THE SUBSTITUTION RULE

FRI, NOV 15, 2013

(\textit{Last edited November 17, 2013 at 11:16pm.})

\textbf{Theorem 1} (Substitution Rule for Definite Integrals, page 411). If \(g' \) is continuous on \([a, b]\) and \(f \) is continuous on the range of \(g(x) \), then

\[\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(x)dx . \tag{1} \]

\textit{Proof.} Let \(F \) be an antiderivative of \(f \), i.e. we have \(F' = f \). By FTC(ii), we have

\[F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(x)dx . \tag{2} \]

(You should read the LHS as the net change of \(F(x) \) between \(g(a) \) and \(g(b) \).) Also, notice that

\[(F(g(x)))' = F'(g(x))g'(x) = f(g(x))g'(x) . \]

Thus \(F(g(x)) \) is an antiderivative of \(f(g(x))g'(x) \). By FTC(ii), we have

\[F(g(b)) - F(g(a)) = \int_a^b f(g(x))g'(x)dx . \tag{3} \]

(You should read the LHS as the net change of \(F(g(x)) \) between \(a \) and \(b \).) Then (2) and (3) implies (1).\footnote{Equation (1) is false if we remove the limits of integration. The assertion \(\int f(g(x))g'(x)dx = \int f(x)dx \) seems to imply the following: “if \(F_1(x) \) is an antiderivative of \(f(g(x))g'(x) \) and \(F_2(x) \) is an antiderivative of \(f(x) \), then there exists a constant \(C \) such that \(F_1(x) = F_2(x) + C. \)” But this is false: consider \(f(x) = x^2 \) and \(g(x) = x^2 \). Then \(f(g(x))g'(x) = 2x^3 \). Let’s pick the antiderivatives \(F_1(x) = \frac{2}{3}x^3 \) and \(F_2(x) = \frac{1}{3}x^3 \) of \(f(g(x))g'(x) \) and \(f(x) \), respectively. Notice that there is no constant \(C \) such that \(F_1(x) = F_2(x) + C \) for all \(x \), since this says that the polynomial \(\frac{2}{3}x^3 - \frac{1}{3}x^3 - C \) has infinitely many roots. The correct statement is: “if \(F_1(x) \) is an antiderivative of \(f(g(x))g'(x) \) and \(F_2(x) \) is an antiderivative of \(f(x) \), then there exists a constant \(C \) such that \(F_1(x) = F_2(g(x)) + C. \)” (The only difference is that we have \(F_1(x) = F_2(g(x)) + C \) instead of \(F_1(x) = F_2(x) + C. \).) You can check this for the example \(f(x) = x^2 \) and \(g(x) = x^2 \).}

The Substitution Rule for Definite Integrals asserts that two numbers are equal. By fixing \(a \) and varying \(b \) in (1), we obtain an equality of functions

\[G_1(t) = G_2(t) \]

where

\[G_1(t) := \int_a^t f(g(x))g'(x)dx \quad \text{and} \quad G_2(t) := \int_{g(a)}^{g(t)} f(x)dx . \]

You can use the Substitution Rule backwards and forwards. It’s useful to know both methods.

\textbf{Substitution Method 1.} Given a function \(f(x) \) of which you want to find an antiderivative, find a function \(g(x) \) such that the function \(f(g(x))g'(x) \) has a known antiderivative, find an antiderivative \(G(x) \) of \(f(g(x))g'(x) \), and define \(F(x) := G(g^{-1}(x)) \). Then \(F(x) \) is an antiderivative of \(f(x) \). You can check as
follows:

\[F'(x) = G'(g^{-1}(x))g'(-1)(x) \]
\[= f(g(g^{-1}(x))) \cdot g'(g^{-1}(x)) \cdot \frac{1}{g'(g^{-1}(x))} \]
\[= f(x) . \]

Let’s look at an example from class today.

Problem 1. Find an antiderivative of \(f(x) = e^{\sqrt{x}}. \)

Solution. Let \(g(x) = x^{2}. \) Then \(f(g(x))g'(x) = e^{\sqrt{x}} \cdot 2x = 2xe^{x}. \) An antiderivative of \(xe^{x} \) is \(xe^{x} - e^{x} \) (which you can find by integration by parts; set \(u(x) = x, \) \(v(x) = e^{x} \) so set \(G(x) = 2xe^{x} - 2e^{x}. \) Then \(G'(x) = f(g(x))g'(x). \) Set \(F(x) = G(g^{-1}(x)) = 2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}}. \) Then \(F(x) \) is an antiderivative of \(f(x). \) \(\square \)

Substitution Method 2. Given a function \(h(x) \) of which you want to find an antiderivative, find functions \(f(x) \) and \(g(x) \) such that \(h(x) = f(g(x))g'(x) \) and \(f(x) \) has a known antiderivative \(F(x). \) Then \(h(x) = f(g(x))g'(x) = F'(g(x))g'(x) = (F(g(x)))', \) so \(F(g(x)) \) is an antiderivative of \(h(x). \)

Problem 2. Find an antiderivative of \(h(x) = \tan x. \)

Solution. Write \(h(x) = \tan x = \frac{\sin x}{\cos x} \). Define \(f(x) = \frac{1}{x} \) and \(g(x) = \cos x. \) Then \(h(x) = \frac{1}{\cos x}(-\sin x) = f(g(x))g'(x). \) Since \(-\ln x \) is an antiderivative of \(f(x), -\ln(\cos x) \) is an antiderivative of \(h(x). \) \(\square \)

Exercise 1 (Section 5.5, #27). Find an antiderivative of the function \(f(x) = (x^{2} + 1)(x^{3} + 3x)^{4}. \)

Exercise 2 (Section 5.5, #32). Find an antiderivative of the function \(f(x) = \frac{\sin(x)}{x}. \)

Exercise 3 (Section 5.5, #36). Find an antiderivative of the function \(f(x) = \frac{2x^{7}}{2x^{3} + 1}. \)

Exercise 4 (Section 5.5, #48). Find an antiderivative of the function \(f(x) = \frac{x}{1+x^{2}}. \)

Exercise 5 (Section 5.5, #60). Evaluate the definite integral

\[\int_{0}^{1} xe^{-x^{2}} \, dx . \]

Exercise 6 (Section 5.5, #69). Evaluate the definite integral

\[\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} \, dx . \]

Exercise 7 (Section 5.5, #86). If \(f \) is continuous and \(\int_{0}^{a} f(x) \, dx = 4, \) find \(\int_{0}^{3} x f(x^{2}) \, dx. \)

Exercise 8 (Section 5.5, #89). If \(a \) and \(b \) are positive numbers, show that

\[\int_{0}^{1} x^{a}(1-x)^{b} \, dx = \int_{0}^{1} x^{b}(1-x)^{a} \, dx . \]

Exercise 9 (Section 5.5, #90,91). If \(f \) is continuous on \([0, \pi] \), use the substitution \(u = \pi - x \) to show that

\[\int_{0}^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx . \]

Use this to evaluate the integral

\[\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx . \]