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In the present work we derive and study a non-linear elliptic PDE coming from the problem
of estimation of sound speed inside the Earth. The physical setting of the PDE allows us to
pose only a Cauchy problem, and hence is ill-posed. However, we are still able to solve it
numerically on a long enough time interval to be of practical use. We used two approaches.
The first approach is a finite difference time-marching numerical scheme inspired by the
Lax–Friedrichs method. The key features of this scheme is the Lax–Friedrichs averaging
and the wide stencil in space. The second approach is a spectral Chebyshev method with
truncated series. We show that our schemes work because of (i) the special input corre-
sponding to a positive finite seismic velocity, (ii) special initial conditions corresponding
to the image rays, (iii) the fact that our finite-difference scheme contains small error terms
which damp the high harmonics; truncation of the Chebyshev series, and (iv) the need to
compute the solution only for a short interval of time. We test our numerical schemes on a
collection of analytic examples and demonstrate a dramatic improvement in accuracy in
the estimation of the sound speed inside the Earth in comparison with the conventional
Dix inversion. Our test on the Marmousi example confirms the effectiveness of the
proposed approach.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the present work we derive and study a non-linear elliptic PDE for seismic velocity estimation from time migration. The
physical setting allows us to pose only a Cauchy problem and this is ill-posed. Nonetheless, because this PDE provides an
inexpensive way to estimate the sound speed inside the Earth, an attempt to provide some sort of solution is worthwhile.
We begin with a short overview.

Seismic data are the records of the sound wave amplitudes PðS;G; tÞ where S is the source position, G is the receiver posi-
tion, and t is the time. Seismic reflection imaging can be viewed as a procedure of obtaining the amplitude at the subsurface
point ðx; y; zÞ from the data points ðS;G; tÞ, where ðx; y; zÞ ¼ R is the reflection point of the ray path from the source S to the
receiver G (see Fig. 1).
. All rights reserved.
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Fig. 1. The raypath between the source S, the reflection point R and the receiver G; the image ray from the reflection point R and the time and depth
coordinates of the point R.
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To obtain an accurate image at the reflection point R ¼ ðx; y; zÞ, one needs to sum up all of the recorded responses from the
point R in the data domain with certain weights. Such a weighted summation of the amplitudes in the data domain is the
essence of the so-called Kirchhoff prestack depth migration [30]. In order to extract the responses from every single reflection
point from the set of the recorded data, one needs to know the traveltimes from every source S to every reflection point
R ¼ ðx; y; zÞ and from every reflection point R to every receiver G. For computing such traveltimes, one needs to have a velocity
model in depth vðx; y; zÞ, i.e, the speed of the propagation of the seismic waves inside the earth. We call such a model seismic
velocity. In the case of an isotropic seismic velocity, one can solve the eikonal equation
jrTðx; y; zÞj2 ¼ 1
v2ðx; y; zÞ ð1Þ
to find the desired traveltimes.
The major problem of seismic imaging is that such a velocity model is hard to build. A number of powerful automatic

velocity estimation methods have been proposed. This includes reflection tomography [29], stereotomography [14], migra-
tion velocity analysis [26,27], and differential semblance optimization [25]. However, these methods typically involve con-
siderable computational expense and rely on a good initial approximation. Numerical studies of the well-known Marmousi
data [28] demonstrate that, in the absence of a good initial guess, none of the modern approaches are fully reliable. The ap-
proach which this paper is concerned with is computationally cheap and requires no initial guess. It can provide an initial
guess for the approaches listed above.

In [3] we formulated an inverse problem of finding the seismic velocities from the so-called ‘‘Dix velocities”, and showed
that it is ill-posed in the sense that small perturbations in the Dix velocity may lead to big changes in the seismic velocity.
Nevertheless, in that paper we also attempted a regularized reconstruction and developed two numerical approaches to
solve the problem. Since the estimated seismic velocity was used in the depth migration, only for the computation of the
traveltimes, and was not used for the delineation of the subsurface reflectors, smoothing of the velocity model did not lead
to significant errors.

The key problem in these approaches hinged on the estimation of the second derivatives of the unknown velocity. We
used a least squares polynomial approximation to regularize the solution. However, choosing the degree of the least squares
polynomials was sensitive. If the degree was too high, oscillations developed; if it was too low, the solution was inexact.

In this work, we develop novel inversion methods which involve neither the least squares polynomial approximation nor
ray tracing. Our results include the following:

� In the theoretical part, we derive a partial differential equation for Q which is the geometrical spreading of image rays [11],
and involves only the Dix velocity and its derivatives with respect to the starting surface points and time. This reformu-
lated PDE reveals the nature of the instabilities in the problem in hand. The PDE is elliptic, and the physical setting allows
us to pose only a Cauchy problem, which is known to be ill-posed. Furthermore, the fact that the PDE involves not only the
Dix velocity itself but also its first and second derivatives leads to high sensitivity to the input data. This makes the ill-
posedness analysis given in [3] unsurprising: a small perturbation of the Dix velocity can produce a significant corre-
sponding change in its second derivative, and can lead to a considerable change in the seismic velocity.

� Despite the fact that problem is ill-posed, we show that we are still able to find a way to compute the solution:
– First, we develop a finite difference time-marching numerical scheme and compute a solution on the required interval

of time. Our numerical scheme is motivated by the Lax–Friedrichs [15] method for hyperbolic conservation laws as a
building block.

– Second, we adjust a spectral Chebyshev method for the problem in-hand. We truncate the Chebyshev series to cut off
the growing high harmonics in this case.
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� We generalize the PDE and our finite difference numerical scheme for the 3D, and test our numerical techniques on a col-
lection of synthetic examples, demonstrating that we are able to restore the seismic velocity quite accurately. Results are
compared with the standard Dix estimate, and demonstrate that the Dix estimate might differ qualitatively from the ori-
ginal velocity while our correction gives a significant and qualitative improvement to the Dix estimate.

The organization of this paper is as follows: in Section 2, we provide background equations and setting. In Section 3, we
derive our main equation for the time evolution of the geometrical spreading of the image rays. In Section 4, we demonstrate
that we are able to solve the resulting equation with good accuracy despite being a Cauchy problem for an elliptic equation.
In Section 5, we provide an explanation why we are able to do so. In Section 6, we test our approach on the Marmousi exam-
ple. In Section 7, we derive a similar equation for the 3D. In Section 8, we describe a 3D numerical scheme and provide syn-
thetic examples.
2. Background

While depth-domain seismic imaging (a.k.a. depth migration) became practical due to powerful computing resources,
time-domain seismic imaging (a.k.a. time migration) [30] has been a mainstay for decades starting even in the ‘‘precomputer
era”. Nowadays time migration is still the main tool in many regions of the world and often the first step in the workflow
leading to depth imaging. Time migration avoids the need for velocity model by making an approximation. One common
approximation used in the prestack time migration is the following [30]. The traveltime TðS;RÞ þ TðR;GÞ from the source S
to the reflection point R and then to the receiver R is given by
TðS;RÞ þ TðR;GÞ � TðS;G; x0; t0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

0

4
þ jx0 � Sj2

v2
mðx0; t0Þ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

0

4
þ jx0 � Gj2

v2
mðx0; t0Þ

s
: ð2Þ
Here, x0 and t0 are effective parameters of the subsurface point R; t0 is the shortest traveltime from the point R to the Earth
surface, x0 is the escape location of the fastest ray, and ðx0; t0Þ are the so-called time coordinates of the subsurface point R,
while ðx; y; zÞ are its depth coordinates. The fastest ray, which arrives normal to the surface, was named the image ray by Hu-
bral [10], as its escape location is the image of the subsurface point R on the surface. Fig. 1 provides an illustration for the
connection between the image ray and the time and depth coordinates.

The parameters vmðx0; t0Þ in Eq. (2) are chosen in the process of time migration by an optimal (e.g. least squares) fit. They
have the physical dimension of the velocity: due to this fact, they are often called the migration velocities.

