INDEFINITE INTEGRALS; FUNDAMENTAL THEOREM OF CALCULUS

WED, OCT 30, 2013

(Last edited November 1, 2013 at 8:36am.)

Summary of Fundamental Theorem of Calculus:

(1) Part 1 says that one (of many) antiderivatives of \(f(x) \) is given by the function \(F(x) = \int_a^x f(t) \, dt \). For this antiderivative, it is clear by the additive properties of the integral that
\[F(b) - F(a) = \int_a^b f(t) \, dt. \]

(2) Part 2 says that if \(G(x) \) is any other antiderivative of \(f(x) \), then
\[G(b) - G(a) = \int_a^b f(t) \, dt \] also.

Exercise 1 (Section 5.3, #9). Use Part 1 of FTC to find the derivative of the function
\[g(s) = \int_s^5 (t - t^2)^8 \, dt. \]

Solution. This is a straightforward application of FTC, which says that
\(g(x) \) is an antiderivative of the function \((x - x^2)^8\), or in other words
\(g'(x) = (x - x^2)^8 \).

Exercise 2 (Section 5.3, #13). Use Part 1 of FTC to find the derivative of the function
\[h(x) = \int_1^{e^x} \ln t \, dt. \]

Solution. Notice that \(h(x) \) is the composite of two functions \(f(x) = \int_x^1 \ln t \, dt \) and \(g(x) = e^x \), i.e. \(h(x) = f(g(x)) \). We know by FTC (part 1) that \(f'(x) = \ln x \). So, by the Chain Rule, we have
\[f'(x) = h'(g(x))g'(x) = \ln(e^x)e^x = xe^x. \]

(By the way, how can you use FTC (part 2) to solve this? Note that \(F(x) = x \ln x - x \) is an antiderivative of \(\ln x \). Thus \(h(x) = F(e^x) - F(1) = (e^x \ln(e^x)) - (1 \ln 1 - 1) = xe^x - e^x + 1 \). Thus \(h'(x) = xe^x \).)

Exercise 3 (Section 5.3, #31). Evaluate the integral
\[\int_0^{\pi/4} (\sec t)^2 \, dt. \]

Solution. Look up the fact that an antiderivative of \((\sec x)^2 \) is \(\tan x \). By FTC (part 2), we have
\[\int_0^{\pi/4} (\sec t)^2 \, dt = \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1. \]

Exercise 4 (Section 5.3, #40). Evaluate the integral
\[\int_1^2 \frac{4 + u^2}{u^3} \, du. \]

Solution. Notice that an antiderivative of \(\frac{4 + u^2}{u^3} \) is \(\frac{-2}{u^2} + \ln u \). By FTC (part 2), we have
\[\int_1^2 \frac{4 + u^2}{u^3} \, du = \left(\frac{-2}{u^2} - \ln 2 \right) - \left(\frac{-2}{1^2} - \ln 1 \right) = \frac{3}{2} - \ln 2. \]
Exercise 5 (Section 5.3, #72). If \(f \) is continuous and \(g \) and \(h \) are differentiable functions, find a formula for

\[
\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) \, dt .
\]

Solution. Let \(A(x) = \int_0^x f(t) \, dt \). By FTC (part 1), we have \(A'(x) = f(x) \). Then

\[
\int_{g(x)}^{h(x)} f(t) \, dt = \int_0^{h(x)} f(t) \, dt - \int_0^{g(x)} f(t) \, dt = A(h(x)) - A(g(x))
\]

so

\[
\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) \, dt = A'(h(x))h'(x) - A'(g(x))g'(x)
\]

\[
= f(h(x))h'(x) - f(g(x))g'(x) .
\]

\(\square\)