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Abstract. We describe new applications of the level set approach for following the evolution
of complex interfaces. This approach is based on solving an initial value partial differential
equation for a propagating level set function, using techniques borrowed from hyperbolic
conservation laws. Topological changes, corner and cusp development, and accurate de-
termination of geometric properties such as curvature and normal direction are naturally
obtained in this setting. In this paper, we review some recent work, including fast level set
methods, extensions to multiple fluid interfaces, generation of complex interior and exterior
body-fitted grids, and applications to problems in shape and character recognition.

1.Introduction

In this paper, we review some recent work which extends the capabilities of level set
methods for tracking the evolution of complex interfaces, and summarize some new recent
applications of these techniques. Level set methods, introduced by Osher and Sethian [23],
offer highly robust and accurate methods for tracking interfaces moving under complex mo-
tions. Their major virtue is that they naturally construct the fundamental weak solution to
surface propagation posed by Sethian [25, 26]. They work in any number of space dimen-
sions, handle topological merging and breaking naturally, and are easy to program. They
approximate the equations of motion for the underlying propagating surface, which resemble
Hamilton-Jacobi equations with parabolic right-hand sides. The central mathematical idea
is to view the moving front as a particular level set of a higher dimensional function. In
this setting, sharp gradients and cusps can form easily, and the effects of curvature may be
easily incorporated. The key numerical idea is to borrow the technology from the numerical
solution of hyperbolic conservation laws and transfer these ideas to the Hamilton-Jacobi
setting, which then guarantees that the correct entropy satisfying solution will be obtained.



As initially designed in [23], the level set technique is designed to track an interface where
there is a clear distinction between an ”inside” and ”outside”. This is because the interface
is assigned the zero level value between the two regions. Additionally, calculations in the
original technique were performed over all the level sets, not just the one corresponding
to the zero interface. Consquently, to track a one-dimensional curve moving in two space,
calculations were performed over the entire two-dimensional domain, leading to an O(N?)
calculation where NN is the number of grid points in each direction. In many cases this is an
unnecessary expense in both memory and computational labor, since only the motion of the
interface itself is of interest. In this paper, we describe a fast level set approach introduced
in [1] which limits computation to a narrow band around the interface, significantly reducing
the computational labor. We also briefly describe a new extension of the level set approach
given in [32] which can be used to track an arbitrary number of interfaces in some cases.

We then summarize the application of level set techniques to two new areas. First, we
show how interface tracking can be used to generate logically rectangular body-fitted grids
around complex bodies in both two and three space dimensions. We generate internal and
external grids around a variety of objects, with the ability to body-fit deep into oscillatory
bodies. Second, we show how these same techniques can be applied to shape detection and
optical character recognition; providing algorithms that detect and fit shapes in MRI and
CAT scans, and exploiting accurate and efficient feature vectors for shape recognition.

II. Numerical Algorithms for Propagating Fronts

The fundamental aspects of front propagation in our context can be illustrated as follows.
Let 7(0) be a smooth, closed initial curve in R?, and let v(t) be the one—parameter family of
curves generated by moving 7(0) along its normal vector field with speed F'(K). Here, F(K)
is a given scalar function of the curvature K. Thus, n - z; = F(K), where z is the position
vector of the curve, t is time, and n is the unit normal to the curve. It can be shown that a
curve collapsing under its curvature shrinks to a circle, see [15, 16, 18].

Consider a speed function of the form 1 — ek, where € is a constant. An evolution
equation for the curvature K, see [26], is given by

Ki = Koo + eK* — K? (1)

where we have taken the second derivative of the curvature K with respect to arclength
«. This is a reaction-diffusion equation; the drive toward singularities due to the reaction
term (eK® — K?) is balanced by the smoothing effect of the diffusion term (eK,,). In-
deed, with € = 0, we have a pure reaction equation K; = —K?2. In this case, the solution
is K(s,t) = K(s,0)/(1+4tK(s,0)), which is singular in finite ¢ if the initial curvature is
anywhere negative. Thus, corners can form in the moving curve when ¢ = 0.

As an example, consider the periodic initial cosine curve

7(0) = (=s, [1 + cos2ms]/2) (2)

propagating with speed F(K) = 1 — €K, € > 0. As the front moves, the troughs at s =
n+1/2,n =0,£1,£2,.... are sharpened by the negative reaction term (because K < 0 at
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Figure 1: Propagating Cosine Curve.

such points) and smoothed by the positive diffusion term (see Figure 1a). For € > 0, it can
be shown (see [26, 23]) that the moving front stays C°.

On the other hand, for € = 0, the front develops a sharp corner in finite time as discussed
above. In general, it is not clear how to construct the normal at the corner and continue
the evolution, since the derivative is not defined there. One possibility is the “swallowtail”
solution formed by letting the front pass through itself (see Figure 1b). However, from a
geometrical argument it seems clear that the front at time t should consist of only the set
of all points located a distance ¢ from the initial curve. (This is known as the Huygens
principle construction, see [26]). Roughly speaking, we want to remove the “tail” from
the “swallowtail”. In Figure 1c, we show this alternate weak solution. Another way to
characterize this weak solution is through the following “entropy condition” posed by Sethian
(see [26]): If the front is viewed as a burning flame, then once a particle is burnt it stays
burnt. Careful adherence to this stipulation produces the Huygens principle construction.
Furthermore, this physically reasonable weak solution is the formal limit of the smooth
solutions € > 0 as the curvature term vanishes, (see [26]).

As further illustration, we consider the case of a V-shaped front propagating normal
to itself with unit speed (F' = 1). In [25], the link between this motion and hyperbolic
conservation laws is explained. In Figure 2a, the point of the front is downwards; as the
moves inwards with unit speed, a shock develops as the front pinches off, and an entropy
condition is required to select the correct solution to stop the solution from being double-
valued and to produce the limit of the viscous case. Conversely, in Figure 2b, the point of
the front is upwards; in this case the unit normal speed results in a rarefaction fan which
connects the left state with slope +1 to the right state which has slope —1. Extensive
discussion of the role of shocks and rarefactions in propagating fronts may be found in [25].

The key to constructing numerical schemes which adhere to both this entropy condition
and rarefaction structure comes from the link between propagating fronts and hyperbolic
conservation laws. Consider the initial front given by the graph of f(x), with f and f’
periodic on [0, 1], and suppose that the propagating front remains a function for all time.
Let ¢ be the height of the propagating function at time ¢, thus ¢(z,0) = f(x). The normal
at (x,¢) is (1,¢,), and the equation of motion becomes ¢, = F(K)(1+ ¢2)/2. Using the
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Figure 2: Front Propagating with Unit Normal Speed

speed function F(K) =1 — eK and the formula K = —¢,,/(1 + ¢2)3/?, we get

¢(E(E

o 2\1/2 __

(3)

Differentiating both sides of this equation yields an evolution equation for the slope u =
d¢/dz of the propagating front, namely

Uy
14+ u?

e+ [~ (14 u*)2) = e[l (4)
Thus, the derivative of the Hamilton-Jacobi equation with parabolic right-hand-side for
the changing height ¢ is a viscous hyperbolic conservation law for the propagating slope u
(see [28]). Our entropy condition is in fact equivalent to the one for propagating shocks
in hyperbolic conservation laws. Thus, we exploit the numerical technology from hyper-
bolic conservation laws to build consistent, upwind schemes which select the correct entropy
conditions. For details, see [23, 27].

Our goal then is to choose an appropriate speed function that yields front motion away
from the body that remains smooth for all time, and thus can act to define one set of body-fit
coordinate lines. Before doing so, we must extend the above ideas to include propagating
fronts which are not easily written as functions. This is the level set idea introduced by
Osher and Sethian [23], which we now describe.

Given a moving closed hypersurface T'(t), that is, T'(t = 0) : [0,00) — R, we wish to
produce an Eulerian formulation for the motion of the hypersurface propagating along its
normal direction with speed F', where I’ can be a function of various arguments, including
the curvature, normal direction, etc. The main idea is to embed this propagating interface
as the zero level set of a higher dimensional function ¢. Let ¢(z,t = 0), where z € RY be
defined by

d(x,t=0)=+d (5)

where d is the distance from x to I'(t = 0), and the plus (minus) sign is chosen if the point
x is outside (inside) the initial hypersurface I'(t = 0). Thus, we have an initial function



<

z= Y x,y,t=0)

(@) . (b)

=

(©

_________ Y(t)=Level  _
e N it e ¥70

T~ - _———

Figure 3: Propagating Circle

é(x,t =0): RN — R with the property that
I(t =0) = (z[¢(z,t = 0) = 0) (6)

Our goal is to now produce an equation for the evolving function ¢(z,t) which contains the
embedded motion of I'(¢) as the level set ¢ = 0. Let z(t),t € [0,00) be the path of a point
on the propagating front. That is, (¢ = 0) is a point on the initial front I'(t = 0), and
xy = F(x(t)) with the vector x; normal to the front at x(¢). Since the evolving function ¢ is
always zero on the propagating hypersurface, we must have

¢(x(t),t) =0 (7)

By the chain rule,
¢+ Vo(a(t,t) - 2'(t) =0 (8)

Since F' already gives the speed in the outward normal direction, then z’'(t) - n = F where
n = V¢/|V¢|. Thus, we then have the evolution equation for ¢, namely

¢+ F|Ve| =0 (9)

¢z, t=0) given (10)

We refer to this as a Hamilton-Jacobi “type” equation because, for certain forms of the speed
function F', we obtain the standard Hamilton-Jacobi equation.

In Figure 3, (taken from [29]), we show the outward propagation of an initial curve and
the accompanying motion of the level set function ¢. In Figure 3a, we show the initial circle,
and in Figure 3b, we show the circle at a later time. In Figure 3c, we show the initial position
of the level set function ¢, and in Figure 3d, we show this function at a later time.

There are four major advantages to this Eulerian Hamilton-Jacobi formulation. The
first is that the evolving function ¢(x,t) always remains a function as long as F' is smooth.



However, the level surface ¢ = 0, and hence the propagating hypersurface I'(¢), may change
topology, break, merge, and form sharp corners as the function ¢ evolves, see [23].

The second major advantage of this Eulerian formulation concerns numerical approxi-
mation. Because ¢(zr,t) remains a function as it evolves, we may use a discrete grid in the
domain of x and substitute finite difference approximations for the spatial and temporal
derivatives. For example, using a uniform mesh of spacing h, with grid nodes (4, 7), and em-
ploying the standard notation that ¢7; is the approximation to the solution ¢(ih, jh, nAt),
where At is the time step, we might write

n+1 n

B (B) (V) = 0 (11)
Here, we have used forward differences in time, and let V;;¢} be some appropriate finite dif-
ference operator for the spatial derivative. As discussed above, the correct entropy-satisfying
approximation to the difference operator comes from exploiting the technology of hyperbolic
conservation laws. Following [23], given a speed function F'(K), we update the front by the
following scheme. First, separate F'(K) into a constant advection term Fj and the remainder

Fi(K), that is,
F(K)=Fy+ Fi(K) (12)

The advection component Fj of the speed function is then approximated using upwind
schemes, while the remainder is approximated using central differences. In one space dimen-
sion, we have

P = ¢ — AtF, [(maX(DZ-_, 0)* + nflin(DZfo)z)l/2 — |[F(K)V | (13)

Extension to higher dimensions are straightforward; we use the version introduced in [31].

The third major advantage of the above formulation is that intrinsic geometric properties
of the front may be easily determined from the level function ¢. For example, at any point
of the front, the normal vector is given by

Vo
Vol

n= (14)
and the curvature is easily obtained from the divergence of the gradient of the unit normal
vector to front, i.e.,

) V¢ _ _¢mm¢§ - 2¢m¢m¢my + ¢yy¢i
Vol (63 + ¢3)%/2

Finally, the fourth major advantage of the above level set approach is that there are no
significant differences in following fronts in three space dimensions. By simply extending the
array structures and gradients operators, propagating surfaces are easily handled.

As an example of the application of level set methods, consider once again the problem
of a front propagating with speed F(K) = 1 — eK. In Figure 4, we show two cases of a
propagating initial triple sin curve. For e small (Fig. 4a), the troughs sharpen up and will
result in transverse lines that come too close together. For e large (Fig. 4b), parts of the

K=V

(15)



%3%%%

F=1 —-0.025K F=1 -025K
Fig.4a. Fig.4b

Figure 4: Propagating Triple Sine Curve.

boundary with high values of positive curvature can initially move inwards, and concave
parts of the front can move quickly up.

Since its introduction in [23], the above level set approach has been used in a wide
collection of problems involving moving interfaces. Some of these applications include the
generation of minimal surfaces [8], singularities and geodesics in moving curves and surfaces
in [10], flame propagation [24, 33|, fluid interfaces [4, 7], crystal growth and dendritic solid-
ification [31], detection of self-similar surfaces [9] and shape reconstruction [21]. Extensions
of the basic technique include fast methods in [1] and grid generation in [29, 30]. The fun-
damental Eulerian perspective presented by this approach has since been adopted in many

theoretical analyses of mean curvature flow, see in particular [12, 6], and related work in
[2, 11, 13, 14, 17, 19].

I11. Fast Level Set Methods

The main issue in the level set approach is the extension of the speed function F' to all
of space in order to move all the level sets, not simply the zero level set on which the speed
function is naturally defined. While this may be straightforward in some cases, it is not
efficient, since one must perform considerable computational labor away from the front to
advance the other level sets.

In [1], an approach introduced by Chopp in [8] and used in recovering images in [21],
was refined and analyzed extensively. The central idea is to focus computational effort in a
narrow band about the zero level set. We only update the values of the level set function
¢ in this thin zone around the interface. Thus, in two dimensions, an O(N?) calculation,
where N is the number of grid points per side, reduces to an O(kN) calculation, where
k is the number of cells in the narrow band. This reduction of labor makes the method
typically much faster than marker particle methods, due to the need for many marker points
per mesh cell in order to obtain acceptable accuracy. As the front moves, the narrow band
must occasionally be rebuilt (known as “re-initialization”) of the interface. For details, see
8, 21, 1].



‘ Scheme ‘ 40 Cells ‘ 80 Cells ‘ 16 Cells ‘
| Narrow Band 1st Order | 125.1 | 2435 | 507.9 |
| Full Matrix 1st Order | 330.9 [ 1367.5 | 5657.6 |
| Narrow Band 2nd Order | 1188 | 250.5 | 547.8 |

Figure 5: Comparative Timings of Schemes

Briefly, the entire two-dimensional grid of data is stored in a square array. A one—
dimensional object is used to keep track of which points in this array correspond to the
tube, and the values of ¢ at those points are updated. When the front moves half the
distance towards the edge of the tube boundary, the calculation is stopped, and a new tube
is built with the zero level set interface boundary at the center. Details on the accuracy,
typical tube sizes, and number of times a tube must be rebuilt may be found in [1].

As an example of the speed up possible using this approach, we cite the results given in
[1]. On a typical two-dimensional interface tracking problem, we compare timings of a first
and second order narrow band approach with the the full matrix approach; calculations are
performed over various grid sizes. Results are measured in a rough manner, with optimization
turned off and timing compared using the Unix time command. Thus, the important feature
are the ratios. The narrow band calculation is around 10 times faster for the finest calculation
than the full matrix solution.

IV. Extension to Multiple Interfaces

As discussed above, the level set technique was initially designed for tracking an interface
between two regions, where the notion of an ”inside” and ”outside” is clear. Some work has
been done on extending the approach to multiple fluids; mostly notably in [3] where an
extensive study of the motion of triple points was made. In the approach presented there,
at each time step the calculation stops, the zero level set is found, and the entire level set
function is rebuilt using a reinitialization technique.

In many cases, such an approach is not necessary; in [32] a level approach is given
for tracking an arbitrary number of interfaces in two and three dimensions which includes
the motion of triple points in some cases. The technique presented does not rely on any
reinitialization, and retains the essential characteristic of the original approach; the front is
only explicitly constructed for display purposes. Here, we briefly review the approach, for
details, see [32].

The key idea lies in recasting the interface motion as the motion of one level set function
for each material. In some sense, this is what was done in the re-ignition idea given in [24]. In
that approach, the front was a flame which propagated downstream under a fluid flow, and
was re-ignited at each time step at a flame holder point. This "re-ignition” was executed by
taking the minimum of the advancing flame and its original configuration around the flame
holder, thus ensuring that the maximum burned fluid is achieved.

Consider two-dimensions and let Region A occupy the left half plane while Region B
occupies the right half plane. Consider the case where the interface between the two regions,



that is, the y axis, propagates in its normal direction with speed 1, where the normal is
defined to point in the positiv x direction. Thus, the interface moves to the right with unit
speed. Our central perspective is as follows:

We imagine that Region A is propagating in its outward normal direction with speed 1,
and imagine that Region B does not move and is overtaken by Region A.

This is accomplished as follows. Let ¢%, ¢} be the trial positions of the level sets func-
tions obtained by advancing interface A ahead with speed 1 for one time step, and interface
B ahead with speed 0 for one time step; these advances are obtained by using the hyperbolic
conservation law methodology described above. Of course, evolution with speed 0 corre-
sponds to no motion, but we describe it this way for ease of explanation. Our only job now
is to combine these values in such a way as to obtain the new values at time n + 1. Let

W =0k B =maz(dh, —¢)) (16)

The technique may be extended easily to multiple regions as follows. Imagine that we
have N separate regions, and a full set of all possible pairwise speed functions F7; which
describe the propagation speed of region I into region J; F is taken as zero if Region I cannot
penetrate J. The idea is to advance each interface to obtain a trial value for each interface
with respect to motion into every other region, and then combine the trial values in such a
way as to obtain the maximum possible motion of the interface.

