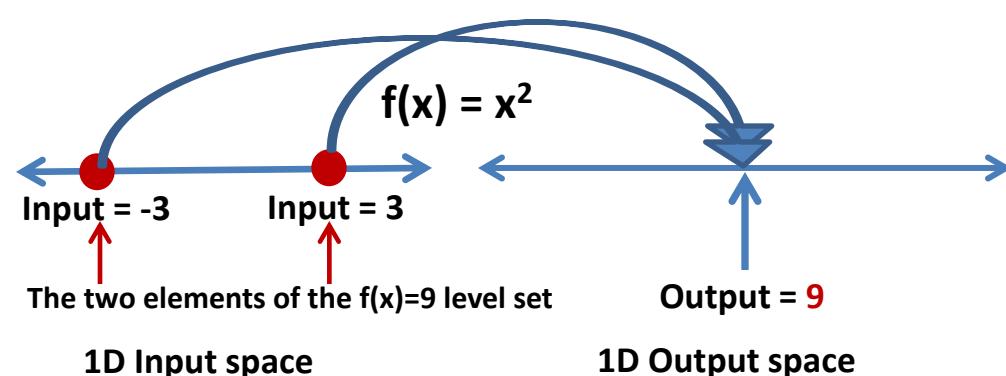
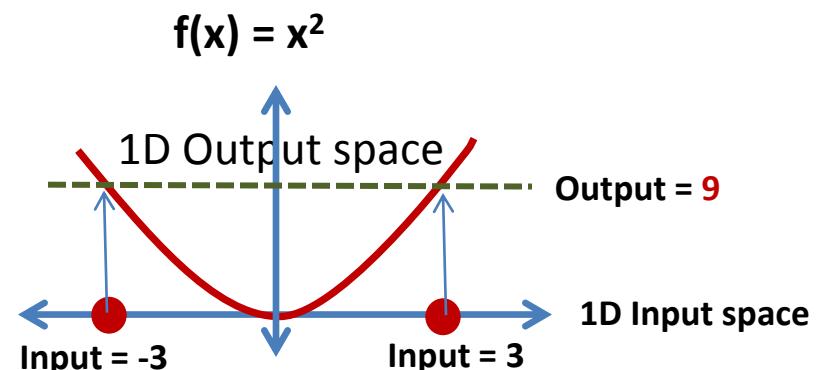


Section 14.1: Review of the Idea of Level Sets

Definition : Given $f(x)$, we call the “ k ” level set the set of all inputs that get sent to the output value of k .

The level set lies in input space



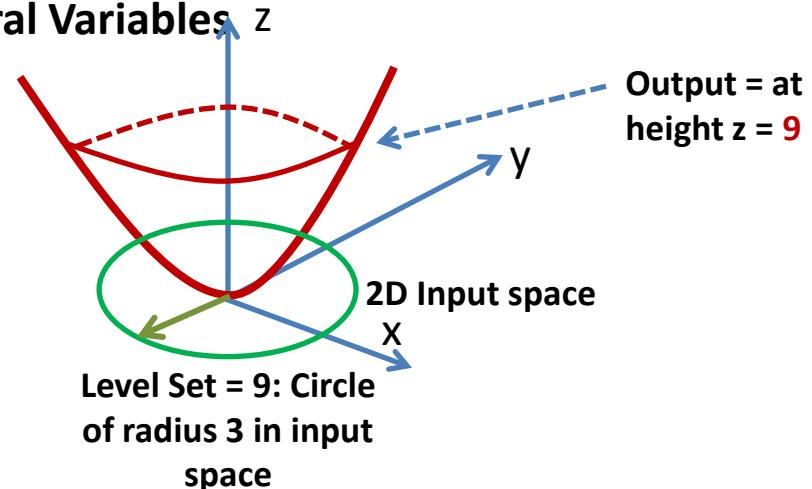
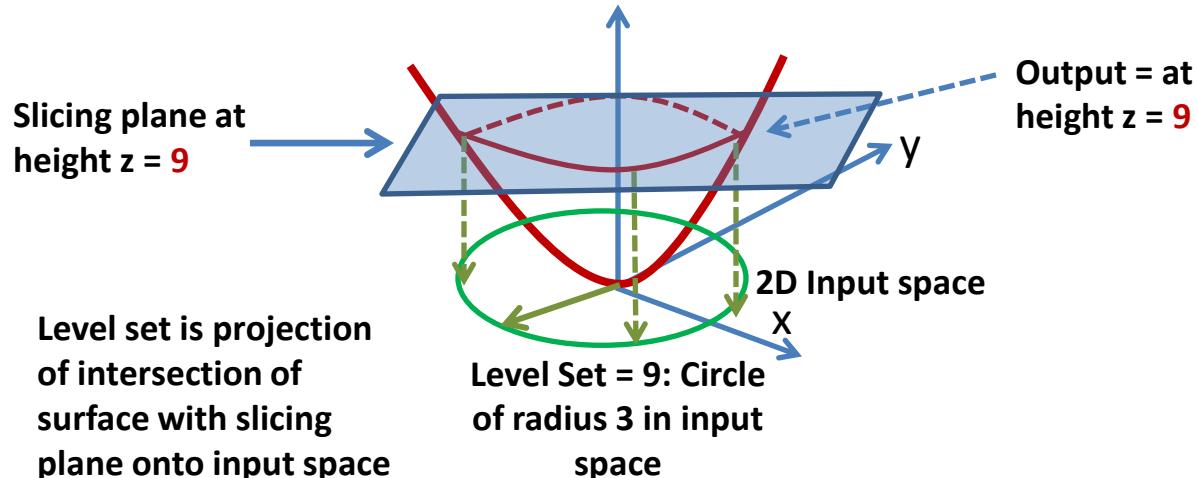
Section 14.1: Functions of Several Variables

$f(x,y) = x^2 + y^2$ What is the level set $f(x,y) = 9$?

