Math 55, Probability Worksheet \#2
 March 19, 2014

1. What is the probability of each of these events when we randomly select a permutation of the numbers one through four:

- 1 precedes 4

Solution: By symmetry, the number of permutations where 1 precedes 4 and the number of permutations where 4 precedes 1 are equal. In every permutation we must have that either 1 precedes 4 or 4 precedes 1 so $2 \cdot|E|=|S|$ so $p(E)=\frac{|E|}{|S|}=\frac{1}{2}$.

- 1 precedes 4 and 1 precedes 3

Solution: If 1 precedes both 3 and 4 then it must land in one of the first 2 positions. If it lands in the first position, there are $3!=6$ options for arranging the numbers 2,3 , and 4 and if it lands in the second then 2 must precede it and there are $2!=2$ options for arranging the numbers 3 and 4 . So there are $6+2=8$ possible outcomes in this event. There are $4!=24$ total outcomes so $p(E)=8 / 24=1 / 3$.

- 1 precedes 4,1 precedes 3 , and 1 precedes 2

Solution: If 1 precedes 2,3 , and 4 then it must land in the first position, and there are $3!=6$ options for arranging the numbers 2,3 , and 4 . So there are 6 possible outcomes in this event. There are $4!=24$ total outcomes so $p(E)=6 / 24=1 / 4$.

- 1 precedes 4 and 2 precedes 3

Solution: By symmetry, the number of permutations where 1 precedes 4 and 2 precedes 3 is equal to the number of permutations where 1 precedes 4 and 3 precedes 2 . In every permutation where 1 precedes 4 we must have that either 2 precedes 3 or 3 precedes 2 so if E is the event that 1 precedes 4 and 2 precedes 3 and F is the event that 1 precedes 4, we have $2 \cdot|E|=|F|=|S| / 2$ (as computed in part one) so $p(E)=\frac{|E|}{|S|}=\frac{1}{4}$.
2. What is the smallest number of people you can choose at random to guarantee that the probability that one of them has a birthday today is at least $1 / 2$?

Solution: The probability that at least one of n people has a birthday today is one minus the probability that none of the the n people has a birthday today. The probability that any given person does not have a birthday today is $\frac{364}{365}$. Thus the probability that none of the n people has a birthday today is $\left(\frac{364}{365}\right)^{n}$, and therefore the probability that at least one person out of n random people has a birthday today is $1-\left(\frac{364}{365}\right)^{n}$. So we want to solve $1-\left(\frac{364}{365}\right)^{n} \geq 1 / 2$ or in other words $1 / 2 \geq\left(\frac{364}{365}\right)^{n}$. Taking the log base 2 of both sides, this is the same as saying

$$
-1 \geq n \log _{2}\left(\frac{364}{365}\right)
$$

which is equivalent to

$$
-1 / \log _{2}\left(\frac{364}{365}\right) \leq n
$$

(since $\log _{2}\left(\frac{364}{365}\right)<0$). We compute that $-1 / \log _{2}\left(\frac{364}{365}\right)=252.65 \ldots$ so we must have at least 253 people to get a probability of at least one of them having a birthday today greater than $1 / 2$.
3. Prove that if E and F are events then $p(E \cap F) \geq p(E)+p(F)-1$.

Solution: Let S be the space of all possible outcomes. Then

$$
p(E \cap F)=\frac{|E \cap F|}{|S|}=\frac{|E|+|F|-|E \cup F|}{|S|}=p(E)+p(F)-\frac{|E \cup F|}{|S|} .
$$

Since $|E \cup F| \leq|S|$ we have $\frac{|E \cup F|}{|S|} \leq 1$ so $-\frac{|E \cup F|}{|S|} \geq-1$ so $p(E \cap F) \geq p(E)+p(F)-1$.
4. Consider a family with n children. Let E be the event that the family has at least one child of each gender and let F be the event that the family as at most one boy. For which n (if any) are E and F independent? Assume that birth order matters, so the sets \{boy, girl\} and \{girl, boy\} are different outcomes.

Solution: Recall that E and F are independent if $p(E \cap F)=p(E) \cdot p(F)$. To solve this problem, we will explicitly compute $p(E)$ and $p(F)$. Note that the number of ways we can assign genders to a family's n children is 2^{n}, since order matters.
For any n, there are only 2 ways that a family might not have at least one child of each gender, namely the case where all children are male and the case where all children are female. So $p(E)=\frac{2^{n}-2}{2^{n}}$. Furthermore, there are $n+1$ ways that a family can have at most one boy, namely the n cases with exactly one boy where the boy is the youngest, second youngest, ..., second oldest, oldest, and the one case where all children are girls. So $p(F)=\frac{n+1}{2^{n}}$. Finally, there are n ways for a family to have at least one child of each gender and at most one boy, namely the n ways of having exactly one boy. So $p(E \cap F)=\frac{n}{2^{n}}$. So the problem amounts to computing for which n we have the equality

