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ABSTRACT 

In recent years, level set methods have been used in a vari- 
ety of settings for problems in computer vision and image 
processing. A related numerical methodology, known as 
”fast marching methods”, has been recently developed to 
solve static Hamilton- Jacobi equations extremely quickly; 
the techniques rely on conversion to a static problem, and 
are based on a marriage between narrow band techniques for 
level set methods and fast sorting algorithms. We show the 
application of these techniques to a collection of problems, 
including image denoising and enhancement schemes based 
on curvature-controlled diffusion with automatic stopping 
and hierarchical scales, extremely fast shape-from-shading 
schemes, and shape recovery in medical imaging. 

Over the past five years, level set methods have been 
applied to problems in image denoising and enhancement 
through curvature-controlled diffusion schemes. Recently, 
an extension of these techniques, known as fast march- 
ing methods, has been developed to solve static Hamilton- 
Jacobi equations which arise in aspects of computer vision. 
In this paper, we discuss recent advances in both of these 
techniques for such problems. 

1. LEVEL SET METHODS 

Level set techniques, [7, 8, 101 numerically approximate the 
equations of motion for a propagating front by transforming 
them into an initial value partial differential equation whose 
unique solution gives the position of the front. They were 
introduced by Osher and Sethian in [7], and rely on a funda- 
mental entropy condition for propagating fronts introduced 
in Sethian [9]. In this setting, corners and cusps are natu- 
rally handled, and topological change occurs in a straight- 
forward and rigorous manner. Complex motion, particu- 
larly those that require surface diffusion, sensitive depen- 
dence on normal directions to the interface, and sophisti- 
cated breaking and merging, result from a straightforward 
implementation of the scheme, with no user intervention. 

More precisely, level set methods view a moving inter- 
face as the zero level set of a function 4(z,t = 0). An 
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evolution equation for the interface moving with speed F 
in its normal direction is given [7] by 

4t + FlO4l = 0, (1) 

The surface q5 = 0 corresponding to the propagating hyper- 
surface may change topology, as well as form sharp corners, 
Finite differences lead to a numerical scheme to approxi- 
mate the solution, and intrinsic geometric properties (nor- 
mal vectors and curvature) are easily determined from the 
level set function. 

The key in level set methods is to approximate the gra- 
dient in the level set equation in a way that satisfies the cor- 
rect entropy condition. One of the simplest such schemes is 
given in [7], namely 

4;’’ = 4; -At  Fr3 (max(DGz4, 0 ) 2  +min(DA”4, 0 ) 2  (2) 

The crucial point in this (any such appropriate) numerical 
scheme is the correct direction of the upwinding and treat- 
ment of sonic points. Here, we have assumed that the speed 
function F is essentially an advection term. In the case 
where F contains a curvature component (such as F = - K ) ,  

the curvature term is approximated through a central dif- 
ference approximation. The formulation is unchanged for 
propagating interfaces in three dimensions. 

Since their introduction, level set techniques have been 
used in a wide collection of problems involving moving inter- 
faces, including the generation of minimal surfaces, singu- 
larities and geodesics in moving curves and surfaces, flame 
propagation, etching, deposition and lithography calcula- 
tions, crystal growth, and grid generation; see [lo] for an 
extensive review. 

2. FAST MARCHING METHODS 

Fast marching methods were introduced by Sethian [ll, 81 
for a special case of front evolution. Consider the case of 
a front moving with speed F = F ( z ,  y) where F is always 
either positive or negative. Then let T ( z ,  y) be the time at  
which the curve crosses the point (2, y). The surface T(z,  y) 
then satisfies the equation 

IVT’IF = 1. (4) 
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On the basis of the above discussion, we know that we 
must use an upwind, entropy-satisfying scheme to the gra- 
dient to approximate the gradient. Using the above scheme, 
we have 

Ft3 = I . ,  (5) 1 max(D,yZ‘T, 0 ) 2  + min(D;f,’T, 0)’ 
+ max(DTyZ/T, 0)’ + min(D;”, 0)2 

The fast marching method systematically advances the 
front in an upwind fashion to produce the solution T. The 
key is the observation that the upwind difference structure 
of Equation ( 5 )  means that information propagates “one 
way”, that  is, from smaller values of U to larger values. 
Hence, the fast marching algorithm rests on “solving” Equa- 
tion (5) by building the solution outwards from the smallest 
U value. The algorithm is made fast by confining the “build- 
ing zone” to a narrow band around the front, motivated by 
the narrow band technology introduced in Chopp [lo], used 
in recovering shapes from images in Malladi, Sethian and 
Vemuri [6], and analyzed extensively by Adalsteinsson and 
Sethian in [lo]. The idea is to  sweep the front ahead in 
an upwind fashion by considering a set of points in nar- 
row band around the existing front, and to march this nar- 
row band forward, freezing the values of existing points and 
bringing new ones into the narrow band structure. The key 
is in the selection of which grid point in the narrow band to 
update. 

