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Abstract 
In this paper, we present a shape recovery tech- 

nique in 2 0  and 3 0  with specific applications in vi- 
sualizing and measuring anatomical shapes from med- 
ical images. This algorithm models extremely corru- 
gated structures like the brain, is topologically adapt- 
able, is robust, and runs in O(N log N )  time where N 
is the total number of points in the domain. Our two- 
stage technique i s  based on the level set shape recovery 
scheme introduced in [11, 12, 41 and the fast  march- 
ing method in [19] for  computing solutions to static 
Hamilton- Jacobi equations. 

1 Introduction 
In many medical applications such as cardiac 

boundary detection and tracking, tumor volume quan- 
tification etc., accurately extracting shapes in 2 0  and 
3 0  from medical images becomes an important task. 
These shapes are implicitly present in noisy images 
and the idea is to  construct their boundary descrip- 
tions. Visualization and further processing like vol- 
ume computation is then possible. i n  this paper, we 
present a fast shape modeling technique with specific 
applications in medical image analysis. 

Active contour models [7] and surface models [23] 
have been used by many researchers to segment ob- 
jects from medical image data. These models are 
based on deforming a trial shape towards the bound- 
ary of the desired object. The deformation is achieved 
via solving Euler-Lagrange equations which attempt 
to minimize an energy functional. As an alterna- 
tive, implicit surface evolution models have bee9 in- 
troduced in Malladi et al. [12] and CaselIes et al. [4]. 
In these models, the curve and surface models evolve 
under an implicit speed law containing two terms, one 
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that attracts it to the object boundary and the other 
that is closely related to  the regularity of the shape. 

One of the challenges in shape recovery is to  ac- 
count for changes in topology as the shapes evolve. In 
[4, 121, the authors have modeled anatomical shapes 
as propagating fronts moving under a curvature de- 
pendent speed function [HI. They adopted the level 
set formulation of interface motion due to  Osher and 
Sethian [16]. The central idea here is to represent 
a curve as the zero level set of a higher dimensional 
function; the motion of the curve is then embedded 
within the motion of the higher dimensional surface. 
As shown in 1161, this approach offers several advan- 
tages. First, although the higher dimensional func- 
tion remains a function, its zero level set can change 
topology, and form sharp corners. Second, a discrete 
grid can be used together with finite differences to  de- 
vise a numerical scheme to approximate the solution. 
Third, intrinsic geometric quantities like normal and 
curvature of the curve can be easily extracted from the 
higher dimensional function. Finally, everything ex- 
tends directly to moving surfaces in three dimensions. 
In the Lagrangian perspective, similar behaviour can 
be achieved by reparameterizing the curve once ev- 
ery few time steps and by monitoring the merge/split 
of various curves and surfaces based on some crite- 
ria; see [15]. However, the issue of time complexity 
still remains a concern in most existing segmentation 
techniques. In this paper, we address that issue by 
designing a segmentation algorithm that runs in real- 
time while retaining other advantages like topological 
adaptability and accuracy. 

In order t,o isolate shapes from images, an artificial 
speed term has been synthesized and applied to  the 
front which causes it to  stop near object boundaries; 
see [4, 121 for details. In [5, 81, this work has been im- 
proved by adding an additional term to the governing 
eqiiation. That work views the object detection prob- 
lem as computation of curves of minimal (weighted) 
distance. The extra term is a projection of an attrac- 
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tive force vector on the 
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a three-dimensional one. cing the added compu- 
tational expense with ificing the other advan- 
tages of level set sche been the focus of some 
recent work. Tube o -band methods both in 
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The main idea of the hod is to modify the 
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2 The Fast M 
We now briefly disc 
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initial position of a hype 
in the normal direction. 

a structure. It results in 
, where N is the total 

st marching algorithm, 
ecovery. Let I? be the 
and let F be its speed 
ed function F in gen- 