Analytic answer:

it is the set of all input points that get sent to the output 9

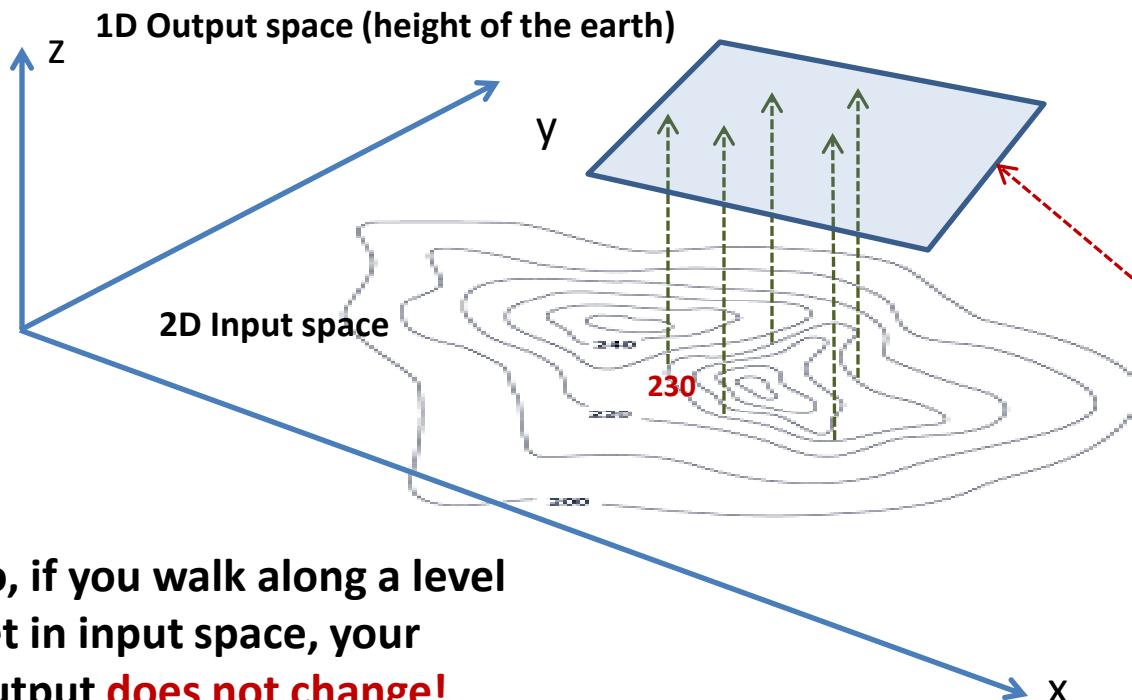
Geometric answer: if you slice the graph with a plane at height k , and project the result down to the input plane, the points you get are the k level set.



Section 14.1: Functions of Several Variables

And that's what a topographic map is!

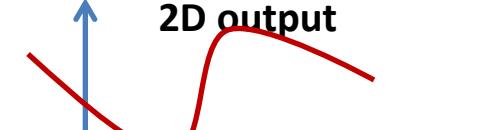
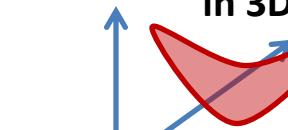
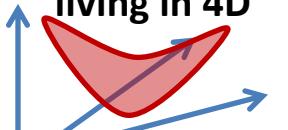
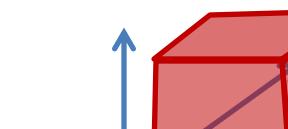
A topographic gives you different k -level sets in the input space, showing what the height of the earth would be.
Contour lines show points of the same elevation.



So, if you walk along a level set in input space, your output **does not change!**

Topo map from <https://datavizproject.com/data-type/topographic-map/>

Let's make sure we agree about what we mean about **dimension**

Dimension of output space			
1D output space	2D output space	3D output space	4D output space
A 1D red input living in 1D output $f(x) \equiv f(x) : \mathbb{R}^1 \rightarrow \mathbb{R}^1$	A 1D red input living in 2D output  $\vec{f}(x) \equiv (f(x), g(x)) : \mathbb{R}^1 \rightarrow \mathbb{R}^2$	A 1D red input living in 3D output  $\vec{f}(x) \equiv (f(x), g(x), h(x)) : \mathbb{R}^1 \rightarrow \mathbb{R}^3$	A 1D red input living in 4D $\vec{f}(x) \equiv (f(x), g(x), h(x), i(x)) : \mathbb{R}^1 \rightarrow \mathbb{R}^4$
A 2D red input living in 1D $f(\vec{x}) \equiv f(x_1, x_2) : \mathbb{R}^2 \rightarrow \mathbb{R}^1$	A 2D red input living in 2D $\vec{f}(\vec{x}) \equiv (f(x_1, x_2), g(x_1, x_2)) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$	A 2D red input living in 3D  $\vec{f}(\vec{x}) \equiv (f(x_1, x_2), g(x_1, x_2), h(x_1, x_2)) : \mathbb{R}^2 \rightarrow \mathbb{R}^3$	A 2D red input living in 4D  $\vec{f}(\vec{x}) \equiv (f(x_1, x_2), g(x_1, x_2), h(x_1, x_2), i(x_1, x_2)) : \mathbb{R}^2 \rightarrow \mathbb{R}^4$
A 3D red input living in 1D $f(\vec{x}) \equiv f(x_1, x_2, x_3) : \mathbb{R}^3 \rightarrow \mathbb{R}^1$	A 3D red input living in 2D $\vec{f}(\vec{x}) \equiv (f(x_1, x_2, x_3), g(x_1, x_2, x_3)) : \mathbb{R}^3 \rightarrow \mathbb{R}^2$	A 3D red input living in 3D  $\vec{f}(\vec{x}) \equiv (f(x_1, x_2, x_3), g(x_1, x_2, x_3), h(x_1, x_2, x_3)) : \mathbb{R}^3 \rightarrow \mathbb{R}^3$	A 3D red input in 4D  $\vec{f}(\vec{x}) \equiv (f(x_1, x_2, x_3), g(x_1, x_2, x_3), h(x_1, x_2, x_3), i(x_1, x_2, x_3)) : \mathbb{R}^3 \rightarrow \mathbb{R}^4$

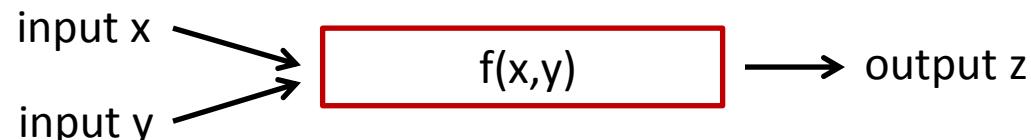
Section 14.1: Functions of Several Variables

