Math 55, Solutions to In-class Problems

Feb 12, 2013

1. Problem: prove that if $a \equiv b \bmod m$ where $a, b, m \in \mathbb{Z}$ and $m \geq 2$ then $\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)$.
Solution: We will show that $\operatorname{gcd}(b, m)$ divides $\operatorname{gcd}(a, m)$. By symmetry, we will have also shown that $\operatorname{gcd}(a, m)$ divides $\operatorname{gcd}(b, m)$. Thus we will have shown that $\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)$.
Let $a \equiv b \bmod m$. Then there exists an integer k such that $a=b+k m$. For any integer x such that x divides m and x divides b (i.e. x divides $\operatorname{gcd}(b, m)$), we see that x divides a. Indeed, if we write $b=b_{0} x$ and $m=m_{0} x$ then $a=b_{0} x+k m_{0} x=x\left(b_{0}+k m_{0}\right)$. Since this is true for any divisor of $\operatorname{gcd}(b, m)$, we conclude that $\operatorname{gcd}(b, m)$ divides a. But by definition, $\operatorname{gcd}(b, m)$ divides m. Thus $\operatorname{gcd}(b, m)$ divides $\operatorname{gcd}(a, m)$.
2. Prove that there is a composite integer in any arithmetic progression $b+a, b+2 a, b+3 a, b+4 a, \ldots$ where a and b are positive integers.
Solution: The $b^{\text {th }}$ term of this sequence is $b+b a=b(1+a)$. Since $a \in \mathbb{Z}_{+}$, we have $a \geq 1$, so $a+1 \geq 2$. Thus for any arithmetic progression with $b>1$, the $b^{\text {th }}$ term is a product of two positive integers not equal to 1 and therefore composite.
It remains to show that an arithmetic progression of the form

$$
1+a, 1+2 a, 1+3 a, 1+4 a, \ldots
$$

has a composite term. Note that $(a+1)^{2}=a^{2}+2 a+1=a(a+2)+1$. So the $(a+2)^{\text {th }}$ term of the sequence, $a(a+2)+1$, is the square of the integer $a+1$. We saw above that $a+1 \geq 2$, so the $(a+2)^{\text {th }}$ term is composite.
Thus we see that for any arithmetic progression $b+a, b+2 a, b+3 a, b+$ $4 a, \ldots$, there is a composite term in either the $b^{\text {th }}$ place or the $(a+2)^{\text {th }}$ place.
3. Prove that if $m>1$ and

$$
a c \equiv b c \quad \bmod m
$$

then

$$
a \equiv b \quad \bmod m / \operatorname{gcd}(c, m)
$$

Solution: Let $a c \equiv b c \bmod m$. Then by definition, there exists and integer k such that $a c=b c+k m$. Let $x:=\operatorname{gcd}(c, m)$, and write $m=m_{0} x$ and $c=c_{0} x$. Then

$$
a c_{0} x=b c_{0} x+k m_{0} x
$$

so

$$
a c_{0}=b c_{0}+k m_{0} .
$$

By the definition of gcd, c_{0} and m_{0} are relatively prime (indeed, if they had a common divisor $y \neq 1$ then y would divide both c and m, so $x y$ would divide both c and m, but we defined x to be the greatest integer dividing both c and m). Thus there exists an integer c_{0}^{-1} such that $c_{0} \cdot c_{0}^{-1} \equiv 1 \bmod m_{0}$. Multiplying both sides of the above equation by c_{0}^{-1} yields

$$
a c c_{0}^{-1}=b c c_{0}^{-1}+k m_{0} c_{0}^{-1} .
$$

Take both sides of the above equality $\bmod m_{0}$ and we have

$$
a c c_{0}^{-1} \equiv b c c_{0}^{-1}+k m_{0} c_{0}^{-1} \quad \bmod m_{0}
$$

so

$$
a c c_{0}^{-1} \equiv b c c_{0}^{-1} \quad \bmod m_{0}
$$

so

$$
a \equiv b \quad \bmod m_{0} .
$$