If the seismic velocity v is constant, the raypaths from the source S to the reflection point R and from R to the receiver G
are straight and the image ray from R is vertical (Fig. 1). Then Eq. (2) follows from the Pythagorean theorem and provides the
exact expression for the traveltime. In this case, the migration velocity vm equals the constant seismic velocity v.

The connection between the migration velocity and the seismic velocity in the case of the laterally homogeneous seismic
velocity, i.e. vðx; y; zÞ � vðzÞ, was developed by Dix [8]. He proved that if the offsets (the distances between the source and the
receiver) are small, the migration velocity vmðx0; t0Þ is the root-mean-square (RMS) velocity [8], given by
vmðt0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t0

Z t0

0
v2ðzðsÞÞds

s
: ð3Þ
Therefore, the seismic velocity in the time coordinates is given by
vðx0; t0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

@t0
t0v2

mðx0; t0Þ
� �s

: ð4Þ
Since the image rays are vertical in this case, the conversion from the time coordinates ðx0; t0Þ can be accomplished by the
vertical stretch
zðx0; t0Þ ¼
Z t0

0
vðx0; sÞds; ð5Þ
and hence vðx; y; zÞ ¼ vðx0; zðx0; t0ÞÞ where ðx; yÞ ¼ x0.
The Dix formulae (4) and (5) are still in common practice even if the offsets are not small and the seismic velocity changes

laterally. The violation of the assumption of the small offsets does not lead to a significant error [30]. However, the violation
of the lateral homogeneity assumption leads to significant errors, both in the positioning in depth [10] and in the seismic
velocity itself [3].

2.1. Seismic and time migration velocities

In a series of papers [2–5], we derived the theoretical relationships between the Dix velocities and the seismic velocities:
in 2D [2] and 3D [3–5]. These results were reconfirmed in [12]. The seismic velocities and the Dix velocities are connected
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through the quantity Q, which represents the geometrical spreading of image rays. Q is a scalar in 2D and a 2� 2 matrix in
3D. The simplest way to introduce Q is the following. Trace an image ray xðx0; tÞ, where x0 is the starting surface point and t
is the traveltime. Call this ray central. Consider a small tube of rays around it. All these rays start from a small neighborhood
dx0 of the point x0 perpendicular to the earth surface. Thus, they represent a fragment of a plane wave propagating down-
ward. Consider the fragment of the wave front defined by this ray tube at time t0. Let dq be the fragment of the tangent to the
front at the point xðx0; t0Þ reached by the central ray at time t0, bounded by the ray tube (Fig. 2). Then, in 2D, Q is the deriv-
ative Qðx0; t0Þ ¼ dq

dx0
. In 3D, Q is the matrix of the derivatives Q ijðx0; t0Þ ¼ dqi

dx0j
; i; j ¼ 1;2, where derivatives are taken along

certain mutually orthogonal directions e1; e2 [19,7,18].
In [3], we prove that
vDixðx0; t0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

@t0
ðt0v2

mðx0; t0ÞÞ

s
¼ vðxðx0; t0Þ; zðx0; t0ÞÞ

jQðx0; t0Þj
ð6Þ
in 2D, where vmðx0; t0Þ is the time migration velocity, and
@

@t0
ðt0V2

mðx0; t0ÞÞ ¼ v2ðxðx0; t0ÞÞðQ Tðx0; t0ÞQ ðx0; t0ÞÞ�1 ð7Þ
in 3D, where V2
m is the matrix of the squares of the time migration velocities.

In [3], we used Eqs. (6) and (7) as a basis for our inversion techniques, i.e. for finding v and Q from the Dix velocity. These
techniques required solving system (8) and (9) below and hence estimating the second derivatives of the unknown velocity.
This led to the problems mentioned in the overview.

In the present work, we develop partial differential equations in the time-domain variables ðx0; t0Þ connecting the geo-
metrical spreading and the Dix velocities. In result, we avoid the need of estimating the second derivatives of the unknown
velocity and end up with better working and more reliable methods.
3. PDE for Q in 2D

This section is a more complete version of our discussion in [6]. From now on, we denote the Dix velocities by f to avoid
the subscript and to emphasize that f is defined as the ratio of the true velocity and the geometrical spreading Q rather than
from the time migration velocities.

Suppose a set of image rays is propagating downwards from the surface. Suppose we are tracing these rays and comput-
ing the quantities Q and P along them. P is the conjugate quantity for Q: if Q is considered a generalized coordinate, then P is
the corresponding generalized momentum. Along each ray, Q and P evolve according to [19,7,18]
dQ
dt0
¼ v2P; ð8Þ

dP
dt0
¼ �vqq

v Q : ð9Þ
Here v is the velocity along the ray, and vqq is the second derivative of the velocity in the direction normal to the ray. If the
velocity is known, one can easily trace each ray independently and find Q and P. However, we are considering the case where
the velocity is unknown and needs to be found. In the previous work [3] we found the velocity directly by solving Eqs. (8) and
(9) and using Eq. (6). In this work, we are going to rewrite Eqs. (8) and (9) as a system of PDE’s with dependent variables Q
and P and independent variables x0 and t0 using Eq. (6) and the definition of Q.
dq

0

x0

(x,z)

dx

Central image ray

Fig. 2. Illustration for the definition of Q.
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First we eliminate the velocity v in the system (8) and (9) using Eq. (6):
dQ
dt0
¼ ðfQÞ2P; ð10Þ

dP
dt0
¼ �
ðfQÞqq

f
: ð11Þ
We omit the absolute value around Q as we assume that we consider the time domain
fðx0; t0Þjx0min 6 x0 6 x0max;0 6 t0 6 t0maxg to non-intersecting image rays. In other words, our time domain does not con-
tain caustics. Next, we rewrite this system in the time coordinates ðx0; t0Þ. According to the chain rule,
d
dq
¼ d

dx0

dx0

dq
: ð12Þ
By the definition of Q,
Q ¼ dq
dx0

: ð13Þ
Hence,
d
dq
¼ 1

Q
d

dx0
: ð14Þ
Applying this to system (10) and (11) we obtain the following system of PDE’s:
Qt0
¼ ðfQÞ2P; ð15Þ

Pt0 ¼ �
1

fQ

ðfQÞx0

Q

� �
x0

: ð16Þ
Now let us recast system (15) and (16) to make its type more apparent and make it more suitable for discretization. For brev-
ity, we will use notations t for t0 and x for x0. There should be no confusion since from now on, we work only in the time
domain. Eq. (15) can be rewritten as
Q t

ðfQÞ2
¼ P: ð17Þ
Differentiate this equation w.r.t. t and substitute into Eq. (16). Then we get
Qt

ðfQÞ2

 !
t

¼ � 1
fQ
ðFQÞx

Q

� �
x
; ð18Þ
and the initial conditions for this equation are
Qðx;0Þ ¼ 1; Q tðx; 0Þ ¼ 0: ð19Þ
These follow from the initial conditions for the image rays traced downward the earth starting at the surface: Q ¼ 1; P ¼ 0.
Eq. (18) reveals the nature of both the sensitivity and the ill-posedness of the problem of seismic velocity estimation from

time migration. First, its right-hand side contains the first and the second derivatives in x of f ðx; tÞ. Hence, the time evolution
of Q is explicitly governed not only by the input data f ðx; tÞ but also by their first two derivatives: this suggests a highly
sensitive calculation, since accurate computation of these derivatives can be difficult. We also note that the left-hand side
contains the first derivative in t of f ðx; tÞ. At the same time, we also observe that Eq. (18) is a non-linear (quasilinear) sec-
ond-order elliptic equation. At first glance, the geometry of the problem might suggest an underlying wave equation, since
it is natural to think about the collection of the image rays as stemming from a flat wave that is propagating from the surface
downward the earth. However, in reality there is no such wave. Instead, this is merely a device to think about the ordering
inherent in constructing the solution from the top level downwards. In actuality, and as we shall see in detail below, we have
in fact a Cauchy problem for an elliptic equation, which is well-known to be ill-posed in the sense that if we have two
different initial conditions at t ¼ 0, we cannot bound the difference between the corresponding solutions on the time interval
0 < t <1.