Another example: $f(x,y) = x^2 + 4y^2$ This is a function from 2D to 1D

$$f(\vec{x}) \equiv f(x, y) = z : \mathbb{R}^2 \rightarrow \mathbb{R}^1$$

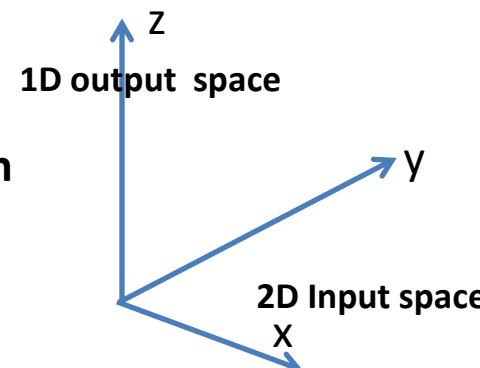
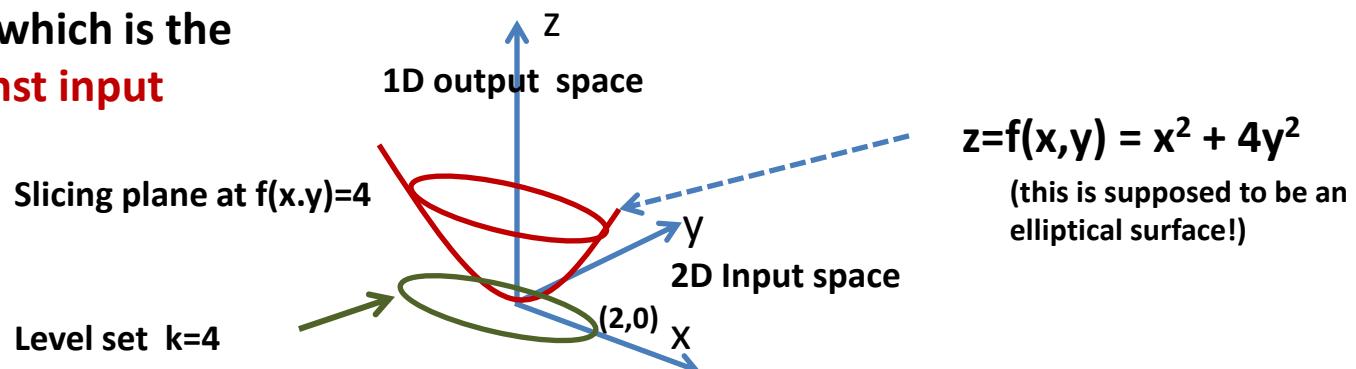
There are two free input variables:
x and y,

which together live in two-dimensional input space

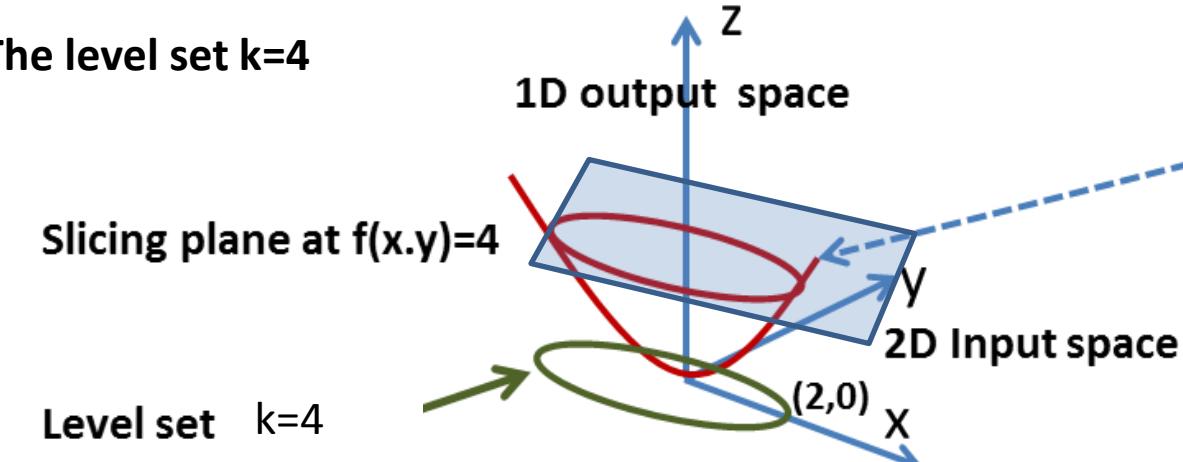


We can plot the output using a third dimension

and then use the equation to
link output space to input space,
generating a surface which is the
graph of output against input



Section 14.1: Functions of Several Variables

The level set $k=4$ 

=Curve in x-y plane satisfying $4 = x^2 + 4y^2$

Let's really talk about *dimensions*

For a mapping $f(\vec{x}) \equiv f(x, y) = z : \mathbb{R}^2 \rightarrow \mathbb{R}^1$ from 2D input to 1D output

- It requires three dimensions to contain the graph of output against input
- The graph *itself* is a 2D surface living in 3D space
- The level set is a 1D curve in 2D input space
- Again—the level curve satisfying $4 = x^2 + 4y^2$ is 1D curve, because it only has 1 free variable (as x changes, that nails down y).

Again, for a mapping $f(\vec{x}) \equiv f(x, y) = z : \mathbb{R}^2 \rightarrow \mathbb{R}^1$

We graph it in 3D. The thing itself is 2D. The level set is 1D.

Section 14.1: Functions of Several Variables

Again, for a mapping $f(\vec{x}) \equiv f(x, y) = z : \mathbb{R}^2 \rightarrow \mathbb{R}^1$

We graph it in 3D. The thing itself is 2D. The level set is 1D.

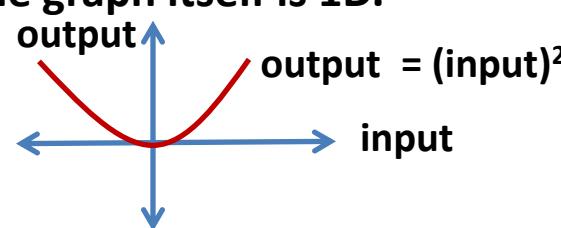
Let's go down a dimension to see if this is still true:

Example: $f(x) = x^2$

(1) This is mapping from 1D to 1D $f(x) \equiv x^2 : \mathbb{R}^1 \rightarrow \mathbb{R}^1$

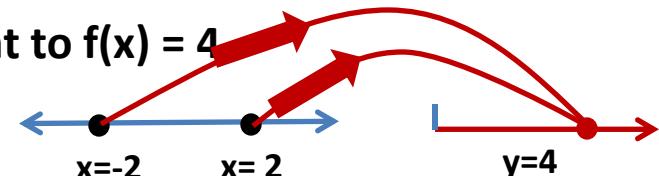
(2) There is one free input variable, so the graph itself is 1D.

(3) We can add a second dimension y and graph it in \mathbb{R}^2



(4) The level set $k=4$ is the set of all points that get sent to $f(x) = 4$

Those two points are zero-dimensional



So again: We graph it in 2D. The thing itself is 1D. The level set is 0D.