The algorithm is as follows: First, we points in the ini- 
tial conditiions as “Alive”. We then tag as “Close” all 
points one grid down. Finally, we tag as “Far” all other 
grid points. Then the loop is 

[ 

1. 

2. 
3.  

4. 

5. 

Begin Loop: Let T r i a l  be the point in “Close” with 
the smallest value for T.  
Add the point T T ~  to  Alive; remove it from “Close” 
Tag as “Close” all neighbors of Trial  that  are not 
“Alive” If the neighbor is in “Far” remove it from 
that list and add it to the set Close. 
Recompute the values of T a t  all neighbors according 
to Eqn. 5 ,  selecting the largest possible solution to 
the quadratic equation. 
Return to  top of Loop: 

This algorithm works because the process of recomput- 
ing the T values at upwind neighboring points cannot yield 
a value smaller than any of that  at any of the accepted 
points. Thus, we can march the solution outwards, always 
selecting the narrow band grid point with minimum trial 
value for U, and readjusting neighbors. Another way to 
look a t  this is that  each minimum trial value begins an 
application of Huygen’s principle, and the expanding wave 
front touches and updates all others. The speed of the 
algorithm comes from a heapsort technique to  efficiently lo- 
cate the smallest element in the set T T ~ .  For details, see 

The technique also can be extended t o  more general 
[ 8 ,  11, 101. 

static Hamiltonians of the form 

H(Du ,  x) = 0 (6) 

where D u  is represents the derivatives in each of the com- 
ponent variables u z l ,  ...., u z N .  In all cases, the scheme is 
extremely fast; if there are N total points in the grid, then 
the scheme solves the equation in O(N log N ) .  

3. MIN/MAX FLOW FOR IMAGE DENOISING 
AND ENHANCEMENT: LEVEL SET METHODS 

Define an zmage to be an intensity map I ( x , y )  given at 
each point of a two-dimensional domain. The  range of the 
function I ( z , y )  depends on the type of image; for black 
and white image the range is either 0 or 255, for grey-scale 
images I(x, y)  is a function mapped between 0 and 255. In 
their seminal work, Alvarez, Lions and Morel (El]) intro- 
duced a noise removal scheme by employing, in part, some 
ideas about curvature flow and level set equations. Their 
basic idea was to flow iso-intensity contours under curva- 
ture flow; An attractive quality of this motion is that  sharp 
boundaries are preserved; smoothing takes place inside a re- 
gion, but not across region boundaries. This work opened 
up a wide collection of partial differential equations-based 
schemes for image processing; see [l]. 

In Malladi and Sethian [4], a curvature-based flow algo- 
rithm was developed which exploits a “min/max” function 
to select the type of curvature motion desired to  remove 
noise. This approach has two desirable features: 

1. There is an intrinsic, adjustable definition of scale 
within the algorithm, such that all noise below that 
level is removed, and all features above that level are 
preserved. 

2.  The algorithm stops automatically once the sub-scale 
noise is removed; continued application of the scheme 
produces no change. 

To understand this scheme, consider the equation 

4t = F(V4I. 

Grayson showed [a] that  a curve collapsing under i ts  cur- 
vature will correspond to speed F = IC. Now, consider two 
variations on the basic curvature flow, namely 

E ( K )  = min(n, 0.0) 

E ( K )  = max(K, 0.0) 

Here, we have chosen the negative of the signed distance 
in the interior, and the positive sign in the exterior region. 
The effect of flow under ~ ( I c )  = min(K,O.O) is allow the 
inward concave fingers to  grow outwards, while suppressing 
the motion of the outward convex regions. Thus, the motion 
halts as soon as the convex hull is obtained. Convi.rsely, the 
effect of flow under E ( & )  = max(6,O.O) is to  allow the out- 
ward regions to grow inwards while suppressing the motion 
of the outward convex regions. Thus, the motion halts as 
soon as the convex hull is obtained. Conversely, the effect 
of flow under P ( K )  = max(K,0.0) is to  allow the outward 
regions to grow inwards while suppressing the motion of the 
inward concave regions. However, once the shape becomes 
fully convex, the curvature is always positive and the flow 
becomes the same as regular curvature flow. 

Our goal is to select the correct choice of flow that 
smoothes out small oscillations, but maintains the essen- 
tial properties of the shape. In order t o  do  so, we discuss 
the idea of the min/max switch. 

Consider the following speed function, introduced in [4]: 
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Figure 1: Image restoration of Binary Images with Grey- 
Scale Salt-and-Pepper Noise Using Min/Max Flow: Re- 
stored shapes are final shape obtained (T = m). 

where Ave%::,h) is defined as the average value of I$ in a disk 
of radius R = k h  centered around the point (z,y). Here, h 
is the step size of the grid. Thus, given a “StencilRadius” 
k, the above yields a speed function which depends on the 
value of r j  at the point (z ,y) ,  the average value of I$ in 
neighborhood of a given size, and the value of the curvature 
of the level curve going through (2, y). 

