Constancy of generalized Hodge-Tate weights of a p-adic local system

Koji Shimizu

Department of Mathematics
Harvard University

CTNT 2018 Conference, June 2
Galois Representations – Examples

Goal

Study a family of Galois representations parametrized by a variety \mathbb{Q}_p.

Let k be a finite extension of \mathbb{Q}_p. A Galois representation is a continuous group homomorphism

$$\rho: \text{Gal}_k := \text{Gal}(\overline{k}/k) \longrightarrow \text{GL}_r(\mathbb{Q}_p).$$

- p-adic cyclotomic character

$$\chi: \text{Gal}_k \to \text{Gal}(k(\mu_{p^\infty})/k) \hookrightarrow \mathbb{Z}_p^\times$$

- Tate module of an elliptic curve E/k:

$$T_pE := \lim_{\leftarrow m} E[p^m](\overline{k}) \cong \mathbb{Z}_p^2$$

- étale cohomology of an algebraic variety Y over k:

$$H^n_{\text{ét}}(Y_{\overline{k}}, \mathbb{Q}_p)$$
Theorem (Tsuji, Faltings, Nizioł,...)

\[H^n_{\text{ét}}(Y_k, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{dR}} \cong H^n_{\text{dR}}(Y/k) \otimes_k B_{\text{dR}}. \]

Here \(B_{\text{dR}} \) is \(p \)-adic analogue of \(\mathbb{C} \) (de Rham period ring).

This implies:

\[H^n_{\text{ét}}(Y_k, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{dR}} \cong B_{\text{dR}}^{\text{dim} H^n_{\text{dR}}} \text{ (trivial Gal}_k\text{-representation}/B_{\text{dR}}\text{)} \]

Such a Galois representation is called de Rham.

Hierarchy in Galois representations:

(general Galois representations)

\[\bigcup \]

(de Rham representations)

\[\bigcup \]

(\(\rho \) coming from étale cohomology)
Generalized Hodge-Tate weights

There are a lot of non de Rham representations:

\[\chi^\alpha : \text{Gal}_k \longrightarrow \mathbb{Z}_p^\times \text{ for each } \alpha \in \mathbb{Z}_p. \]

Fact

\(\chi^\alpha \) is de Rham if and only if \(\alpha \in \mathbb{Z} \).

Question

How to study a general Galois representation \(\rho \)?

Sen associated **generalized Hodge-Tate weights** \(\alpha_1, \ldots, \alpha_{\dim \rho} \in \overline{k} \) to \(\rho \).

- \(\chi^\alpha \sim \alpha \)
- \(T_pE \sim 0, 1 \)
Main Question

How about a family of Galois representations parametrized by a variety?

Let X be an algebraic variety over k and consider a continuous representation

$$\rho_X : \pi_1^{\text{ét}}(X) \to \text{GL}_r(\mathbb{Q}_p).$$

Then for each (closed) point $x \in X$, we have

$$\text{Gal}_{k(x)} = \pi_1^{\text{ét}}(\text{Spec } k(x)) \to \pi_1^{\text{ét}}(X) \xrightarrow{\rho_X} \text{GL}_r(\mathbb{Q}_p).$$

This means ρ_X is a geometric family of Galois representations!

- $\pi_1^{\text{ét}}(X)$-representation $\rho_X \leftrightarrow \mathbb{Q}_p$-local system on X (étale sheaf)
- More generally, we work on a rigid analytic variety X over k and \mathbb{Q}_p-local systems on X.
Main Result

Set-up:
- X: a smooth rigid analytic variety over k (+ geometrically connected)
- \mathbb{L}: a \mathbb{Q}_p-local system on X

Theorem (R. Liu - X. Zhu)

If \mathbb{L} is de Rham at one point, then it is so at any point.

Main Theorem (S.)

Generalized Hodge-Tate weights of \mathbb{L} are constant on X.

Key ingredients of Main Theorem:
(a) Sen’s endomorphism
(b) Geometric p-adic Riemann-Hilbert correspondence
(a) Sen’s endomorphism

\[k_\infty := k(\mu_{p\infty}), \quad K := \widehat{k_\infty} \]

Sen’s Theory

Sen constructed a functor

\[\text{Gal}_k \text{-representation } V \sim (\mathcal{H}(V), \phi_V). \]

- \(\mathcal{H}(V) \) is a \(K \)-vector space of \(K \)-dimension \(\dim_{\mathbb{Q}_p} V \).
- \(\phi_V \in \text{End}_K \mathcal{H}(V) \) (Sen’s endomorphism).

Definition: generalized Hodge-Tate weights are the eigenvalues of \(\phi_V \).

Remark:

- \(\mathcal{H}(V) := (V \otimes_{\mathbb{Q}_p} \widehat{k})^{\text{Gal}(\overline{k}/k_\infty)}. \)
- \(\phi_V \) comes from \(\text{Gal}(k_\infty/k) \)-action on \(\mathcal{H}(V) \).
Toward the constancy of generalized Hodge-Tate weights

To prove Main Theorem...

- Define $\mathcal{H}(L)$ and ϕ_L for a \mathbb{Q}_p-local system L on X.
- Prove the eigenvalues of ϕ_L are constant.

Natural guesses:

- $\mathcal{H}(L)$ should be a vector bundle on X_K and $\phi_L \in \text{End}_{X_K} \mathcal{H}(L)$.
- To prove constancy, need more geometric inputs.
 (e.g. derivatives w.r.t. coordinates are zero.)

Riemann-Hilbert correspondence/\mathbb{C}

X: complex manifold

\mathbb{C}-local systems L on X ("solutions") \leftrightarrow vector bundles with integrable connections $(\mathcal{E}, \nabla: \mathcal{E} \to \mathcal{E} \otimes \Omega^1_X)$ on X ("differential equations")

Our case will be: L on $X \sim (\mathcal{E}, \nabla)$ on $X \hat{} \otimes K[[t]]$
There is a natural functor

\[\mathbb{Q}_p\text{-local system } L \text{ on } X \rightsquigarrow (E_L, \nabla). \]

- \(E_L \) is a vector bundle on \(X \hat{\otimes} K[[t]] \).
- \(\nabla \) is an integrable connection on \(X \hat{\otimes} K((t)) \) and it has log poles along the divisor \(X_K \).

Moreover, if we set

\[H(L) := E_L|_{X_K}, \quad \text{and} \quad \phi_L := \text{Res}_{X_K} \nabla \in \text{End } H(L), \]

then \((H(L), \phi_L)\) is a natural generalization of \((H(V), \phi_V)\).

- \(E_L := \nu_* (L \otimes O_{\mathbb{B}^+_{dR}}) \otimes \text{Gal}(k_\infty/k) \) \((\nu : X_{K, \text{pro\acute{e}t}} \to X_{K, \text{\acute{e}t}})\).
- \(\nu_* O_{\mathbb{B}_{dR}} = O_X \hat{\otimes} \mathbb{B}_{dR}(K) \approx O_X \hat{\otimes} K((t)). \)
- Analysis of this connection \(\rightsquigarrow \) constancy of eigenvalues of \(\phi_L \) on \(X_K \).