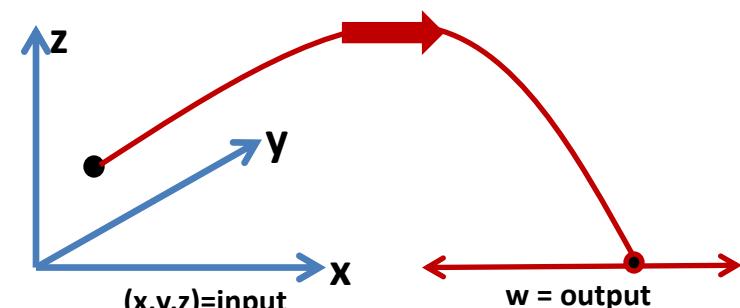
Section 14.1: Functions of Several Variables

Okay—now I am getting excited—let's go **up** a dimension

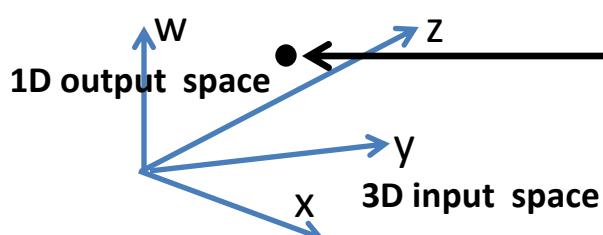
Example: $f(x,y,z) = x^2 + y^2 + z^2$

(1) This is a 3D function

$$f(\vec{x}) \equiv f(x, y, z) = w : \mathbb{R}^3 \rightarrow \mathbb{R}^1$$



(2) We need a fourth dimension to graph it



This point is part of the **graph** of the 3D surface $(x, y, z, f(x, y, z))$ which lives in 4D space

(3) And the k level set is the set of all points (x, y, z) such that $k = f(x, y, z) = x^2 + y^2 + z^2$ which is a sphere of radius \sqrt{k}

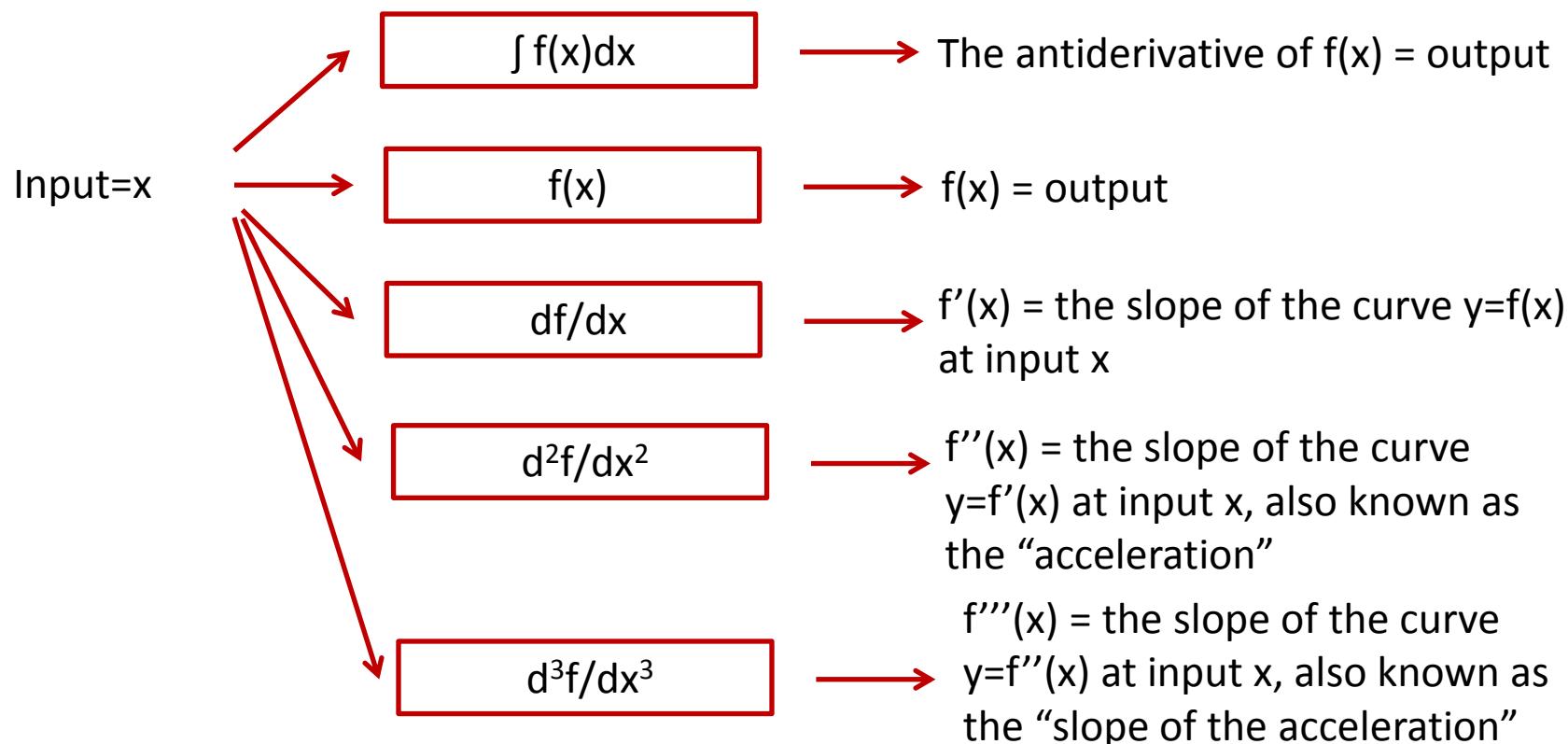
(4) this is a 2D object, since there are only 2 free variables

So again: **We graph it in 4D. The thing itself is 3D. The level set is 2D.**

Read Section 14.2 on your own---Section 14.3: On to derivatives!

Definition: First, let's remember 1D calculus: Given $f(x)$, we define the derivative of $f(x)$ with respect to x

$$\frac{df}{dx} \equiv f' \equiv \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$$



Section 14.3: On to derivatives--Multivariables!

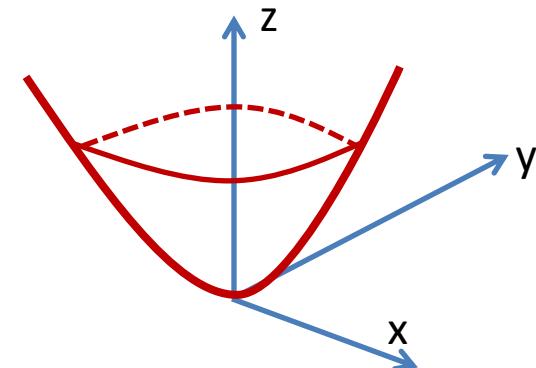
Definition: Given $f(x,y)$, we **define** the partial derivative of $f(x,y)$ with respect to x as the **derivative of f as x changes, assuming y is constant.**

Notation: partial derivative $\frac{\partial f(x,y)}{\partial x} = \frac{\partial f}{\partial x} = f_x(x, y)$

Example: $f(x,y) = x^2 + 3y^2$

$$f_x = (2x)$$

$$f_y = (6y)$$



Example: $f(x,y) = 12x^3y + x^2 + 3y^2$

$$f_x = (36x^2y + 2x)$$

$$f_y = (12x^3 + 6y)$$

Example: $f(x,y) = \sin(xy)$

$$f_x = y \cos(xy)$$

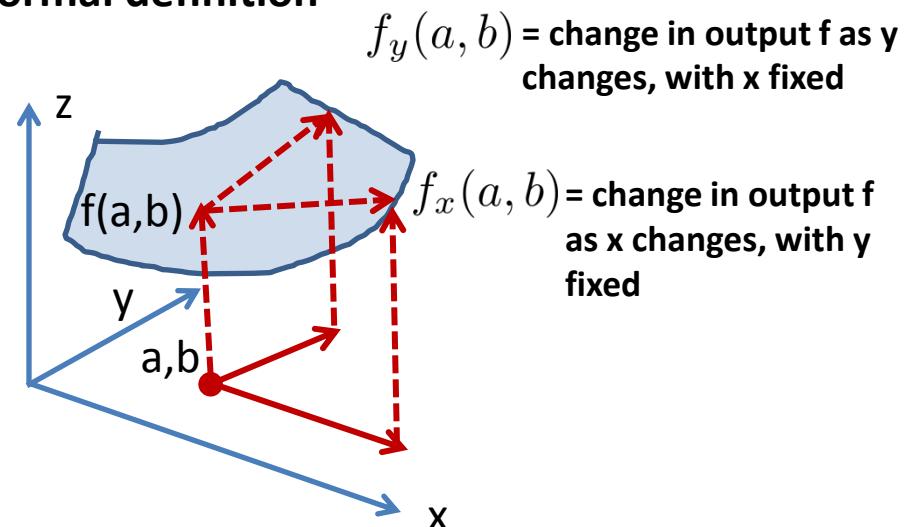
$$f_y = x \cos(xy)$$

Section 14.3: The formal definition

Let's define the partial derivatives formally:

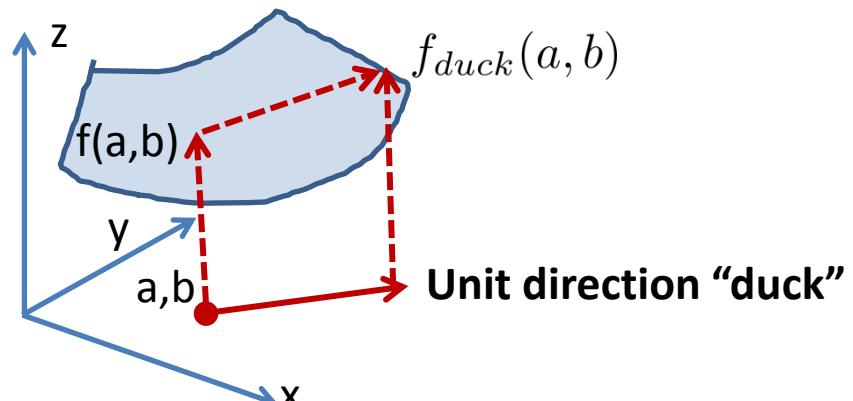
$$f_x(a, b) \equiv \lim_{h \rightarrow 0} \frac{f(a+h, b) - f(a, b)}{h}$$

$$f_y(a, b) \equiv \lim_{h \rightarrow 0} \frac{f(a, b+h) - f(a, b)}{h}$$



$f_x(a, b) = \text{change in output } f \text{ as } x \text{ changes, with } y \text{ fixed}$

So, you should think of the partial derivative in the “duck” direction as how much the function changes as you move from (a, b) in the unit vector direction “duck”



Section 14.3: The formal definition

More examples: your turn $f(x,y,z) = x y^2 + x y z^3 + \cos(xyz)$

Find f_x, f_y, f_z

$$f_x = y^2 + yz^3 - yz \sin xyz$$

Solution:

$$f_y = 2xy + xz^3 - xz \sin xyz$$

$$f_z = 3xyz^2 - xy \sin xyz$$

It seems obvious we can keep going: $f_{xx} \equiv \frac{\partial^2 f}{\partial x^2} = \frac{\partial(\frac{\partial f}{\partial x})}{\partial x}$

Find f_{xx}, f_{yy}, f_{zz}

$$f_{xx} = z \sin xyz - (xy)(yz) \cos(xyz)$$

$$f_{yy} = 2x + -xz(xz) \cos(xyz)$$

$$f_{zz} = 6xyz - xy(xy) \cos xyz$$

Section 14.3: We can also do “cross-derivatives”

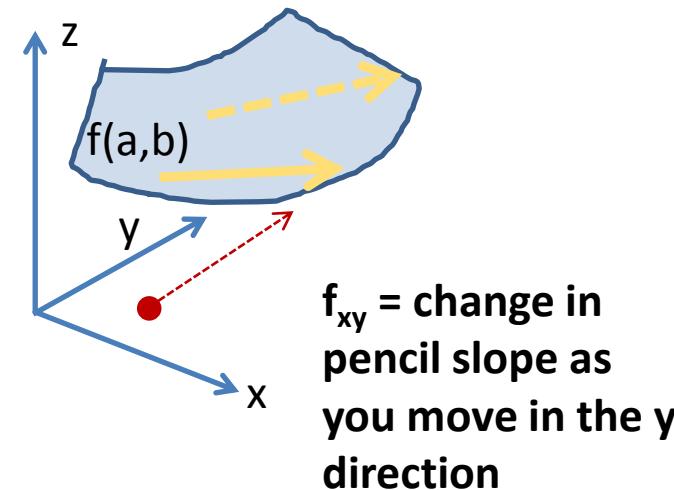
$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial(\frac{\partial f}{\partial x})}{\partial y}$$

The rate of change as y changes of the rate of change of f as x changes

To see this visually, imagine a pencil tangent to a surface in a direction where y is constant. As that pencil is translated, always pointing in the xy plane, its change in slope is given by f_{xy}

Example: $f(x, y) = x^2 y^3 + e^{xy^4}$

Find f_x, f_y, f_{xy}, f_{yx}



$$f_x = 2xy^3 + y^4 e^{xy^4}$$

$$f_{xy} = 6xy^2 + 4y^3 e^{xy^4} + y^4 (4xy^3) e^{xy^4}$$

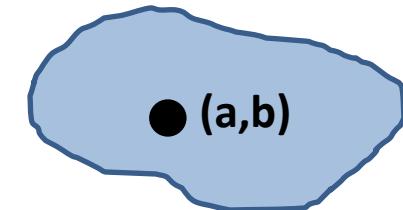
$$f_y = x^2 (3y^2) + (4xy^3) e^{xy^4}$$

$$f_{yx} = 2x(3y^2) + (4y^3) e^{xy^4} + (4xy^3)(y^4) e^{xy^4}$$

Wow! Why are these the same?

Section 14.3: Clairaut's Theorem

Suppose $f(x,y)$ is defined on a disk around a point (a,b) , and that f_{xy} and f_{yx} are both continuous in that disk. Then



$f_{xy} = f_{yx}$ Often referred to as the "Equality of Mixed Partial" s

Question: Suppose $f(x, y) = x^3 e^{x^3} \sin(x e^{x y} (x^y)^x)$

What is $f_{xy} - f_{yx}$?

Solution: By Clairaut's theorem, the answer is zero!

I won't prove this ---but try looking it up yourself to see how it is done—it basically depends on carefully analyzing the limits

$$f_{xy} = \lim_{h_2 \rightarrow 0} \frac{\lim_{h_1 \rightarrow 0} \frac{f(x+h_1, y+h_2) - f(x, y+h_2)}{h_1} - \lim_{h_1 \rightarrow 0} \frac{f(x+h_1, y) - f(x, y)}{h_1}}{h_2}$$

$$f_{yx} = \lim_{h_1 \rightarrow 0} \frac{\lim_{h_2 \rightarrow 0} \frac{f(x+h_1, y+h_2) - f(x, y+h_2)}{h_2} - \lim_{h_2 \rightarrow 0} \frac{f(x+h_1, y) - f(x, y)}{h_2}}{h_1}$$

And showing that they are the same (now you see why continuity in f_{xy} and f_{yx} is needed)

(I will come back to 14.4—but first): Section 14.5: Implicit Relationships**Suppose $x + 2y = 6$. Then x and y are not independent: x and y are forced to cooperate****This is called an “implicit relationship”****And we could ask “how does y change when x changes? This is what is meant by dy/dx** **Question: Suppose $x^3 + y^3 + z^3 + 6xyz = 1$** **This is an implicit relationship between x, y , and z . x, y , and z are linked So what is $\frac{\partial z}{\partial x}$?****Commentary:****(1) What does this question even mean?****(2) It means, how does z change when x changes,****assuming y is held fixed (that's what a partial derivative means!) ?****Let's do it:****Step 1: Take the partial derivative of both sides with respect to x , remembering that y is held fixed, and z is now a function of x**

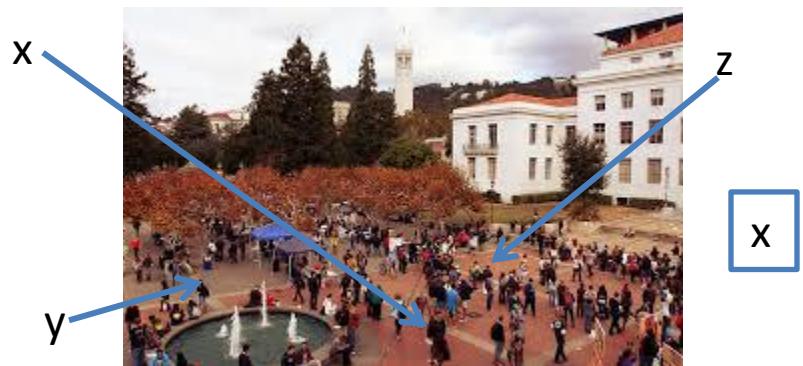
$$\frac{\partial}{\partial x}(x^3 + y^3 + z^3 + 6xyz) = \frac{\partial}{\partial x}(1)$$

$$3x^2 + 0 + 3z^2 \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0$$

Step 2: Solve for $\frac{\partial z}{\partial x}$ $3x^2 + 6yz + (3z^2 + 6xy) \frac{\partial z}{\partial x} = 0 \rightarrow \frac{\partial z}{\partial x} = -\frac{3x^2 + 6yz}{3z^2 + 6xy}$

Section 14.5: Implicit Relationships

Let's use our function boxes to make sure we know what we are talking about:



We start with no relation between x, y and z

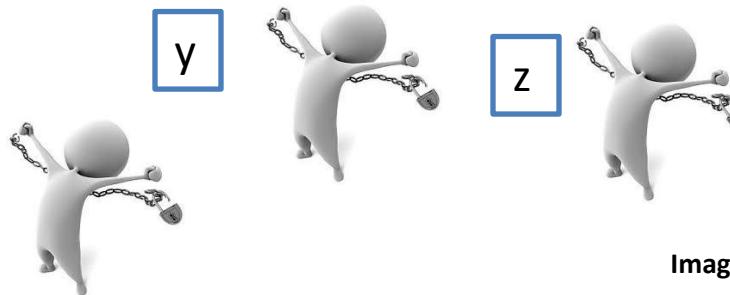


Image from busy.org

(2) We discover there is an equation

$$x^3 + y^3 + z^3 + 6xyz = 1$$

 that links them all together:

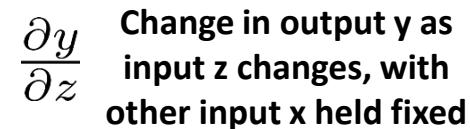
$$x^3 + y^3 + z^3 + 6xyz = 1$$

Diagram showing the variables x, y, and z as inputs to the equation. Blue arrows point from x, y, and z to the terms x^3 , y^3 , and $6xyz$ respectively. A double-headed blue arrow connects y and z.

If we choose to make z the output

Image from netclipart.com

And we could have chosen any variable as the output



Section 14.3: Implicit Relationships

Your turn: $x^2 + 2y^2 + 3z^2 = 1$ Find $\frac{\partial z}{\partial x}$

Solution: Step 1: take the partial derivative of both sides with respect to x (holding y fixed)

$$\frac{\partial}{\partial x}(x^2 + 2y^2 + 3z^2) = \frac{\partial}{\partial x}(1)$$

$$2x + 0 + 6z\frac{\partial z}{\partial x} = 0$$

Step 2: Solve for $\frac{\partial z}{\partial x} \rightarrow \frac{\partial z}{\partial x} = (-2x)/(6z)$

Your turn: $e^z = xyz$ Find $\frac{\partial y}{\partial x}$

Solution: Step 1: take the partial derivative of both sides with respect to x (holding z fixed)

$$\frac{\partial}{\partial x}(e^z) = \frac{\partial}{\partial x}(xyz) \quad \text{(Remember: } y = y(x) \text{ and } z \text{ is fixed—use product rule)}$$

$$0 = yz + x\frac{\partial y}{\partial x}z$$

Step 2: Solve for $\frac{\partial y}{\partial x} \rightarrow \frac{\partial y}{\partial x} = (-yz)/(xz) = -y/x$

Section 14.4: Tangent Planes and linear approximations

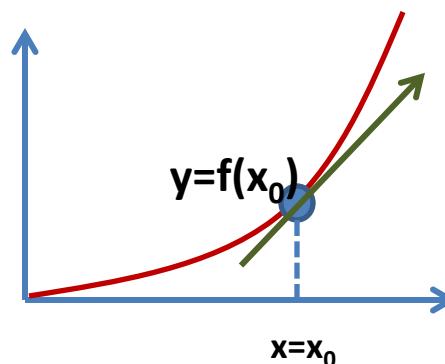
Let's recall 1D Calculus: $y=f(x)$

Tangent line at $(x_0, f(x_0))$ touches the graph $y=f(x_0)$ at only one point in a near $(x_0, f(x_0))$

