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1. What is the probability of each of these events when we randomly select a permutation of the numbers one
through four:

• 1 precedes 4

Solution: By symmetry, the number of permutations where 1 precedes 4 and the number of permu-
tations where 4 precedes 1 are equal. In every permutation we must have that either 1 precedes 4 or 4
precedes 1 so 2 · |E| = |S| so p(E) = |E|

|S| = 1
2 .

• 1 precedes 4 and 1 precedes 3

Solution: If 1 precedes both 3 and 4 then it must land in one of the first 2 positions. If it lands in
the first position, there are 3! = 6 options for arranging the numbers 2, 3, and 4 and if it lands in the
second then 2 must precede it and there are 2! = 2 options for arranging the numbers 3 and 4. So there
are 6 + 2 = 8 possible outcomes in this event. There are 4! = 24 total outcomes so p(E) = 8/24 = 1/3.

• 1 precedes 4, 1 precedes 3, and 1 precedes 2

Solution: If 1 precedes 2, 3, and 4 then it must land in the first position, and there are 3! = 6 options
for arranging the numbers 2, 3, and 4. So there are 6 possible outcomes in this event. There are 4! = 24
total outcomes so p(E) = 6/24 = 1/4.

• 1 precedes 4 and 2 precedes 3

Solution: By symmetry, the number of permutations where 1 precedes 4 and 2 precedes 3 is equal
to the number of permutations where 1 precedes 4 and 3 precedes 2. In every permutation where 1
precedes 4 we must have that either 2 precedes 3 or 3 precedes 2 so if E is the event that 1 precedes 4
and 2 precedes 3 and F is the event that 1 precedes 4, we have 2 · |E| = |F | = |S|/2 (as computed in

part one) so p(E) = |E|
|S| = 1

4 .

2. What is the smallest number of people you can choose at random to guarantee that the probability that one
of them has a birthday today is at least 1/2?

Solution: The probability that at least one of n people has a birthday today is one minus the probability
that none of the the n people has a birthday today. The probability that any given person does not have a
birthday today is 364

365 . Thus the probability that none of the n people has a birthday today is (364365)n, and
therefore the probability that at least one person out of n random people has a birthday today is 1− (364365)n.
So we want to solve 1 − (364365)n ≥ 1/2 or in other words 1/2 ≥ (364365)n. Taking the log base 2 of both sides,
this is the same as saying

−1 ≥ n log2(
364

365
)

which is equivalent to

−1/ log2(
364

365
) ≤ n

(since log2(
364
365) < 0). We compute that −1/ log2(

364
365) = 252.65 . . . so we must have at least 253 people to

get a probability of at least one of them having a birthday today greater than 1/2.

3. Prove that if E and F are events then p(E ∩ F ) ≥ p(E) + p(F )− 1.



Solution: Let S be the space of all possible outcomes. Then

p(E ∩ F ) =
|E ∩ F |
|S|

=
|E|+ |F | − |E ∪ F |

|S|
= p(E) + p(F )− |E ∪ F |

|S|
.

Since |E ∪ F | ≤ |S| we have |E∪F ||S| ≤ 1 so − |E∪F ||S| ≥ −1 so p(E ∩ F ) ≥ p(E) + p(F )− 1.

4. Consider a family with n children. Let E be the event that the family has at least one child of each gender
and let F be the event that the family as at most one boy. For which n (if any) are E and F independent?
Assume that birth order matters, so the sets {boy, girl} and {girl, boy} are different outcomes.

Solution: Recall that E and F are independent if p(E ∩ F ) = p(E) · p(F ). To solve this problem, we will
explicitly compute p(E) and p(F ). Note that the number of ways we can assign genders to a family’s n
children is 2n, since order matters.