These the explicit dependence of the first two derivatives and the ellipticity might seem to make solving this problem
intractable. However, we argue that this is not so. First, in constructing a velocity model, we are mainly interested in the
major and large features. Thus, we can smooth the input data to remove the small oscillations which are unimportant for
the major features but may significantly change Q. Second, we do not need to compute the solution for a large time interval.
Indeed, typical seismic velocities are between 1.5 and 5 km/s, while typical time intervals for which the seismic data are
available (one-way time intervals) are less than 2 s. The lateral width of the interval from which seismic data are collected
is of the order of 10 km, while the maximal depth up to which geophysicists can hope to obtain a seismic image from such
data is between 3 and 5 km.
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In the next section we will demonstrate that we can solve this Cauchy problem numerically. In Section 5 we will explain
why we are able to do so.
4. 2D numerics

We build the velocity model in depth from the Dix velocities given in the time coordinates into two steps:

Step 1. Compute the geometrical spreading Q in the time-domain coordinates from the Dix velocity by solving equation
(18). Then find vðx0; t0Þ from Eq. (6).

Step 2. Convert the seismic velocity vðx0; t0Þ in the time coordinates to the depth coordinates ðx; zÞ using the time-to-depth
conversion algorithm, which was presented by [3]. It is a fast and robust Dijkstra-like solver motivated by the Fast
Marching method [21–24].

In this section, we present two numerical approaches for solving a Cauchy problem for Eq. (18) with initial conditions
(19). One approach in a finite difference approach, inspired by the Lax–Friedrichs scheme. The second approach is a Cheby-
chev spectral method. Our goal is to demonstrate that we are able to find a way to compute the solution of the Cauchy prob-
lem (18) and (19) despite the fact that we are dealing with a Cauchy problem for an elliptic equation. We will discuss the
theoretical questions raised by this fact in Section 5.

4.1. A finite difference algorithm

We now present an algorithm to solve Eq. (18) numerically. Consider for a moment the Lax–Friedrichs method for the
hyperbolic conservation laws of the form ut þ ½FðuÞ�x ¼ 0 [15], namely
unþ1
j ¼

un
j�1 þ un

jþ1

2
� Dt

2Dx
ðFn

jþ1 � Fn
j�1Þ: ð20Þ
The Lax–Friedrichs method is a stable, total variation diminishing monotone scheme [16], which can be written in a conser-
vation form for given flux [16], and guarantees that shock waves propagate with a correct speed.

Motivated by some of the smoothing properties of Lax–Friedrichs, we wish to develop a numerical scheme for System
(15) and (16) with good stability properties. In a suggestive form, we view Eq. (18) as
gt ¼ �ahx ð21Þ
for g ¼ Q t

f 2Q2 ;h ¼ ðfQÞxQ and a ¼ 1
fQ and take the idea of spatial averaging and symmetric central differencing from the Lax–Fried-

richs scheme (20). To be sure, system (15) and (16) is not a system of conservation laws, and the motivation for using this
sort of differencing structure should not be viewed as connected to a conservation form.

Note that
P � Qt

f 2Q 2 �
1
f 2 � 1

Q

� �
t
: ð22Þ
This suggests that, at each time step, we execute two steps. First, we use an approximation scheme for Eq. (16), followed by
the trapezoidal rule for the approximation of Eq. (15):
Pnþ1
j ¼

Pn
jþ1 þ Pn

j�1

2
� Dt

4Dx2

1
ðfQÞnj

ðfQÞnjþ2 � ðfQÞ
n
j

Q n
jþ1

�
ðfQÞnj � ðfQÞ

n
j�2

Q n
j�1

 !
; ð23Þ

� 1

Q nþ1
j

¼ � 1
Q n

j

þ Dt
2
ðf n

j Þ
2Pn

j þ ðf nþ1
j Þ2Pnþ1

j

� �
: ð24Þ
We impose the following boundary conditions Q n
0 ¼ Q n

1 ¼ Q n
nx�2 ¼ Q n

nx�1 ¼ 1, Pn
0 ¼ Pn

1 ¼ Pn
nx�2 ¼ Pn

nx�1 ¼ 0 corresponding
the straight boundary rays. We have also tried to use one-sided schemes at the boundaries but this did not make any
significant difference in the numerical results.

We set the initial conditions Q 0
j ¼ 1; P0

j ¼ 0 corresponding to the initial conditions for the image rays traced backward:
Q ¼ 1; P ¼ 0.

We apply Schemes (23) and (24) to first compute Pnþ1
j and then compute the quantity Qðx; tÞ � Qðx0; t0Þ. Then we find the

velocity in time coordinates using the formula vðx0; t0Þ ¼ f ðx0; t0ÞQðx0; t0Þ given by Eq. (6), and finally we apply the time-to-
depth conversion algorithm introduced in [3] to compute the seismic velocity vðx; zÞ in the depth coordinates from that in
the time coordinates vðx0; t0Þ.

We tested this scheme on a number of numerical examples. The scheme is able to recover the seismic velocity from the
Dix velocity successfully and more accurately than our previous numerical methods presented in [3].

In Fig. 3 we present a synthetic example with a Gaussian anomaly centered at 2 km in depth:
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vðx; zÞ ¼ 2þ 2e�0:15ðx2þðz�2Þ2Þ; �10 6 x0 6 10; 0 6 t 6 1:5: ð25Þ
Dark blue and dark red colors correspond to the velocities of v ¼ 2 and v ¼ 4 km=s, respectively.
We have successfully computed this example on nx� nt meshes 100� 100;200� 200;500� 500 and 1000� 1800.
In Fig. 4 we present another synthetic example with a narrower Gaussian anomaly centered at 2 km in depth:
vðx; zÞ ¼ 2þ 2e�0:5ðx2þðz�2Þ2Þ; �5 6 x0 6 5; 0 6 t 6 1: ð26Þ
Dark blue and dark red colors correspond to the velocities of v ¼ 2 and v ¼ 4 km=s, respectively. We computed the velocity
almost up to the caustics, and used 500� 1200 nx� nt mesh. The balance between the space and time steps was chosen
such that we do not add too much smoothing due to a large space step while still suppressing the high harmonics (see Sec-
tion 5.5) due to a large time step.

In Fig. 5 we present one more synthetic example with an asymmetric Gaussian anomaly. Dark blue and dark red colors
correspond to the velocities of v ¼ 2 and v ¼ 3:54 km=s, respectively. Here we used 500� 1200nx� nt mesh.

We remark that we found Schemes (23) and (24) after experimenting with some other schemes (Schemes (55), (56), (58)
and (59) below). We will explain our success with Schemes (23) and (24) and failure with the other two schemes in Section
5.5.

Next, we have tried to apply Schemes (23) and (24) to field data examples with severe lateral inhomogeneity. However,
despite the fact that input data f ðx; tÞ (the Dix velocities found from the time-migrated velocities) were rather smooth and
bounded by 1:5 < f ðx; tÞ < 5 km=s, our computed Q started to blow up after about 1 km in depth. An immediate question is to
analyze whether this is a numerical effect or if in fact the exact solution of Eq. (18) with the given f ðx; tÞ indeed blows up in
finite time. We point out that the governing function f ðx; tÞ determined from the time migration is not only inexact but also it
may be qualitatively different from the exact f ðx; tÞ ¼ xðx;tÞ

jQðx;tÞj. Indeed, the experimental time migration velocities are smooth
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(a): The exact velocity; (b): the Dix velocity converted to depth; and (c): the found velocity and the image rays. Dark red (center): v ¼ 4 km=s; dark
uter edges): v ¼ 2 km=s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and bounded no matter how complex the seismic velocity distribution is. Mathematically, f ðx; tÞmust blow up as the image
rays cross, but the time migration velocities are never chosen to have infinite derivatives. Hence, the following problem
arises. Suppose f ðx; tÞ is a smooth and bounded function 0 < m 6 f ðx; tÞ 6 M. Is it possible that the solution of Eq. (18) with
initial conditions Qðx;0Þ ¼ 1;Q tðx;0Þ ¼ 0 blows up in a finite time? We will address this question in Section 5.4.

