\begin{array}{c}
0 \\
-1 \\
0
\end{array} \right].
\]
Set
\[
P = \begin{bmatrix} v_1 & \text{Re} v_3 & \text{Im} v_3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}
\]
and
\[
C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix}.
\]
Then
\[
P^{-1} = \begin{bmatrix} -1 & 0 & -1 \\ -1 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}
\]
and \(A = PCP^{-1} \). □

Problem 2. (a) Define an inner product in a vector space \(V \).

(b) For \(p, q \in \mathbb{P}_2(\mathbb{R}) \) (polynomials up to degree 2 in one variable, with real coefficients) define
\[
\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).
\]
Show that this is an inner product.

(c) Find an orthogonal basis in \(\mathbb{P}_2(\mathbb{R}) \) with respect to the above inner product.

Solution. (a) An inner product on a vector space \(V \) is a function \(V \times V \to \mathbb{R} \) which assigns to each ordered pair \((u, v) \in V \times V \) a scalar \(\langle u, v \rangle \) satisfying the following properties:
(i) \(\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle \) for any \(u_1, u_2, v \in V \)
(ii) \(\langle cu, v \rangle = c\langle u, v \rangle \) for any \(u, v \in V \) and \(c \in \mathbb{R} \)
(iii) \(\langle u, v \rangle = \langle v, u \rangle \) for any \(u, v \in V \)
(iv) \(\langle u, u \rangle \geq 0 \) for all \(u \in V \), and \(\langle u, u \rangle = 0 \) if and only if \(u = 0 \)

(b) We check the properties listed in part (a). Let \(p, q, r \) be three elements of \(\mathbb{P}_2(\mathbb{R}) \), say
\[
p(t) = a_2 t^2 + a_1 t + a_0 \\
q(t) = b_2 t^2 + b_1 t + b_0 \\
r(t) = c_2 t^2 + c_1 t + c_0.
\]
(i) We have
\[
\langle p(t) + q(t), r(t) \rangle = \langle p(-1) + q(-1), r(-1) \rangle + \langle p(0) + q(0), r(0) \rangle + \langle p(1) + q(1), r(1) \rangle \\
= \langle p(-1)q(-1) + p(0)q(0) + p(1)q(1), r(-1) \rangle + \langle p(-1)q(-1) + p(0)q(0) + p(1)q(1), r(0) \rangle + \langle p(-1)q(-1) + p(0)q(0) + p(1)q(1), r(1) \rangle \\
= \langle p(t), r(t) \rangle + \langle q(t), r(t) \rangle.
\]

\[\footnote{Answers consisting of an example of a vector space \(V \) and an inner product on \(V \) received little credit, unless the four axioms were checked in part (b).}\]
such that p was a polynomial of degree at most 2. There are polynomials at most 8 points, since this is the trickiest part of the proof. Note that it was crucial that $p(1)$ is not the zero polynomial. Consider $p(t) = (t + 1)(t)(t - 1)$.

(ii) We have
\[
\langle cp(t), q(t) \rangle = (cp(-1))q(-1) + (cp(0))q(0) + (cp(1))q(1)
\]
\[
= c(p(-1)q(-1) + p(0)q(0) + p(1)q(1))
\]
\[
= c(p(t), q(t)).
\]

(iii) We have
\[
\langle p(t), q(t) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)
\]
\[
= q(-1)p(-1) + q(0)p(0) + q(1)p(1)
\]
\[
= \langle q(t), p(t) \rangle.
\]