For any n, there are only 2 ways that a family might not have at least one child of each gender, namely the
case where all children are male and the case where all children are female. So p(E) = 2n−2

2n . Furthermore,
there are n+ 1 ways that a family can have at most one boy, namely the n cases with exactly one boy where
the boy is the youngest, second youngest, . . . , second oldest, oldest, and the one case where all children are
girls. So p(F ) = n+1

2n . Finally, there are n ways for a family to have at least one child of each gender and at
most one boy, namely the n ways of having exactly one boy. So p(E ∩ F ) = n

2n . So the problem amounts to
computing for which n we have the equality

n

2n
=

2n − 2

2n
· n + 1

2n

or equivalently
2n · n = (2n − 2)(n + 1) = 2n · n− 2n + 2n − 2

or, in other words
0 = −2n + 2n − 2

which can be written as
n + 1 = 2n−1

Certainly for large enough n, 2n−1 is far bigger than (n+1), and we see from the graphs of the two functions
that for n > 0 there is only one intersection point, after which 2n−1 is always bigger than (n + 1). We need
only check for very small n to find this point. We observe:

for n = 1 : 1 + 1 > 20

for n = 2 : 2 + 1 > 21

for n = 3 : 3 + 1 = 22

for n = 4 : 4 + 1 < 23

so events E and F are independent if and only if n = 3.

5. Suppose that in the world of Harry Potter, 8% of people have magical powers, 96% of magical people have
parents who are magical, and 9% of nonmagical people are squibs (i.e. have parents who are magical). What
is the probability that a person selected randomly from Harry Potter’s world with magical parents is magical
himself?



Solution: Let E be the event that a person is magical and F be the event that a person’s parents are
magical. Then the problem statement tells us that

p(E) = 0.08

p(¬E) = 0.92

p(F |E) = 0.96

p(F |¬E) = 0.09

We want to compute p(E|F ), the probability that a person is magical given that he/she has magic parents.
Bayes’ Theorem tells us

p(E|F ) =
p(F |E)p(E)

p(F |E)p(E) + p(F |¬E)p(¬E)

so in our case

p(E|F ) =
0.96 · 0.08

0.96 · 0.08 + 0.09 · 0.92

= 0.481 . . .

so the probability is about 48%.

6. Prove that if E1, E2, . . . , En are events from a finite sample space then

p(E1 ∪ E2 ∪ · · · ∪ En) ≤ p(E1) + p(E2) + · · ·+ p(En)

Solution: Let S be the space of all possible outcomes. Then

p(E1 ∪ · · · ∪ En) =
|E1 ∪ · · · ∪ En|

|S|
≤ |E1|+ · · ·+ |En|

|S|
= p(E1) + . . . p(En).

7. Suppose that 1 in every 10, 000 children are math prodigies. Say there is a test that can be given to babies at
age 3 months that will determine if the baby will grow up to be a math prodigy or not (there is no such test
of course, nor is there a well-defined notion of ”prodigy”, but let us assume for the sake of this problem). Say
that 99% of math prodigies passed the test as babies and only 0.001% of people who are not math prodigies
passed the test.

• What is the probability that someone who passes the test grows up to be a math prodigy?

Solution: Let E be the event that a baby grows up to be a math prodigy and let F be the event that
a baby passes the test. The problem statement tells us that

p(E) = .0001

p(¬E) = 0.9999

p(F |E) = .99

p(F |¬E) = 0.001

We want to compute p(E|F ), the probability that a person who passes the test grows up to be a math
prodigy. Bayes’ Theorem tells us

p(E|F ) =
p(F |E)p(E)

p(F |E)p(E) + p(F |¬E)p(¬E)



so in our case

p(E|F ) =
0.99 · 0.0001

0.99 · 0.0001 + 0.001 · 0.9999

= 0.090 . . .

so the probability is about 9%.

• What is the probability that someone who doesn’t pass the test doesn’t grow up to be a math prodigy?

Solution: Here we want to compute p(¬E|¬F ), the probability that a person who doesn’t pass the
test doesn’t grow up to be a math prodigy. By replacing ¬E for E and ¬F for F in the statement of
Bayes’ Theorem, we see that

p(¬E|¬F ) =
p(¬F |¬E)p(¬E)

p(¬F |¬E)p(¬E) + p(¬F |E)p(E)

Since p(¬F |¬E) + p(F |¬E) = 1, we have

p(¬F |¬E) = 0.999

p(¬F |E) = 0.01

so in our case

p(E|F ) =
0.999 · 0.9999

0.999 · 0.9999 + 0.01 · 0.0001

= 0.9999989989 . . .

so the probability is more than 99.99%.