$$
\frac{n}{2^{n}}=\frac{2^{n}-2}{2^{n}} \cdot \frac{n+1}{2^{n}}
$$

or equivalently

$$
2^{n} \cdot n=\left(2^{n}-2\right)(n+1)=2^{n} \cdot n-2 n+2^{n}-2
$$

or, in other words

$$
0=-2 n+2^{n}-2
$$

which can be written as

$$
n+1=2^{n-1}
$$

Certainly for large enough $n, 2^{n-1}$ is far bigger than $(n+1)$, and we see from the graphs of the two functions that for $n>0$ there is only one intersection point, after which 2^{n-1} is always bigger than $(n+1)$. We need only check for very small n to find this point. We observe:

$$
\begin{aligned}
& \text { for } n=1: 1+1>2^{0} \\
& \text { for } n=2: 2+1>2^{1} \\
& \text { for } n=3: 3+1=2^{2} \\
& \text { for } n=4: 4+1<2^{3}
\end{aligned}
$$

so events E and F are independent if and only if $n=3$.
5. Suppose that in the world of Harry Potter, 8% of people have magical powers, 96% of magical people have parents who are magical, and 9% of nonmagical people are squibs (i.e. have parents who are magical). What is the probability that a person selected randomly from Harry Potter's world with magical parents is magical himself?

Solution: Let E be the event that a person is magical and F be the event that a person's parents are magical. Then the problem statement tells us that

$$
\begin{aligned}
p(E) & =0.08 \\
p(\neg E) & =0.92 \\
p(F \mid E) & =0.96 \\
p(F \mid \neg E) & =0.09
\end{aligned}
$$

We want to compute $p(E \mid F)$, the probability that a person is magical given that he/she has magic parents. Bayes' Theorem tells us

$$
p(E \mid F)=\frac{p(F \mid E) p(E)}{p(F \mid E) p(E)+p(F \mid \neg E) p(\neg E)}
$$

so in our case

$$
\begin{aligned}
p(E \mid F) & =\frac{0.96 \cdot 0.08}{0.96 \cdot 0.08+0.09 \cdot 0.92} \\
& =0.481 \ldots
\end{aligned}
$$

so the probability is about 48%.
6. Prove that if $E_{1}, E_{2}, \ldots, E_{n}$ are events from a finite sample space then

$$
p\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) \leq p\left(E_{1}\right)+p\left(E_{2}\right)+\cdots+p\left(E_{n}\right)
$$

Solution: Let S be the space of all possible outcomes. Then

$$
p\left(E_{1} \cup \cdots \cup E_{n}\right)=\frac{\left|E_{1} \cup \cdots \cup E_{n}\right|}{|S|} \leq \frac{\left|E_{1}\right|+\cdots+\left|E_{n}\right|}{|S|}=p\left(E_{1}\right)+\ldots p\left(E_{n}\right) .
$$

7. Suppose that 1 in every 10,000 children are math prodigies. Say there is a test that can be given to babies at age 3 months that will determine if the baby will grow up to be a math prodigy or not (there is no such test of course, nor is there a well-defined notion of "prodigy", but let us assume for the sake of this problem). Say that 99% of math prodigies passed the test as babies and only 0.001% of people who are not math prodigies passed the test.

- What is the probability that someone who passes the test grows up to be a math prodigy?

Solution: Let E be the event that a baby grows up to be a math prodigy and let F be the event that a baby passes the test. The problem statement tells us that

$$
\begin{array}{r}
p(E)=.0001 \\
p(\neg E)=0.9999 \\
p(F \mid E)=.99 \\
p(F \mid \neg E)=0.001
\end{array}
$$

We want to compute $p(E \mid F)$, the probability that a person who passes the test grows up to be a math prodigy. Bayes' Theorem tells us

$$
p(E \mid F)=\frac{p(F \mid E) p(E)}{p(F \mid E) p(E)+p(F \mid \neg E) p(\neg E)}
$$

so in our case

$$
\begin{aligned}
p(E \mid F) & =\frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001+0.001 \cdot 0.9999} \\
& =0.090 \ldots
\end{aligned}
$$

so the probability is about 9%.

- What is the probability that someone who doesn't pass the test doesn't grow up to be a math prodigy?

Solution: Here we want to compute $p(\neg E \mid \neg F)$, the probability that a person who doesn't pass the test doesn't grow up to be a math prodigy. By replacing $\neg E$ for E and $\neg F$ for F in the statement of Bayes' Theorem, we see that

$$
p(\neg E \mid \neg F)=\frac{p(\neg F \mid \neg E) p(\neg E)}{p(\neg F \mid \neg E) p(\neg E)+p(\neg F \mid E) p(E)}
$$

Since $p(\neg F \mid \neg E)+p(F \mid \neg E)=1$, we have

$$
\begin{aligned}
p(\neg F \mid \neg E) & =0.999 \\
p(\neg F \mid E) & =0.01
\end{aligned}
$$

so in our case

$$
\begin{aligned}
p(E \mid F) & =\frac{0.999 \cdot 0.9999}{0.999 \cdot 0.9999+0.01 \cdot 0.0001} \\
& =0.9999989989 \ldots
\end{aligned}
$$

so the probability is more than 99.99%.