4.2. Spectral Chebyshev method

We also tried to apply a Chebyshev spectral method [1]. We used cubic splines to find the input data at N Chebyshev
points. We compute the Chebyshev coefficients and the coefficients of the derivatives in the right-hand side of Eq. (18). Then
we use a smaller number m of the coefficients for function evaluation. We need to do such Chebyshev differentiation twice.
Finally we perform the time step using the third-order Adams–Bashforth method [1], which is
unþ1 ¼ un þ Dt
23
12

Fðun; x; tnÞ � 4
3

Fðun�1; x; tn�1Þ þ 5
12

Fðun�2; x; tn�2Þ
� �

: ð27Þ
We used N ¼ 100 and m ¼ 20. Increase of the number of coefficients for function evaluation m leads to rapidly developing
oscillations. Decrease of m leads to smearing and lack of correction of the velocity. This method allows us to restore the seis-
mic velocity for smaller depths than the finite difference method on the same synthetic data examples. The examples in Figs.
6 and 7 are the same as the examples in Figs. 3 and 5 for the finite difference method. With the Chebyshev method we were
able to restore the velocity up to 2 km in depth in both cases versus 3 km and 2.8 km with the finite difference method.

This method provides an alternative to finite differences to solve Eq. (18): it works by using series truncation for regular-
ization rather than small finite difference error terms. Moreover, this method allows us to penetrate deeper into the earth,
sacrificing some exactness, i.e. reducing the number of polynomials m used for the function evaluation.
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5. Cauchy problem for the elliptic PDE for Q

5.1. Ellipticity of the Equation for Q

For simplification of the PDE for Q, we will work with its negative reciprocal
y ¼ � 1
Q

ð28Þ
instead. For y, our PDE becomes the following:
yt

f 2

� �
t

¼ y
f

f
y

� �
x

y
� �

x

: ð29Þ
The initial conditions for y are the following:
yðx;0Þ ¼ �1; ytðx; 0Þ ¼ 0: ð30Þ
First note that Q is an increasing function of y s.t. Q tends to þ1 as y! 0, and Q tends to zero as y! �1 (see Fig. 8). Opening
the parentheses in Eq. (29) we get:
ytt

f 2 � 2
ytft

f 3 ¼ y
fxx

f
� yx

fx

f
� yxx þ

y2
x

y
: ð31Þ
From this form, it is apparent that the PDE is elliptic.
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5.2. Ill-posedness of elliptic initial value problems

We start our discussion by considering a variant of the famous Hadamard’s example of an ill-posed problem: a Cauchy
problem for the familiar Laplace’s equation on a finite interval:
ytt ¼ �yxx; 0 6 x 6 1; yð0; tÞ ¼ yð1; tÞ ¼ 1: ð32Þ
If the initial conditions are
yðx;0Þ ¼ 1; ytðx;0Þ ¼ 0; ð33Þ
this problem has a unique solution yðx; tÞ ¼ 1. Let us perturb the initial conditions and make them
~yðx;0Þ ¼ 1þ e�
ffiffiffiffi
pn
p

sinpnx; ~ytðx; 0Þ ¼ 0: ð34Þ
Any Sobolev norm of this perturbation tends to zero as n ! 1. Hence by choosing n to be sufficiently large we can make the
norm of the perturbation of the initial condition arbitrarily close to zero. Then the solution of the perturbed problem is
~yðx; tÞ ¼ 1þ e�
ffiffiffiffi
pn
p

sin pnx coshpnt: ð35Þ
For any fixed t > 0 any Sobolev norm of ð~yðx; tÞ � 1Þ goes to infinity as n ! 1. Thus this problem does not depend contin-
uously on the data, and hence is not well-posed.

However, Klibanov and Santosa in [13] showed that the original Laplace equation can be replaced with a different
equation with a small parameter � such that the Cauchy problem for the modified equation is well-posed and its solution
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converges to the solution of the original Cauchy problem as � ! 0 in some bounded specified domain. Their argument relies
on the linearity of Laplace’s equation and uses the theory of linear functional spaces. Our PDE is non-linear and we cannot
use similar tools.
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5.3. Sensitivity and stability of our particular PDE

Now let us return to our equation. We have demonstrated that we are able to compute a solution stably. We claim that
the reasons for this are the following:

1. We have (i) very specific initial conditions which are the only physically relevant conditions Qðx;0Þ ¼ �1=y ¼ 1;
Q tðx;0Þ ¼ ytðx;0Þ ¼ 0, and (ii) a very specific governing function (the Dix velocity) f ðx; tÞ corresponding to some bounded
seismic velocity vðx; tÞ. If the governing function f ðx; tÞ could be known exactly, then these initial conditions are such that
the exact solution Qðx; tÞ ¼ �1=yðx; tÞ is finite and non-zero if f ðx; tÞ is finite.

2. Of course, the governing function f ðx; tÞ is never known exactly. While initial conditions are known exactly, their repre-
sentation has error on the order of machine precision. More importantly, our numerical scheme supports only a limited
number of harmonics, from 0 up to p

Dx, and additionally suppresses the amplitude growth of the high harmonics which it
supports. We note, of course, that it does not suppress the amplitude growth of the low harmonics. Since we need to com-
pute the solution only for a small interval of time, these low harmonics do not grow significantly during that period. For
example, typically, the velocity is of the order of a few kilometers per second, while the input data f ðx; tÞ are available only
for less than 2 s. (We refer to the one-way maximal travel time.)
5.4. Solution in the case of non-special initial data or a non-special governing function

We now examine in some more detail the nature of our elliptic initial value problem.

1. In the special case of f ðx; tÞ � 1, with our given initial conditions given by yðx;0Þ ¼ �1; ytðx;0Þ ¼ 0 (Eq. (30)), it is easy to
see that a solution is given by y ¼ �1. However, we will first show by example that for other (non-physical) initial con-
ditions, the analytical solution for Eq. (29) can become zero (i.e. Q becomes þ1) in a finite time, even if f ðx; tÞ � 1;

2. Next, we will show that the analytical solution for Eq. (29) with the physical initial condition (30), can blow up (become
zero in finite time), even when f ðx; tÞ is a bounded analytic function with all bounded derivatives.

Since vðx; tÞ ¼ f ðx; tÞQðx; tÞ and we assume that f ðx; tÞ is positive and finite, the zero Q corresponds to zero v and infinite Q
corresponds to infinite v for a finite f. Both of these are not physical.

Claim 1. Suppose f ðx; tÞ ¼ 1 in Eq. (29). We consider the following initial and boundary value problem:
ytt ¼ �yxx þ
y2

x

y
; a 6 x 6 b; ð36Þ

yðx;0Þ ¼ aðxÞ; ytðx;0Þ ¼ 0; ð37Þ
yða; tÞ ¼ yðb; tÞ ¼ �1: ð38Þ
Let aðxÞ be a smooth analytic function such that

1. �M 6 a 6 �m < 0; aðaÞ ¼ aðbÞ ¼ �1,
2. a has an absolute maximum at a point x0 2 ða; bÞ axxðx0Þ < 0, and
3. axxðaÞ ¼ axxðbÞ ¼ 0.

Then the solution to the problem (36)–(38) becomes zero or �1 in a finite time. This corresponds to Q becoming infinitely large or
zero, respectively.