(iv) We have
\[
\langle p(t), p(t) \rangle = p(-1)^2 + p(0)^2 + p(1)^2 \geq 0
\]
since the sums of squares of real numbers is always nonnegative. If $p(t) = 0$ (i.e. p is the zero vector in $P_2(\mathbb{R})$), then $\langle p(t), p(t) \rangle = 0^2 + 0^2 + 0^2 = 0$. Conversely, if $p(t) \in P_2(\mathbb{R})$ is a polynomial such that $\langle p(t), p(t) \rangle = 0$, then we must have $p(-1) = p(0) = p(1) = 0$. Since $p(t)$ is a polynomial of degree at most 2, it has at most 2 roots unless it is the zero polynomial. Since p has three roots (i.e. $-1, 0, 1$), we conclude that p is the zero polynomial.\footnote{Answers consisting of "$(p(t), p(t)) = 0$ implies $p(t) = 0$" without further explanation received at most 8 points, since this is the trickiest part of the proof. Note that it was crucial that p was a polynomial of degree at most 2. There are polynomials $p(t)$ of degree greater than 2 such that $p(-1) = p(0) = p(1) = 0$ even though $p(t)$ is not the zero polynomial. Consider $p(t) = (t + 1)(t)(t - 1)$.}

(c) We choose an arbitrary basis $\{1, t, t^2\}$ of $P_2(\mathbb{R})$ and perform Gram-Schmidt on it to obtain an orthogonal basis. Set
\[
u_1 = 1
\]
\[
u_2 = t - \frac{\langle t, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 = t - \frac{\langle t, 1 \rangle}{\langle 1, 1 \rangle} = t - \frac{(-1) \cdot 1 + 0 \cdot 1 + 1 \cdot 1}{1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1} = t
\]
\[
u_3 = t^2 - \frac{\langle t^2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle t^2, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2
\]
\[
= t^2 - \frac{\langle t^2, 1 \rangle}{\langle 1, 1 \rangle} 1 - \frac{\langle t^2, t \rangle}{\langle t, t \rangle} t
\]
\[
= t^2 - \frac{1 \cdot 1 + 0 \cdot 1 + 1 \cdot 1}{1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1} - \frac{1 \cdot (-1) + 0 \cdot 0 + 1 \cdot 1}{(-1) \cdot (-1) + 0 \cdot 0 + 1 \cdot 1} t
\]
\[
= t^2 - \frac{2}{3} t.
\]

Hence an orthogonal basis for $P_2(\mathbb{R})$ (relative to the specified inner product) is $\{1, t, t^2 - \frac{2}{3} \}$.

\[\square\]
Problem 3. Find a least squares solution \(\hat{x} \) for the linear system \(Ax = b \), where

\[
A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \\ -2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix}.
\]

Solution. We know that \(\hat{x} \) is a solution to \(A^T A \hat{x} = A^T b \). We have

\[
A^T A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & -1 \\ -1 & 11 \end{bmatrix},
\]

and

\[
A^T b = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 10 \\ -12 \end{bmatrix}.
\]

Now we can solve for \(\hat{x} \):

\[
\begin{bmatrix} 9 & -1 \\ -1 & 11 \end{bmatrix} \begin{bmatrix} \hat{x} \end{bmatrix} = \begin{bmatrix} 10 \\ -12 \end{bmatrix} \implies \hat{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

\(\square \)

Problem 4. Mark each statement True or False. Justify your answers.

(a) If \(A^4 = A \) then \(-1\) is not an eigenvalue for \(A \).

(b) An invertible matrix has only nonzero eigenvalues.

Solution. (a) True. Suppose \(A^4 = A \); we prove that \(-1\) is not an eigenvalue for \(A \). Let \(v \) be an eigenvector of \(A \) with eigenvalue \(\lambda \). Then \(Av = \lambda v \). Multiplying by \(A^3 \) on both sides gives \(A^4 v = \lambda^4 v \). But \(A^4 = A \) so we have \(\lambda v = \lambda^4 v \). Then \(\lambda \neq -1 \), since otherwise we would have \(-v = v \), which implies \(v = 0 \), which is a contradiction since eigenvectors are nonzero by definition.

(b) True. Let \(A \) be an invertible \(n \times n \) matrix. Suppose for the sake of contradiction that \(0 \) is an eigenvalue of \(A \). Then there exists a nonzero vector \(v \in \mathbb{R}^n \) such that \(Av = 0v = 0 \). Then the nullspace of \(A \) is nontrivial (because it contains the nonzero vector \(v \)). This contradicts the assumption that \(A \) is invertible. Hence \(0 \) is not an eigenvalue of \(A \).