Consider the special case of a monotonically ad- 
vancing surface, i.e. a surface moving with speed 
F ( z ,  y, z )  that is always positive (or negative). Now, 
let T(z, y,  z )  be the time at which the surface crosses 
a given point (z, y, z ) .  The function T(z,  y, z )  then 
satisfies the equation 

this simply says that the gradient of arrival time is 
inversely proportional to the speed of the surface. 
Broadly speaking, there are two ways of approximat- 
ing the position of the moving surface; iteration to- 
wards the solution by numerically approximating the 
derivatives in Eqn. 1 on a fixed Cartesian grid, or ex- 
plicit construction of the solution function T ( z ,  y, z )  
from Eqn. 2. Our marching algorithm relies on the 
latter approach. 

For the following discussion, we limit ourselves to 
a two-dimensional problem. Using the correct “en- 
tropy” satisfying [18, 161 (upwind) approximation to 
the gradient, we are therefore looking for a solution in 
the domain to the following equation: 

[max(DiTj”T, 0)2  + min(D:;T, 0)2 + 
max(Dzy/T, 0)2 + min(Dl/T, 0)2]1/2 = l/Fi,j, (3) 

where D- and Df are backward and forward differ- 
ence operators. Since the above equation is in essence 
a quadratic equation for the value at  each grid point, 
we can iterate until convergence by solving the equa- 
tion at each grid point and selecting the largest pos- 
sible value as the solution. This is in accordance with 
obtaining the correct viscosity solution. 
2.1 The Algorithm 

The key to constructing the fast algorithm is the ob- 
servation that the upwind difference structure of Eqn. 
3 means that information propagates from smaller val- 
ues of T to larger values. Hence, the algorithm rests on 
building a solution to Eqn. 3 outwards from the small- 
est T value. Motivated by the methods in [l, 121, the 
“building zone” is confined to a narrow band around 
the front. The idea is to sweep the front ahead in an 
upwind fashion by considering a set of points in the 
narrow band around the current front, and to march 
this narrow band forward. We explain this algorith- 
mically: 

To illustrate, imagine that one wants to solve the 
equation 2 on an M by M grid on the unit box [0,1] x 
[0,1] with right-hand-side F;,j > 0; furthermore, we 
are given an initial set T = 0 along the top of the box. 



NARROW BAND OFTRIAL VALUES 

Specifically, we use a min-heap data structure. In 
an abstract sense, a min-heap is a “complete binary 
tree” with a property that the value at any given node 
is less than or equal to the values at its children. In 
practice, it is more efficient to represent a heap se- 
quentially as an array by storing a node at location k 
and its children at locations 2k and 2k + 1. From this 
definition, the parent of a given node at k is located 
at I$]. Therefore, the root which contains the small- 
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est element is stored at location k = 1 in the array. 
Finding the parent or children of a given element are 
simple array accesses which take 0(1) time. 

Figure 1: A snap shot of a 2 0  grid after several steps 
of the fast marching method. 

1. Initialize 

(a) (Accepted Points): Let Accepted be the set 
of all grid points at which the value of T is 
fixed. In our example, Accepted = { ( i , j )  : i E 
{lj . . ,M},j  = M } .  

(b) (Narrow Band Points): Let NarrowBand be 
the set of all grid points in the narrow band. 
For our example NarrowBand = { ( i , j )  : i E 
{ 1, .., M } ,  j = M - 11, also set T j , ~ - l  = h/Fij ,  
where h refers t o  the grid spacing. 

(c) (Far Away Points): Let FarAway be the set of 
all therestofthegridpoints{(i , j)  : j  < M-I}, 
set Ti,j = CO for all points in F u T A ~ u ~ .  

2.  Marching Forwards 

(a) Begin Loop: Let (imin,jmin) +e the point in 
NarrowBand with the smallest talue for T .  

(b) Add the point ( i m i n , j m i n )  t o  Accepted; remove 
it from NarrowBand. 

(c) Tag as neighbors any points (imin - l , j m i n ) ,  

that are not ‘Accepted; if the neighbor is in 
Fa rAway ,  remove it from that set and add it 
t o  the NarrowBand set. 

(imin + I , j m i n ) ,  ( imin , jmin  - I), ( iminj jmin  + 1) 

(d) Recompute the values of T at all neighbors ac- 
cording to Equation (3),  solving the quadratic 
equation given by our scheme. 

(e) Return to top of Loop. 

Figure 1 shows a snap shot of the 2 0  grid after some 
steps of the above algorithm. For more general initial 
conditions, and for a proof that the above algorithm 
produces a viable solution, see [a ] .  
2.2 The Min-Heap Data Structure 

An efficient version of the above technique relies 
on a fast way of locating the grid point in the narrow 
band with the smallest value for T .  We use a variation 
on the heap data structure (see Segdewick [17]) with 
back pointers to store the T values. 

We store the values of T together with the in- 
dices which give their location in the grid struc- 
ture. Our marching algorithm works by first look- 
ing for the smallest element in the NarrowBand; this 
Findsmallest  operation involves deleting the root 
and one sweep of DownHeap to ensure that the remain- 
ing elements satisfy the heap property. The algorithm 
proceeds by tagging the neighboring points that are 
not in Accepted. The FarAway neighbors are added 
to the heap using an I n s e r t  operation and values at 
the remaining points are updated using Equation 3. 
I n s e r t  works by increasing the heap size by one and 
trickling the new element upward to its correct loca- 
tion using an UpHeap operation. Lastly, to ensure that 
the updated T values do not violate the heap prop- 
erty, we need to perform a UpHeap operation starting 
at that location and proceeding up the tree. 

The DownHeap and UpHeap operations (in the worst 
case) carry an element all the way from root to bot- 
tom or vice versa. Therefore, this takes O(1og M )  time 
assuming there are M elements in the heap. It is im- 
portant to note that the heap which is a complete 
binary tree is always guaranteed to remain balanced. 
This leaves us with the operation of searching for the 
NarrowBand neighbors of the smallest element in the 
heap. We make this 0(1) in time by maintaining back 
pointers from the grid to the heap array. Without the 
back pointers, the above search takes O ( M )  in the 
worst case. 

3 Shape Recovery from Medical Im- 

Given a noisy image function I ( x ) ,  x E R2 for a 
2 0  image and x E R3 in 3 0 ,  the objective in shape 
modeling is to extract mathematical descriptions of 
certain anatomical shapes contained in it. We are in- 
terested in rapidly recovering boundary representation 
of these shapes with minimal user interaction. Real- 
time processing of medical images is then possible. In 
general, our approach consists of starting from user- 
defined “seed points” in the image domain and to grow 
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time framework, is 
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The speed function defini d as e 
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shoot”. In large part, 

the gradient along the 
use the shape to “over- 

nition of Eqn. 5 ensures 

Figure 2: Evolutionary sequence showing the brain 
reconstruction. The surfaces shown are level surfaces 
at  time values 0.01, 0.125, 0.25, and 0.75. 

motion; see Fig. 5 for an accurate and regularized 
version of the brain shape. 

3.1 Level set method 
We are still interested in approximating the motion 

of a hypersurface but in order to do that we switch 
to the level set framework. First, note that the shape 
model is represented implicitly as a particular level set 
of a function $(x) defined in the image domain. As 
shown in section 2, an evolution equation can be writ- 
ten for the function $ such that it contains the motion 
of the surface embedded in it. Let the surface move 
under a simple speed law F = 1 - E K ,  where K ( x )  
is the curvature and e > 0. The constant compo- 
nent of F causes the model to  seek object boundaries 
and the curvature component controls the regularity 
of the deforming shape. Geometric quantities like sur- 
face normal and curvature can be extracted from the 
higher dimensional function $; for example the mean 
curvature is given by 

The driving force that molds the initial surface 
into desired anatorhical shapes comes from two image- 
based terms. The first one is similar to Eqn. 5 and 
the second term attracts the surface towards the ob- 
ject boundaries; the latter term has a stabilizing effect 
especially when there is a large variation in the image 
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Figure 3: 2 0  examples of our two-stage shape recovery 
scheme; see text for description. 

Figure 5 :  More examples of 3 0  shape recovery. First 
row shows the reconstructed shapes of the liver and 
heart chambers and the next two figures are the shapes 
of outer skin layer and the brain respectively that have 
been recovered from an MRI data set. Figure 4: The two-stage shape recovery in 30: right 

figure in row 2 marks the end of marching or stage # 1 
and the figure in row 3 depicts the final reconstruction 
after solving the level set shape recovery equation for 
a few steps. 
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gradient value. Specifically, 

+t + gl( i  - 4 1 ~ 7 + 1 -  

where, 

the equation of motion is 

p v p .  v+ = 0. (7) 

1 

attracts the surface to th 
cient ,8 controls the stren 

In this work, we adopl 
proach when necessary. 1 
time function using our 
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tion +(x; t  = 0) = T ( x ) .  
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the surface of interest is 
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4 Results 
In this section, we pre 

sults from 2 0  and 3 0  m 
stage procedure we descr 
We begin by defining see 
interest; in most cases ( 

The value of T ( x )  at  thi 
the initial heap in order t 
is constructed from their 
the marching method to 
until the size of heap dc 
tween two successive timt 
#1 of our scheme. We p: 
the initial state to  Eqn. 
few time steps. In 2 0 ,  th 
than a second on a Sun 
to recover a 3 0  shape, 
than 20 seconds. 

First, we present som 
images in the first two r 
liver and heart cross-sec 

ckly a very good ini- 
Therefore, if a more 

ed, we treat the final 
tion to our full model. 

with the initial condi- 
too can be done very 

mework [12, 11. Fi- 
is a valid one since 
ular level set of the 

til a fixed time or 

Again, the function IEP(:#)  
ing an edge-preserving, 

The second term V P  
of an (attractive) force 
This force which is realized 
tial field (see [5]) 

P ( x )  = 

of the thoracic region; in the left column we show the 
original image along with user-defined seed point in- 
side the the region of interest. The marching method 
is then run until T ( z ,  y)  = 0.90. The middle column 
depicts the level set {T = 0.75). This marks the end 
of stage # 1. In stage #2, we use the T function as 
the initial state to  our full method, namely Eqn. 7. 
The right column shows the final shapes - the level set 
{$ = 0.75) - that are obtained after solving Eqn. 7 
for a few steps. Finally, in the third row, we show re- 
constructed shapes of left ventricle cross-sections from 
three other images. 

In the next set of figures, we present examples in 
3 0 .  Figure 4 shows the reconstruction of spleen from 
a 3 0  CT image of size 256 x 256 x 64. We begin by 
initializing stage # 1 with a set of mouse clicks in the 
image domain; see the first two rows of Fig. 4. We 
then run the marching algorithm until time T = 0.1. 
As we did before in Fig. 2, we render various isosur- 
faces of the final time function T ( z ,  y, z )  (T =0.01, 
0.035, 0.07, and 0.1). The time function T is passed 
as an initial state to the level set shape recovery equa- 
tion which is then solved for a few steps in a narrow- 
band around the level surface {$ = 0.1). The result 
is shown in the third row of Fig. 4. The level surface 
{T = 0.1) that marks the end of stage # 1, is noisy 
and is stopped a little further awayfrom the object 
boundary compared to the final reconstruction. This 
is because the speed function in Eqn. 5 falls to  zero 
rapidly. To check the fidelity of the surface, we slice it 
parallel to the zy plane and superimpose the resulting 
contour on the corresponding image slice; see Fig. 6. 
Finally, in Fig. 5 we show two views of reconstructed 
shapes of liver, heart chambers from 256 x 256 x 64 
medical images, outer skin surface and the brain from 
a 256 x 256 x 128 MRI image. The brain structure 
shown here is the regularized version of the one shown 
in Fig. 2; in other words, we solved Eqn. 7 for a few 
time steps with the final T function from the marching 
algorithm as the initial state. 
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