In Figure 1, 50% and 80% grey-scale noise is added to 
a black and white image of a hand-written character. The 
noise is added as follows: X %  noise means that at X %  of 
the pixels, the given value is replaced with a number cho- 
sen with uniform distribution between 0 and 255. Here, the 
min/max switch function is taken relative to the value 127.5 
rather than zero. The restored figures are converged. Con- 
tinued application of the scheme yields almost no change in 
the results. We refer the reader to [4] for further applica- 
tions of this scheme in enhancement of grey-scale and color 
images, edge finding, and its link to accurate shape recov- 
ery. The techniques can be extended to gray-scale images, 
as well as three-dimensional images; for details, see [5]. 

4. SHAPE-FROM-SHADING: FAST 
MARCHING METHODS 

The fast marching method provides an extremely fast way 
of solving the so-called shape-from-shading problem (see 

[lo] and the references therein). Suppose we illuminate a 
non-self-shadowing surface T ( z ,  y) from a single point light 
source. Let (a, P ,  y) be the direction from the light source. 
In the simplest case of a Lannbertian surface, the brightness 
map I ( z ,  y) is given in a very simple form by 

I ( %  Y) = (a, P, 7) . n. (9) 

Thus, the shape-from-shading problem is to reconstruct the 
surface T ( z ,  y) given the brightness map I ( % ,  y). 

Consider the simplest case, namely that in which the 
light comes from straight down. Then the light source vec- 
tor is (0 ,0 ,1) ,  and we then have an Eikonal equation for 
the surface, namely 

1 lVTI = dF - 1. 

As an example, taken from [lo], we use a double Gaus- 

~ ( z ,  y) = 3e-( 

sian function of the form 

(11) 
x2+y2) - 2e-20((z- .05)2 +(y-.05)’) 

We compute the brightness map and then reconstruct the 
surface, see Figure 2; again, the result is computed in O(N1og N ) .  

5 .  SHAPE REC0VE:RY: LEVEL SET AND 
FAST MARCHING METHODS 

Imagine that one is given am image. The goal in shape de- 
tection/recovery is to extract a particular shape from that 
image; here, “extract” means to produce a mathematical 
description of the shape which can be used in a variety of 
forms. Our approach (see [SI) is motivated by the active 
force contour/snake approach to shape recovery. We start 
an initial front inside the desired region, and let it propa- 
gate outwards with a speed function that stops the motion 
when the boundary is reached. Here, we provide some back- 
ground for this technique, and then described a hybrid level 
set/fast marching technique to quickly extract the desired 
shape. 

More precisely, consider a speed function of the form 1 - 
C K  (-l-m), where 6 is a constant. As discussed earlier, the 
constant acts as an advection term, and is independent of 
the moving front’s geometry. The front uniformly expands 
(contracts) with speed 1 ( - 3 )  depending on the sign, and is 
analogous to an inflation force. The diffusive second term 
C K  depends on the geometry of the front and smooths out 
the high curvature regions of the front. 
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Our goal now is to define a speed function from the im- 
age data that acts as a g criterion for this speed func- 
tion. The front moves speed law F = 1 - crc 
by solving an initial value p fferential equation on 
the function 4. The driving force for this comes from apply- 
ing artificial image-based speed terms on the surface. The 
first term causes the surface to stop in the vicinity of de- 
sired shape boundaries; the second term stabilizes the front 
around the same boundaries. Specifically, the equation of 
motion is 

lClt + k I ( l  - ~~)lVt,bl  - PVP.  V$ = 0. (12) 

Here, the term 

causes the surface to  have speeds very close to 0 near high 
image gradients, i.e., possible edges. False gradients due 
to  noise can be avoided by applying a Gaussian smoothing 
filter or the previously discussed edge-preserving smoothing 
scheme. The second term V P  . V$ denotes the projection 
of an (attractive force) vector normal to  the surface. This 
force which is realized as the gradient of a potential field 

p ( z ,  Y ,  Z) = -IVGa * I(z, Y ,  z)I, (14) 
attracts the surface to the edges in the image; the coefficient 
p controls the strength of this attraction. 

The above front propagation equation was solved us- 
ing a level set technique in [6]. However, in the absence of 
curvature and the last term, the equation becomes a static 
Hamilton-Jacobi equation, and can be solved using the fast 
marching method. This suggests the hybrid technique in- 
troduced in [3]; namely that  first, the fast marching method, 
together with an stopping criterion sythensized from the 
image, is used to quickly find a close approximation to the 
shape, followed by application of the narrow band level set 
method to  execute the final stages of shape extraction. In 
Figure 3, this hybrid technique is applied to the extraction 
of a three-dimensional scan of the brain and of the heart. 
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