Proof. Let s be an infinitesimally small positive time. Then at t ¼ s
yðx; sÞ ¼ aðxÞ þ ð�axxÞ
s2

2
þ a2

x

a
s2

2
: ð39Þ
We claim that yttðx0; tÞ is positive for 0 < t 6 s as �axxðx0Þ is positive, and axðx0Þ is zero. Taking into account that ytðx;0Þ ¼ 0
we conclude that ytðx0; sÞ > 0.

Now we consider yðxmaxðtÞÞ, where xmaxðtÞ is the point of the absolute maximum of yðx; tÞ at time t. We first note that the
absolute maximum is reached at an inner point of the interval ða; bÞ at any t > 0 while the solution exists. Indeed, with y set
to �1 at the endpoints, the absolute maximum is reached at an inner point according to Eq. (39) for 0 < t 6 s. Moreover, ytt

is non-negative at any local maximum in ða; bÞ since ytt ¼ �yxx at a local maximum. Hence yt is non-decreasing at any local
maximum and y is growing with a non-negative acceleration at any local maximum. One of these local maximums must be
the absolute maximum. Furthermore, the function xmaxðtÞ need not be constant and nor continuous. If, at some time
t1; yðx1; t1Þ ¼ yðx2; t1Þ and yðx1; tÞ > yðx2; tÞ for t < t1 and yðx1; tÞ < yðx2; tÞ for t > t1 in some neighborhood of t1, then
ytðx1; t1Þ 6 ytðx2; t1Þ. Therefore, ytðxmaxðtÞÞ is non-decreasing. Thus, ytðxmaxÞ P ytðx0; sÞ > 0 which means that the absolute
maximum of y grows at least linearly and hence must reach zero in finite time unless y becomes �1 at some point before
that. This completes the proof. h
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Note that no matter how little aðxÞ in Claim 1 differs from �1 and all its derivatives differ from 0, y still must either be-
come zero or infinite in a finite time. If a is �1 then the only solution of problem (36)–(38) is yðx; tÞ ¼ �1. Hence the solution
is unstable w.r.t. small perturbations of the initial data.

Claim 2. Consider the following initial and boundary value problem for Eq. (31):
yðx;0Þ ¼ �1; ytðx; 0Þ ¼ 0 ð40Þ
yða; tÞ ¼ yðb; tÞ ¼ �1: ð41Þ
Suppose the function f in Eq. (31) is analytic and satisfies the following conditions:

1. f ðx; tÞ is independent of t;
2. f ðxÞ is bounded: 0 < m 6 f ðxÞ 6 M;
3. fxx 6 0 on ða; bÞ and fxxðaÞ ¼ fxxðbÞ ¼ 0.
4. f and ffxx reach their absolute maximums at the same point x0 2 ða; bÞ and fxxðx0Þ < 0.

Then the solution to the problem (31), (40), and (41) becomes zero or �1 in a finite time. This corresponds to Q becoming infinitely
large or zero respectively.

Note that there is a large class of functions satisfying the conditions for function f ðxÞ in Claim 9, e.g. f ðxÞ ¼ 2þ cos x on the
interval � p

2 ;
p
2

	 

, or of f ðxÞ ¼ 1þ e�

x2
2 on the interval ½�1;1�.

Proof. First, let us rewrite Eq. (31) taking into account that f ðx; tÞ ¼ f ðxÞ:
ytt ¼ ffxxy� ffxyx � f 2yxx þ f 2 y2
x

y
: ð42Þ
Let s be an infinitesimally small positive time. Then at t ¼ s
yðx; sÞ ¼ �1þ ð�ffxxÞ
s2

2
: ð43Þ
Notice that yttðx0Þ is positive for 0 < t 6 s as ffxx is negative and the other terms in Eq. (42) are zero due to the initial con-
dition yðx; 0Þ ¼ �1. Taking into account that ytðx;0Þ ¼ 0 we conclude that ytðx0; sÞ > 0.

We point out that ytt is non-negative at any local maximum, since
ytt ¼ yffxx � yxx;
where y < 0; ffxx 6 0 and yxx 6 0. The rest of the proof closely repeats the one of Claim 1. h

Therefore, if the input Dix velocity is not exactly vðx;tÞ
Qðx;tÞ, the exact solution of Eq. (18) might blow up in a finite time under

our given governing function f ðx; tÞ.

Remark. It worth mentioning that the equation
ytt ¼ �yxx þ
y2

x

y
ð44Þ
can be solved by the separation of variables method. This method leads to solutions of the form
yðx; tÞ ¼ ðA cosh xt þ B sinh xtÞe�x2x2
2 þlx ð45Þ
and
yðx; tÞ ¼ ðA cos xt þ B sinxtÞex2x2
2 þlx; ð46Þ
where A;B;x and l are arbitrary constants. However, these solutions are not particularly relevant to our problem. If we con-
sider an initial value problem on R� ½0;þ1Þ, then these solutions satisfy either unbounded or tending to zero initial con-
ditions, which is non-physical. If we consider an initial and boundary value problem on a bounded space interval, then
these solutions satisfy either unbounded or tending to zero boundary conditions which is again non-physical. While any con-
stant times a solution to Eq. (44) is itself a solution, due to non-linearity, the sum of solutions of Eq. (44) is not a solution in
general.
5.5. Inexact input and initial conditions

Next, we further analyze the effect of perturbations and the growth of oscillations under our numerical scheme. We begin
with a perturbation analysis, and then study how our numerical schemes behave on a perturbation equation.
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5.5.1. Perturbation analysis
Suppose f ðx; tÞ is perfect input data corresponding to some smooth seismic velocity vðx; tÞ, 0 < m 6 vðx; tÞ 6 M. Let

yðx; tÞ be the exact solution of Eq. (29) with the initial conditions (30). Let f ðx; tÞ þ df ðx; tÞ be the inexact (perturbed) input
data, and yðx; tÞ þ dyðx; tÞ be the exact solution of Eq. (29) with the inexact input data f þ df and the initial condition (30).
Plugging yþ dy and f þ df into Eq. (31) and linearizing around the exact input f ðx; tÞ and the exact solution of the non-per-
turbed problem yðx; tÞ, we obtain
ytt

f 2 � 2
yttdf

f 3 þ
dytt

f 2 � 2
ytft

f 3 � 2
dytft

f 3 � 2
ytdft

f 3 þ 6
ytftdft

f 4

¼ fxx

f
yþ dfxx

f
yþ fxx

f
dy� fxx

f 2 ydf � fx

f
yx �

df
f

yx �
fx

f
dyþ fx

f 2 yxdf � yxx � dyxx þ
y2

x

y
þ 2

yxdyx

y
� y2

x

y2 dy:
Cancelling the terms from Eq. (31) we obtain the following equation for dy:
dytt

f 2 � 2
dytft

f 3 �
fxx

f
dyþ fx

f
dyx þ dyxx þ dyx

y2
x

y2 � 2
yx

y

� �
¼ F ; ð47Þ
where F ¼ Fðy; yx; yt ; ytt; f ; fx; fxx; ft ; df ; dfx; dfxx; dft ; dfttÞ. We immediately observe that Eq. (47) is a linear elliptic equation with
growing harmonics.