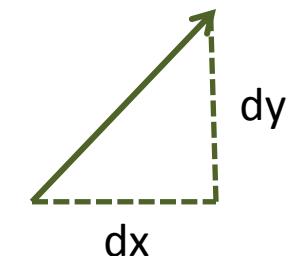
The tangent line is given by

$$y - f(x_0) = \text{slope}(x - x_0) = \left. \frac{df}{dx} \right|_{x_0} (x - x_0)$$

$$\text{Tangent vector} = (dx, dy) = (1, dy/dx) = (1, f'(a))$$



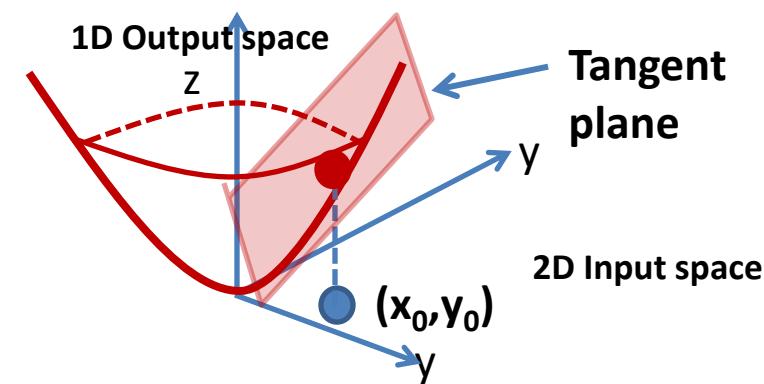
Tangent line with slope $f'(x_0)$ going through the point $(x_0, f(x_0))$



We want to construct a similar idea for functions of two (or more variables):

The Tangent Plane

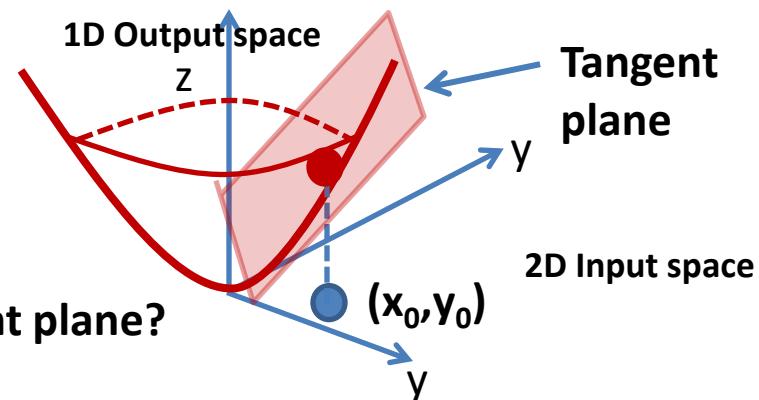
Tangent plane at $(x_0, y_0, f(x_0, y_0))$ touches the graph $z=f(x_0, y_0)$ at only one point in a near $(x_0, y_0, f(x_0, y_0))$



Section 14.4: Tangent Planes and linear approximations

Tangent plane at $(x_0, y_0, f(x_0, y_0))$ touches the graph $z=f(x_0, y_0)$ at only one point in a near $(x_0, y_0, f(x_0, y_0))$

How are we going to find an equation for the tangent plane?

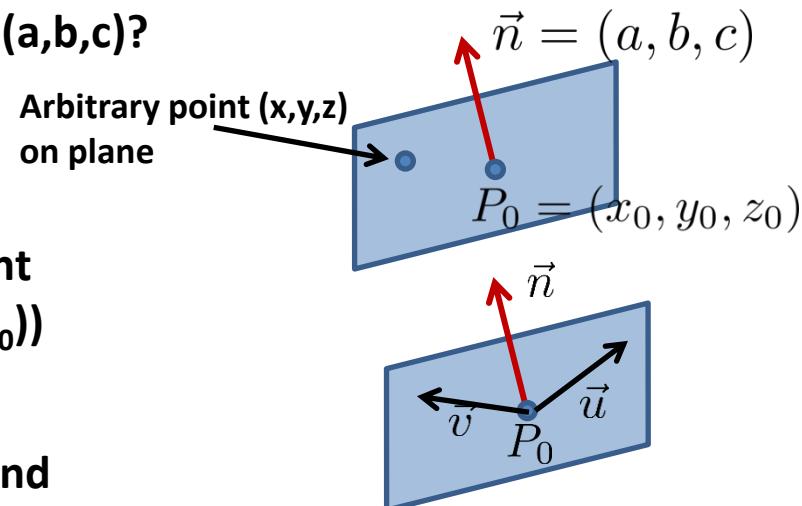


Idea #1! Do you remember we had a formula for a plane going through the point (x_0, y_0, z_0) with normal vector (a, b, c) ?

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Realization 1: we know the point P_0 where the tangent plane touches the surface: $P_0 = (x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0))$

Realization 2: if we had two vectors \vec{u} and \vec{v} in the tangent plane, we could take their cross product to find the normal $\vec{n} = \vec{u} \times \vec{v}$

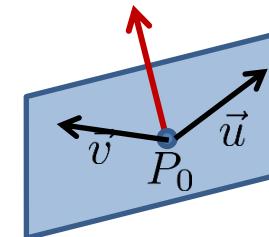


Section 14.4: Tangent Planes and linear approximations

Formula for a plane going through the point

(x_0, y_0, z_0) with normal vector (a, b, c)

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

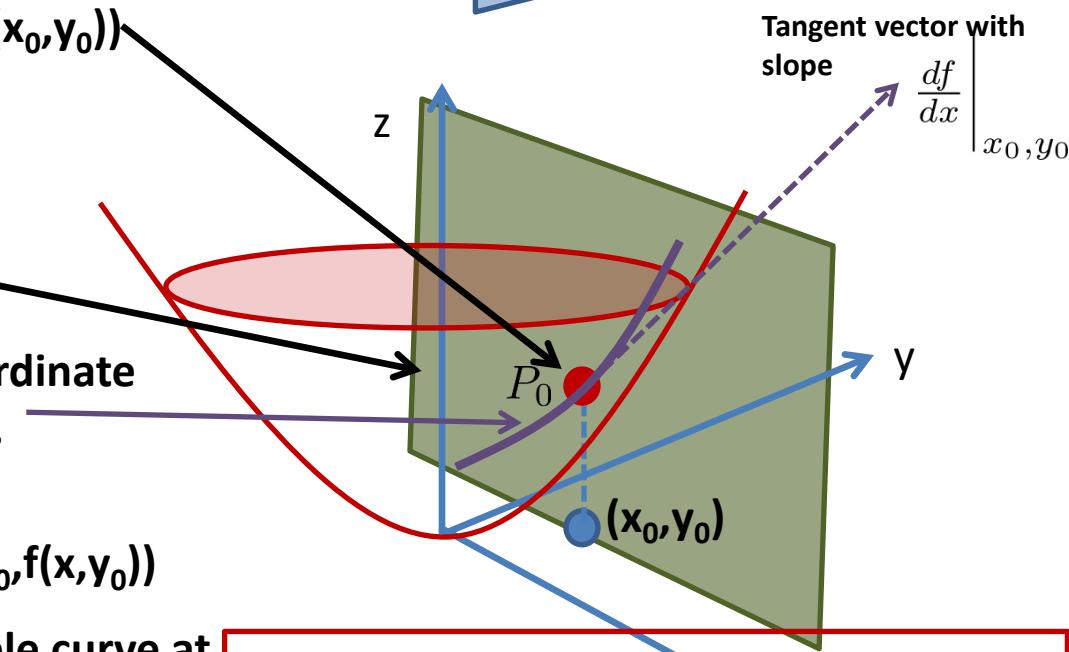


Tangent point is $P_0 = (x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0))$

How can we find two vectors in the tangent plane?

Idea #2: We can slice the graph of $z = f(x, y)$ with a plane $y = y_0$

This gives a purple curve whose y coordinate never changes and lies on the surface.



So this purple curve is the graph of $(x, y_0, f(x, y_0))$

And the x partial derivative of this purple curve at (x_0, y_0) gives the slope $\frac{df}{dx} \Big|_{x_0, y_0}$ of the tangent vector

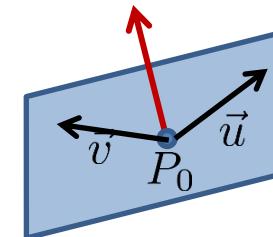
at P_0 lying in the slicing plane

So one tangent vector is

$$\vec{v} = \left(1, 0, \frac{\partial f}{\partial x} \Big|_{x_0, y_0} \right)$$

Section 14.4: Tangent Planes and linear approximations

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$



Tangent point is $P_0 = (x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0))$

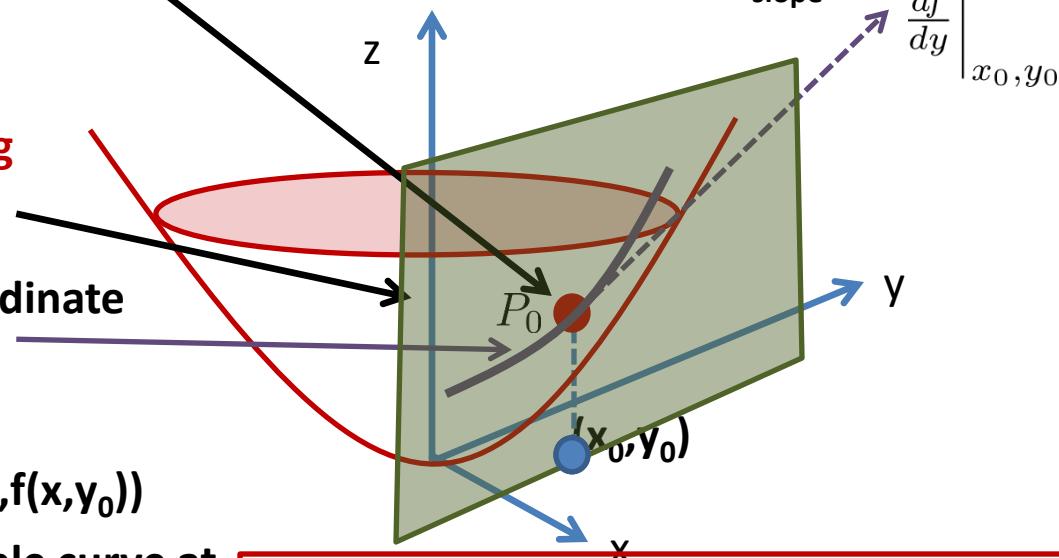
Obtain another tangent vector by slicing the graph of $z = f(x, y)$ with a plane $x = x_0$

This gives a purple curve whose x coordinate never changes and lies on the surface.

So this purple curve is the graph of $(x_0, y, f(x_0, y_0))$

And the y partial derivative of this purple curve at (x_0, y_0) gives the slope $\left. \frac{df}{dy} \right|_{x_0, y_0}$ of the tangent vector

at P_0 lying in the slicing plane



So one tangent vector is

$$\vec{v} = (0, 1, \left. \frac{\partial f}{\partial y} \right|_{x_0, y_0})$$

Section 14.4: Tangent Planes and linear approximations

One tangent vector is $\vec{u} = (1, 0, \frac{\partial f}{\partial x} \bigg|_{x_0, y_0})$

One tangent vector is $\vec{v} = (0, 1, \frac{\partial f}{\partial y} \bigg|_{x_0, y_0})$

$$\vec{n} = (a, b, c) = \vec{u} \times \vec{v} = (1, 0, \frac{\partial f}{\partial x}) \times (0, 1, \frac{\partial f}{\partial y}) = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right) \leftarrow \text{check this!}$$

Back to our formula for a plane:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

(I temporarily
stopped writing $|_{x_0, y_0}$)

Substitute everybody in:

$$-\frac{\partial f}{\partial x}(x - x_0) + -\frac{\partial f}{\partial y}(y - y_0) + 1(z - f(x_0, y_0)) = 0$$

Solve for z (remembering that $z_0 = f(x_0, y_0)$):

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x} \bigg|_{x_0, y_0} (x - x_0) + \frac{\partial f}{\partial y} \bigg|_{x_0, y_0} (y - y_0)$$

**Formula for the
tangent plane**

Section 14.4: Tangent Planes and linear approximations

Formula for the tangent plane

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x} \bigg|_{x_0, y_0} (x - x_0) + \frac{\partial f}{\partial y} \bigg|_{x_0, y_0} (y - y_0)$$

Notice how much it looks like our formula for the slope of a tangent line:

$$y - f(x_0) = \text{slope}(x - x_0) = \frac{df}{dx} \bigg|_{x_0} (x - x_0)$$

Example: Find the equation for the plane tangent to $z = 2x^2 + y^2$ at the input point $x_0=1$ $y_0=1$

Solution: Step 1: find the point on the surface at the input $x_0=1$ $y_0=1$

$$z_0 = f(x_0, y_0) = f(1, 1) = 2(1)^2 + 1^2 = 3$$

Step 2: find the partial derivatives at the input point:

$$f_x = 4x \text{ so at input } x_0=1 \ y_0=1 \ f_x=4$$

$$f_y = 2x \text{ so at input } x_0=1 \ y_0=1 \ f_y=2$$

Step 3: put them into your equation for the tangent plane: $z-3 = 4(x-1) + 2(y-1)$