The invertible matrix theorem (Lay, Section 2.3, Theorem 8) is a really important
theorem, and it’s really hard to learn and remember 12 conditions. It may be
helpful to organize the conditions in the following way.

Let’s fix the following notation: Let A be a $m \times n$ matrix, v_1, \ldots, v_n the columns
of A, and $f : \mathbb{R}^n \to \mathbb{R}^m$ the linear function given by $f(x) = Ax$.

1. Lemmas about injectivity and surjectivity

Injectivity of f means “f doesn’t lose any information about the domain \mathbb{R}^n”.

Lemma 1 (Injectivity). The following are equivalent conditions:

1. $Ax = 0$ has only the trivial solution.
2. v_1, \ldots, v_n are linearly independent.
3. f is one-to-one (injective).
4. There is a pivot in every column.
5. There is an $n \times m$ matrix C such that $CA = I_n$.

If the above conditions hold, then $m \geq n$.

Surjectivity of f means “f doesn’t lose any information about the range \mathbb{R}^m”.

Lemma 2 (Surjectivity). The following are equivalent conditions:

1. $Ax = b$ has a solution for all $b \in \mathbb{R}^m$.
2. $\mathbb{R}^m = \text{Span}\{v_1, \ldots, v_n\}$.
3. f is onto (surjective).
4. There is a pivot in every row.
5. There is an $n \times m$ matrix D such that $AD = I_m$.

If the above conditions hold, then $m \leq n$.

Comments 3. The ith condition of Lemma 1 is analogous to the ith condition
of Lemma 2. Conditions (4-a) and (5-a) are phrased in the language of matrix
equations. Conditions (4-b) and (5-b) are in the language of vector equations.
Conditions (4-c) and (5-c) are in the language of functions. Conditions (4-d) and
(5-d) are about the number of pivots; both say that there are as many pivots
that the matrix can possibly allow (since pivot positions are in different rows and
columns, a $m \times n$ matrix can contain at most $\min\{m, n\}$ pivot positions). Condition
(4-e) and (5-e) relate to the invertibility of matrix A.
Warning about (4-e) and (5-e): if \(m \neq n \), then (4-e) does not necessarily imply (5-e) and vice versa. Consider the case \(m = 2 \) and \(n = 1 \) and \(A = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \). Then (4-e) holds; we can let \(C = \begin{bmatrix} 1 & 0 \end{bmatrix} \) (or \(C = \begin{bmatrix} 1 & a \end{bmatrix} \) for any number \(a \)). But (5-e) does not hold, since if \(D = \begin{bmatrix} d_1 & d_2 \end{bmatrix} \) then
\[
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} d_1 & d_2 \end{bmatrix} = \begin{bmatrix} d_1 & d_2 \\ 0 & 0 \end{bmatrix},
\]
which can never equal \(I_2 \).

2. Statement of the Theorem and Applications

In what follows, we assume that \(m = n \) (the dimension of the domain and range of \(f \) are the same; the number of rows of \(A \) and the number of columns of \(A \) are the same).

Theorem 4 (Invertible Matrix Theorem). Suppose \(m = n \). The following are equivalent conditions:

1. \(A \) is invertible.
2. \(A \) is row equivalent to \(I_n \).
3. \(A \) has \(n \) pivot positions.
4. \{All the conditions of Lemma 1\}
5. \{All the conditions of Lemma 2\}
6. \(A^T \) is invertible.

Proposition 5. A linear map \(f : \mathbb{R}^n \to \mathbb{R}^n \) is injective if and only if it is surjective.