5.5.2. Our scheme and the associated modified equations
We now investigate how our numerical scheme for Eq. (29) responds due to truncation errors. We focus on Schemes (23)

and (24). First, we rewrite Scheme (23) and (24) in terms of y:
Pnþ1
j ¼

Pn
j�1 þ Pn

jþ1

2
� Dt

4Dx2

y
f
ðvn

jþ2 � vn
j Þyn

jþ1 � ðvn
j � vn

j�2Þyn
j�1

� �
; ð48Þ

ynþ1
j ¼ yn

j þ
Dt
2
ðf 2Þnj Pn

j þ ðf 2Þnþ1
j Pn

j

� �
; ð49Þ
where P � yt
f 2 and v � � f

y. Applying Taylor expansion to the terms of the first equation, we obtain the following modified
equation for y which Eq. (48) approximates more exactly:
yt

f 2

� �
t

¼ y
f

f
y

� �
x

y
� �

x

þ Dx2

2Dt
yt

f 2

� �
xx

� Dt
2

yt

f 2

� �
tt

� Dx2 y
f

1
3

vxxxxyþ 1
3

vxxxyx �
1
2

vxxyxx þ
1
6

vxyxxx

� �
: ð50Þ
Let us apply the modified equation Eq. (50) to the perturbed problem. For simplicity, we consider the case where f ðx; tÞ ¼ 1,
hence yðx; tÞ ¼ �1. In this case,
v ¼ �1
y
; vx ¼

dyx

y2 ; vxx ¼
dyxx

y2 þ � � � ; vxxx ¼
dyxxx

y2 þ � � � ; vxxxx ¼
dyxxxx

y2 þ � � � ;
where we ignore the second and higher order terms. Linearizing the modified equation around f ¼ 1 and y ¼ �1 we obtain:
dytt þ dyxx �
Dx2

2Dt
dytxx þ

Dt2

2
dyttt þ

Dx2

3
dyxxxx ¼ F ; ð51Þ
where F ¼ Fðdf ; dfx; dfxx; dft ; dfttÞ. Let aðk; tÞ be the Fourier transform of yðx; tÞ in x. Then a satisfies the following equation:
Dt2

2
attt þ att þ

Dx2

2Dt
k2at þ ð

Dx2

3
k4 � k2Þa ¼ bF : ð52Þ
Note that the linearized original equation Eq. (47) in the case where f ðx; tÞ ¼ 1 and hence yðx; tÞ ¼ �1 becomes:
dytt þ dyxx ¼ F : ð53Þ
The corresponding equation for the amplitudes of the Fourier harmonics is
att � k2a ¼ bF : ð54Þ
The real parts of the eigenroots of Eq. (52) as functions of the harmonic number k are shown in Fig. 9(a). (Such kind of anal-
ysis can be found in [17].) Characters �, +, 	 and } correspond to Dx=Dt ¼ 1, Dx=Dt ¼ 2;Dx=Dt ¼ 5 and Dx=Dt ¼ 10, respec-
tively. For reference, the eigenroots of Eq. (54) are also plotted there with characters 
.

First, we note that the fact that the plots for various ratios Dx=Dt are tangent to the lines corresponding to the exact equa-
tion indicates the consistency of Schemes (48) and (49). The plots in Fig. 9(a) show that we can find such ratio Dx=Dt for the
Schemes (48) and (49) that the growth of the higher harmonics is suppressed. Although we cannot suppress the growth of
the lower harmonics (which is a necessary condition for consistency), we need only compute the solution for a rather short
interval of time, and this period is short enough that the lower harmonics do not grow significantly.
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5.5.3. Alternative schemes
We now investigate two alternative schemes, and show why they are not appropriate for our problem. To begin, suppose

we remove the Lax–Friedrichs averaging from Eq. (48):
Fig. 9.
averagi
Pnþ1
j ¼ Pn

j �
Dt

4Dx2

y
f
ððvn

jþ2 � vn
j Þyn

jþ1 � ðvn
j � vn

j�2Þyn
j�1Þ; ð55Þ

ynþ1
j ¼ yn

j þ
Dt
2
ðf 2Þnj Pn

j þ ðf 2Þnþ1
j Pn

j

� �
: ð56Þ
Then the corresponding modified and linearized modified equations miss the term Dx2

2Dt ð
yt
f 2 Þxx, and the equation for the corre-

sponding equation for the amplitudes of the Fourier harmonics becomes
a

b

c

The root diagrams for (a): the ‘‘Lax–Friedrichs” averaging scheme with 5-point stencil in space; (b): the same scheme without the ‘‘Lax–Friedrichs”
ng; and (c): the ‘‘Lax–Friedrichs” averaging scheme with 3-point stencil in space.
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Dt2

2
attt þ att þ

Dx2

3
k4 � k2

� �
a ¼ bF : ð57Þ
The real parts of the eigenroots of Eq. (57) as functions of the harmonic number k are shown in Fig. 9(b). Again, characters �,
+, 	 and} correspond to Dx=Dt ¼ 1;Dx=Dt ¼ 2;Dx=Dt ¼ 5 and Dx=Dt ¼ 10, respectively. Characters 
 correspond to the eigen-
roots of Eq. (54) as before.

We see that the absence of the Lax–Friedrichs averaging leads to the growth of the high harmonics.
As yet another alternative, suppose now that we keep our Lax–Friedrichs averaging, but replace the 5-point stencil in

space with a 3-point stencil in space in Eq. (48). We remark that the 3-point stencil leads to a smaller local truncation error
than the 5-point stencil.
Pnþ1
j ¼

Pn
j�1 þ Pn

jþ1

2
� 2Dt

Dx2

y
f
ððvn

jþ1 � vn
j Þðyn

jþ1 þ yn
j Þ � ðvn

j � vn
j�1Þðyn

j þ yn
j�1ÞÞ; ð58Þ

ynþ1
j ¼ yn

j þ
Dt
2
ðf 2Þnj Pn

j þ ðf 2Þnþ1
j Pn

j

� �
: ð59Þ
Then the corresponding equation for the amplitudes for the Fourier harmonics would be
Dt2

2
attt þ att þ

Dx2

2Dt
k2at þ

Dx2

12
k4 � k2

� �
a ¼ bF : ð60Þ
The real parts of the eigenroots of Eq. (57) as functions of the harmonic number k are shown in Fig. 9(c). Comparing figures
(a) and (c) we see that Schemes (58) and (59) with the 3-point stencil in space suppresses the growth of all of the harmonics
less than Schemes (48) and (49) with the 5-point in space.

To summarize Fig. 9 illustrates why we are able to restore the seismic velocity from the Dix velocity using scheme (48)
and (49). The application of Schemes (55), (56), (58), and (59) on meshes finer than 100� 100 leads to the highest spatial
frequency k ¼ p=Dx oscillations.

Thus we have shown that our Schemes (48) and (49) is able to suppress the growth of the higher harmonics and hence can
be used for computing the seismic velocity from the Dix velocity for a finite and small enough interval of time. It also seems
that the other two Schemes (55), (56), (58), and (59) are worse than Schemes (48) and (49).
6. Marmousi example

In this section, we demonstrate an application of our method to the Marmousi synthetic data [28]. The prestack time-
migrated image and the corresponding time migration velocity are shown in Fig. 10 and were generated by velocity
continuation [9]. The Dix velocity computed from the time migration velocities and converted to depth by simple vertical
stretching is shown in Fig. 11(a). The seismic velocity estimated from the Dix velocities with our Chebyshev method (using
Ncoef ¼ 500 and Neval ¼ 10) and converted to depth using our time-to-depth conversion algorithm is shown in Fig. 11(b). We
did not attempt to resolve the velocity below 1500 m, because, at larger depths, the image rays cross, and the time migration
approach loses its validity. The prestack depth migrated images with Dix velocities and our velocities are shown in Fig. 12(a)
and (b), respectively. The image obtained with our method appears to have more continuous reflectors. As a validation
comparison, Fig. 13 shows angle-domain common-image point gathers [20] at 4000 m using the Dix velocity and the
estimated velocity. The evident curvature of the events below 1000 m in depth gets removed as the events get properly
positioned.
a b

Fig. 10. Time migrated image (a) and migration velocity (b).



a b

Fig. 11. Dix velocity in depth (a) and estimated velocity (b).

a b

Fig. 12. (a) Prestack depth migration using Dix velocity. (b) Prestack depth migration using estimated velocity.
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7. PDE for Q in 3D

Similar to the two-dimensional case, we can derive a time domain PDE for Q in 3D. The evolution equations for Q and P
are given by (see [18])
Q t ¼ v2P;