\(\square \)

Problem 5. A \(3 \times 3 \) symmetric matrix \(A \) has eigenvalues \(\lambda_1 = 0 \), \(\lambda_2 = 1 \), and \(\lambda_3 = 2 \). The first two\(^3\) eigenvectors are

\[
v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} ; \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.
\]

(a) Find the third eigenvector \(v_3 \).\(^4\)

(b) Find the matrix \(A \).

\(^3\)i.e. \(v_1 \) has eigenvalue \(\lambda_1 \) and \(v_2 \) has eigenvalue \(\lambda_2 \)

\(^4\)i.e. find an eigenvector \(v_3 \) corresponding to the eigenvalue \(\lambda_3 \).
Solution. (a) Let v_3 be an eigenvector corresponding to λ_3. Since A is (real) symmetric, we know that eigenvectors corresponding to different eigenvalues are orthogonal. In other words, we know that $v_1 \cdot v_3 = 0$ and $v_2 \cdot v_3 = 0$.

Suppose $v_3 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Then $v_1 \cdot v_3 = 0$ implies $a + c = 0$. Then $v_2 \cdot v_3 = 0$ implies $a - c = 0$. This implies $a = c = 0$. Since v_3 is nonzero, we must have $b \neq 0$. Thus the eigenspace corresponding to λ_3 is Span $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

(b) Combine the vectors v_1, v_2, v_3 into a single matrix $P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$.

Let $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Then $AP = PD$, since the ith column of P is v_i, which is an eigenvector of eigenvalue λ_i, which is the ith diagonal entry of D. Thus $A = PDP^{-1}$. Using your favorite method, compute $P^{-1} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \end{bmatrix}$. Then

$A = PDP^{-1}$

$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \end{bmatrix}$

$= \begin{bmatrix} 1/2 & 0 & -1/2 \\ 1/2 & 0 & -1/2 \\ 0 & 2 & 0 \end{bmatrix}$.

(Note: it is not true that $P^{-1} = P^T$ if the columns of P are not normal. It is true that P^TP is diagonal (just not the identity).)

□

Problem 6. Prove the following inequalities for vectors in an inner product space V:

(a) For any two vectors u, v we have

$\langle u, v \rangle^2 \leq \|u\|^2 \cdot \|v\|^2$

(b) If v_1, \ldots, v_k is an orthonormal set, then for each vector x we have

$\|x\|^2 \geq \langle x, v_1 \rangle^2 + \ldots + \langle x, v_k \rangle^2$.

Solution. (a) See Theorem 16 in Section 6.7.

(b) For any vector x and any subspace W of V, we have $\|\text{proj}_W x\| \leq \|x\|$ (the length of the projection of any vector onto any subspace is at most the

Answers stating “$v_3 = [0, 1, 0]^T$” without further justification were given 5 points.
length of the vector itself). Let $W = \text{Span}\{v_1, \ldots, v_k\}$. Then

$$\text{proj}_W x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \cdots + \frac{\langle x, v_k \rangle}{\langle v_k, v_k \rangle} v_k$$

$$= (x, v_1) v_1 + \cdots + (x, v_k) v_k$$

where the last step follows because each v_i is a unit vector. Then

$$\|x\|^2 \geq \|\text{proj}_W x\|^2$$

$$= (\text{proj}_W x, \text{proj}_W x)$$

$$= \langle (x, v_1) v_1 + \cdots + (x, v_k) v_k, (x, v_1) v_1 + \cdots + (x, v_k) v_k \rangle$$

$$= \sum_{i=1}^k \sum_{j=1}^k \langle (x, v_i) v_i, (x, v_j) v_j \rangle \text{ by bilinearity}$$

$$= \sum_{i=1}^k \sum_{j=1}^k \langle x, v_i \rangle \langle x, v_j \rangle \langle v_i, v_j \rangle$$

$$= \sum_{i=1}^k \langle x, v_i \rangle \langle x, v_i \rangle \langle v_i, v_i \rangle \text{ since } \langle v_i, v_j \rangle = 0 \text{ if } i \neq j$$

$$= \langle x, v_1 \rangle^2 + \cdots + \langle x, v_k \rangle^2 .$$

\square