Pt ¼ �
1
v VQ ;

ð61Þ
where V ¼ ðvqiqj
Þi;j¼1;2 is the matrix of the second derivatives of the velocity along the directions~e1 and~e2 which evolve along

each image ray according to
d~e1

dt
¼ vq1

~s; d~e2

dt
¼ vq2

~s:
Here ~s is a tangent vector to the image ray. By definition, the matrix Q is
Q �
@q1
@x0

@q1
@y0

@q2
@x0

@q2
@y0

0@ 1A � R S
T U

� �
: ð62Þ
We observe that
@
@x0

@
@y0

 !
¼ Q T

@
@q1

@
@q2

 !
; or more compactly; r ¼ Q Trq;
where r is the gradient w. r. t. ðx0; y0Þ, and rq is the gradient w. r. t. ðq1; q2Þ. Therefore,



Fig. 13. Angle-domain common-image point gather at 4000 m using Dix velocity (a) and estimated velocity (b).
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rq ¼ ðQ TÞ�1r:

Hence
V �
@2v
@q2

1

@2v
@q1@q2

@2v
@q2@q1

@2v
@q2

2

0@ 1A ¼ rqðrqvÞT ¼ ðQ TÞ�1rððrvÞT Q�1Þ:
Thus, system (61) can be transformed into the following system of PDE’s in the time coordinates:
Q t ¼ v2P; ð63Þ

Pt ¼ �
1
v ðQ

TÞ�1r½ðrvÞT Q�1�Q ; ð64Þ
where the gradients are taken with respect to the coordinates x0 and y0.
According to the result proven in [3],
F ¼ v2ðQ T Q Þ�1
; ð65Þ
where (see Eq. (7))
F � @

@t0
ðt0V2

mðx0; t0ÞÞ ð66Þ
is the matrix of the 3D analogues of the Dix velocities.
Therefore, v2I2 ¼ FQ T Q and hence,
v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Fðdet Q Þ24

q
: ð67Þ
Looking at system (63) and (64) and at Eq. (67) we see that the matrices F are not required as input. Instead, their determi-
nants are enough for restoration of the seismic velocity v. Rewriting system (63) and (64) as a single PDE we get:
1
v2 Q t

� �
t
¼ � 1

v ðQ
TÞ�1r½ðrvÞT Q�1�Q ; ð68Þ
where the velocity v is given by Eq. (67).
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8. 3D numerics

We solve Eq. (68) numerically in a manner similar to the 2D case. We first update the matrix P ¼ ð 1
v2 Q tÞ. Then we update

the matrix Q using the trapezoidal rule.
The input data f ðx; y; tÞ are the 3D analogue of the Dix velocity squared
f ðx; y; tÞ �
ffiffiffiffiffiffiffiffiffiffiffi
det F
p

� v2

det Q
: ð69Þ
The finite difference scheme uses a 9-point stencil (Fig. 14(a)) in space and the Lax–Friedrichs averaging given by
Pkþ1
i;j ¼

Pk
i�1;j þ Pk

iþ1;j þ Pk
i;jþ1 þ Pk

i;j�1

4
� 1

vk
i;j

ðQ�TÞki;j
ðavxÞx þ ðbvyÞx ðcvxÞx þ ðdvyÞx
ðavxÞy þ ðbvyÞy ðcvxÞy þ ðdvyÞy

 !k

i;j

Q ; ð70Þ
where a; b; c and d are the elements of Q�T � ðQ TÞ�1. The derivatives in Eq. (70) are evaluated as follows:
ðlvxÞx � ððvk
iþ2;j � vk

i;jÞlk
iþ1;j � ðvk

i;j � vk
i�2;jÞlk

i�1;jÞ
1

4Dx2 ; ð71Þ

ðlvxÞy � ððvk
iþ1;jþ1 � vk

i�1;jþ1Þlk
i;jþ1 � ðvk

iþ1;j�1 � vk
i�1;j�1Þlk

i;j�1Þ
1

4DxDy
; ð72Þ

ðlvyÞx � ððvk
iþ1;jþ1 � vk

iþ1;j�1Þlk
iþ1;j � ðvk

i�1;jþ1 � vk
i�1;j�1Þlk

i�1;jÞ
1

4DxDy
; ð73Þ

ðlvyÞy � ððvk
i;jþ2 � vk

i;jÞlk
i;jþ1 � ðvk

i;j � vk
i;j�2l

k
i;j�1Þ

1
4Dy2 : ð74Þ
Then we update the matrix Q according to the trapezoidal rule
Q kþ1
i;j ¼ Q k

i;j þ
Dt
2
ððv2Þki;jP

k
i;j þ ðv2Þkþ1

i;j Pkþ1
i;j Þ: ð75Þ
Since
v2 ¼ det Q
ffiffiffiffiffiffiffiffiffiffiffi
det F
p

; ð76Þ
we obtain the following equation for updating Q
Q kþ1
i;j ¼ Q k

i;j þ
Dt
2
ðPk

i;jðv2Þki;j þ Pkþ1f k
i;j det Q k

i;jÞ: ð77Þ
We observe that this is a system of the form
R ¼ aR þ bR det Q ;
S ¼ aS þ bS det Q ;
T ¼ aT þ bT det Q ;
U ¼ aU þ bU det Q :

ð78Þ
To solve it, we subtract the product of the second and the third equations from the product of the first and the fourth equa-
tions in system (78) and obtain a quadratic equation w. r.t. the det Q
ðbRbU � bSbTÞðdet Q Þ2 þ ð�1þ aRbU þ aUbR � aSbT � aT bSÞdet Q þ ðaRaU � aSaTÞ � Aðdet Q Þ2 þ B det Q þ C ¼ 0:

ð79Þ
a b

Fig. 14. Stencils used for the spatial discretization in 3D: (a) the 9-point stencil; and (b) the 5-point stencil.
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We pick the root given by
a

d

g

Fig. 15.
velocity
and (h)
and dar
referred
det Q ¼ 2C

�Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4AC

p ; ð80Þ
which is consistent with the root 1 in the case where Q ¼ 1;P ¼ 0 and hence A ¼ 0;B ¼ �1 and C ¼ 1. Then we can update
the matrix Q substituting det Q into Eq. (77).

8.1. Examples

The first 3D example is shown in Fig. 15. The exact velocity is
vðx; y; zÞ ¼ 2þ 2e�0:15x2�0:25y2�0:15ðz�2Þ2 ; ð81Þ
and the time domain is given by
�10 6 x 6 10; �10 6 y 6 10; 0 6 t 6 1:5: ð82Þ
The seismic velocity distribution is shown on two vertical mutually orthogonal sections and a horizontal slice. The sections
correspond to the planes y ¼ 0 and x ¼ 0. The depth of the horizontal plane is 2.55 km. The first column in Fig. 15
corresponds to the reconstructed velocity, the second – to the exact velocity, the third – the 3D analogue of the Dix velocity,
b c

e f

h i

3D example 1. The first row: the velocity on the vertical plane y ¼ 0. The second row: the velocity on the vertical plane x ¼ 0. The third row: the
on the horizontal plane z ¼ 2:55 km. The first column ((a), (d), and (g)): the reconstructed velocity and the image rays; the second column ((b), (e),

): the exact velocity; the third column ((c), (f), and (i)): the velocity estimate analogous to Dix inversion, converted to depth. Dark blue (outer edges)
k red (center) correspond to 2 km/s and 4 km/s, respectively. (For interpretation of the references to colour in this figure legend, the reader is
to the web version of this article.)



a b c

d e f

g h i

Fig. 16. 3D example 2. The first row: the velocity on the vertical plane y ¼ 0. The second row: the velocity on the vertical plane x ¼ 0. The third row: the
velocity on the horizontal plane z ¼ 2:0 km. The first column ((a), (d), and (g)): the reconstructed velocity and the image rays; the second column ((b), (e),
and (h)): the exact velocity; the third column ((c), (f), and (i)): the velocity estimate analogous to Dix inversion, converted to depth. Dark blue (outer edges)
and dark red (center) correspond to 2 km/s and 4 km/s, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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converted to depth using our time-to-depth conversion algorithm. This example was computed on 500� 500� 500 time-
domain mesh. We see that our velocity correction by solving system (63) and (64) provides significant and qualitative
improvement in comparison with the estimate similar to Dix inversion.1

The second 3D example is shown in Fig. 16. The exact velocity is
1 The
analogo
was on
vðx; y; zÞ ¼ 2þ 2e�0:4ðd2þy2Þ; ð83Þ
where d is the distance from the upper semicircle given by
x2 þ ðz� 4Þ2 ¼ 9; z 6 4; y ¼ 0: ð84Þ
The time domain is given by
�10 6 x 6 10; �10 6 y 6 10; 0 6 t 6 1:5: ð85Þ
The seismic velocity distribution is shown on two vertical mutually orthogonal sections and a horizontal slice. The sections
correspond to the planes y ¼ 0 and x ¼ 0. The depth of the horizontal slice is 2.0 km. The first column in Fig. 16 corresponds
to the reconstructed velocity, the second – to the exact velocity, the third – the 3D analogue of the Dix velocity, converted to
depth using our time-to-depth conversion algorithm. This example was computed on 250� 250 time-domain mesh. As in
the previous example, our velocity correction by solving system (63) and (64) provides significant and qualitative improve-
ment in comparison with the estimate similar to Dix inversion.
program used to compute the 3D examples in [3] overlooked the square root sign in the expression vheur ¼ vffiffiffiffiffiffiffiffiffi
det Q
p for the velocity estimate vheur

us to the Dix inversion. The text in [3] correctly states that vheur ¼
ffiffiffiffiffiffiffiffiffiffiffi
det F4
p

. This error did not affect our reconstruction but made the estimate vheur which
ly for reference appear worse than it should.
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8.2. Error and perturbation analysis

As in the 2D case, we compare the following three schemes. The scheme with the 9-point stencil and the Lax–Friedrichs
averaging, given by Eq. (70), a scheme with the same stencil but without the Lax–Friedrichs averaging, and a scheme with
the 5-point stencil (Fig. 14(b)) and the Lax–Friedrichs averaging. These schemes are 3D analogues of the 2D schemes (23),
(24), (55), (56), (58), and (59), respectively.

As in the 2D case, we derive the modified equations for the schemes. Then we perform the perturbation analysis for the
original PDE for Q given by Eq. (68) and for the modified equations. For simplicity, let
F ¼ I2 þ
dF11 dF12

dF21 dF22

� �
: ð86Þ
Since the exact solution of Eq. (68) in the case F ¼ I2 is the identity matrix Q ¼ I2, the corresponding perturbed solution can
be written in the form
Q ¼ I2 þ
dR dS

dT dU

� �
: ð87Þ
Then
v þ dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Fðdet Q Þ24

q
¼ 1þ 1

4
ðdF11 þ dF22Þ þ

1
2
ðdRþ dUÞ: ð88Þ
After manipulations similar to those for 2D, we obtain the following equations for the perturbations of Q:
dRtt þ
1
2
ðdRxx þ dUxxÞ ¼ �

1
4
ðdF11 þ dF22Þxx;

dStt þ
1
2
ðdRxy þ dUxyÞ ¼ �

1
4
ðdF11 þ dF22Þxy;

dTtt þ
1
2
ðdRyx þ dUyxÞ ¼ �

1
4
ðdF11 þ dF22Þyx;

dUtt þ
1
2
ðdRyy þ dUyyÞ ¼ �

1
4
ðdF11 þ dF22Þyy;

ð89Þ
Adding the first and the last equation and introducing a new variable n � dRþ dU we come to the following equation for n.
ntt þ
1
2

nxx þ
1
2

nyy ¼ F ; ð90Þ
where
F ¼ �1
4
ðdF11 þ dF22Þxx þ

1
4
ðdF11 þ dF22Þyy: ð91Þ
Eq. (90) is a 3D Poisson equation and it has growing harmonics. Let aðk; l; tÞ be the Fourier transform of nðx; y; tÞ in x and y.
Then the corresponding equation for a is
att �
1
2
ðk2 þ l2Þa ¼ bF : ð92Þ
For the modified equation for the scheme with the 9-point stencil and the Lax–Friedrichs averaging we obtain the following
equation for n:
Dt
2

nttt þ ntt �
Dx2

4Dt
nxxt þ

Dy2

4Dt
nyyt þ

1
2

nxx þ
1
2

nyy þ
1
6
ðnxxxxDx2 þ nyyyyDy2Þ ¼ F : ð93Þ
The corresponding equation for the Fourier amplitudes is
Dt
2

attt þ att þ
Dx2

4Dt
k2 þ Dy2

4Dt
l2

� �
at þ

1
2

k4

6
þ l4

6
� k2 � l2

 !
a ¼ bF : ð94Þ
For the modified equation for the scheme with the 9-point stencil without the Lax–Friedrichs averaging we obtain the fol-
lowing equation for n:
Dt
2

nttt þ ntt þ
1
2

nxx þ
1
2

nyy þ
1
6

nxxxxDx2 þ nyyyyDy2� �
¼ F : ð95Þ
The corresponding equation for the Fourier amplitudes is
Dt
2

attt þ att þþ
1
2

k4

6
þ l4

6
� k2 � l2

 !
a ¼ bF : ð96Þ
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For the modified equation for the scheme with the 5-point stencil and the Lax–Friedrichs averaging we obtain the following
equation for n:
Dt
2

nttt þ ntt �
Dx2

4Dt
nxxt þ

Dy2

4Dt
nyyt þ

1
2

nxx þ
1
2

nyy þ
1

24
ðnxxxxDx2 þ nyyyyDy2Þ ¼ F : ð97Þ
The corresponding equation for the Fourier amplitudes is
Dt
2

attt þ att þ
Dx2

4Dt
k2 þ Dy2

4Dt
l2

� �
at þ

1
2

k4

24
þ l4

24
� k2 � l2

 !
a ¼ bF : ð98Þ
Eqs. (94), (96), and (98) are analogous to Eqs. (52), (57), and (60), respectively. Hence the most stable scheme is Schemes (70)
and (77). The other two schemes show less stability as it was in 2D.

9. Conclusions

In this work, we have established the mathematical properties of the problem of seismic velocity estimation from time
migration, reduced it to a Cauchy problem for a partial differential equations in 2D and 3D. These PDEs bind the Dix velocity
and the geometrical spreading of the image rays in 2D and 3D and allow us to reconstruct the seismic velocity from the input
data (the Dix velocity). These PDEs are elliptic: they contain first and second derivatives of the Dix velocity as coefficients.
The physical setting allows us to pose only a Cauchy problem for these PDE’s, which is well-known to be ill-posed. Never-
theless, we have developed finite difference numerical schemes in 2D and 3D which contain an averaging loosely related to
Lax–Friedrichs schemes. We have also adjusted a spectral Chebyshev method for the PDEs in 2D. With these, we have been
able to estimate the seismic velocity in 2D and 3D quite accurately up to desired (shallow enough) depth.

We have applied an error and perturbation analysis to our finite difference schemes and showed that our averaging and
the wide stencil in space lead to small error terms which suppressed the highest harmonics supported by the mesh for cer-
tain constant ratios of the grid step in space and in time. Our schemes do not suppress the lower harmonics, however, if the
desired maximal time/depth is shallow enough (just a few kilometers), then lower harmonics do not grow significantly.

We have tested our results on a variety of two- and three-dimensional analytic examples and demonstrated dramatic
improvement of the accuracy in comparison with the Dix inversion.

A test on the Marmousi synthetic dataset confirms the ability of our approach to improve the interval velocity estimates
in comparison with the classic Dix inversion.
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