In general then, we proceed as follows. Given a Region I, we obtain N — 1 trial level
set functions ¢}, by moving the Region I into each possible Region J, J=1,N (J # I) with
speed Fj;. During the motion of Region I into Region J, we assume that all other regions are
impenetrable. We then test the penetrability of the Region J itself, leaving the value of ¢7;
unchanged if F7; # 0, else modifying it with the maximum of itself and —¢%;. Finally, to
allow Region I to evolve as much as possible, we take the minimum over all possible motions
to obtain the new position; this is the re-ignition idea described earlier. Complete details of
the approach may be found in [32].

As illustration of our approach, we study the motion of a triple point between Regions
A, B, and C. Region A is the disk on the left, Region B the disk on the right, and Region C
the remaining material. We assume that Region A penetrates B with speed 1, B penetrates
C with speed 1, and C penetrates A with speed 1. The exact solution to this is given by a
spiral with no limiting tangent angle as the triple point is approached. The triple point does
not move; instead, the regions spiral around it. In Figure 6, we show the results calculated
on a 98x98 grid. Starting from the initial configuration, the regions spiral around each other,
with the leading tip of each spiral controlled by the grid size. In other words, we are unable
to resolve spirals tighter than the grid size, and hence that controls the fine scale description
of the motion. However, we note that the triple point remains fixed.

V. Generation of Body-fitted Logically Rectangular Grids
The generation of logically rectangular grids around and inside complex bodies is still
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an art. While unstructured meshes may be obtained in a relatively automated fashion,
many calculations require the accuracy of a logically rectangular, body-fitted grid. For
example, high Reynolds turbulent flow requires an accurate, body-fit grid in the boundary
layer where gradients are steep and a highly accurate scheme is critical. Standard techniques
in logical rectangular boundary-fitted grid generation fall under four general categories.
Hyperbolic grids march out from the boundary. Algebraic grids adjust nodes until a desired
shape is achieved. Elliptic grids solve an associated elliptic partial differential equation,and
variational methods minimize certain functionals. Grids obtained through these techniques
can be plagued by colliding grid lines, inability to handle sharp corners in the bodies, and
difficulty extending to three space dimensions.

Recently, the level set technique have been applied to grid generation in two and three
dimensions, [29]. Here, we review some of that work; for details see [29].The technique hinges
on viewing the boundary of the body as a propagating front. The front is then allowed to
propagate with a speed law that ensures that it will smoothly evolve from the body in such
a way that the position of the front yields one set of coordinate lines. The judicious choice
of speed function produces a geometry-flowing interface which is guaranteed to handle cusps
and corners, produce smooth contours, and trivially extend to three space dimensions. Lines
orthonormal to the propagating, body-fitted, level-set lines are obtained by following the
trajectories of particles propagating with a speed function dependent on the local curvature
and emanating from the boundary.

Using this approach, the resulting algorithm generates two and three dimensional inte-
rior and exterior grids around reasonably complex bodies which may contain sharp corners
and significant variations in curvature. We have also used these techniques to produce
non-uniform solution-adaptive meshes and boundary-fitted moving grids. The algorithm is
completely automatic; the only user-supplied grid-dependent parameters are the shape of
the initial boundary, and the time step spacing for the evolving front function. In Figure
7, we show the results of this application. In Figure 7a, a two-dimensional external grid is
produced around a fairly complex object; in Figure 7b, an internal grid is computed. Finally,
in Figure 7c, a three-dimensional grid is obtained. In the exterior grid cases, a speed function
was chosen of the generic form 1 — e, where K is the curvature; in the case of the interior
grid, the speed function was chosen as F' = min(d, K), where § is a threshold value chosen
to ensure that every point of the body moves inwards with some minimum speed. Without
such a factor, points on non-convex boundaries would first evolve outwards at some points,
which violates the ability of the algorithm to create a grid.

The above approach is automatic, inexpensive, and requires no complex alteration in
three-dimensions. To extend it to multiple bodies, our current work is aimed at using the
above level set approach to grid generation to generate a logically rectangular grid near each
body (for example, in the boundary layer and past), and then take these grids as input
to more traditional techniques which can grid multiple bodies, but cannot access complex
shapes in an automatic fashion. Thus, the approach is a marriage of the level set algorithm
to generate an accurate near-body grid which yields a smoother, almost convex shape, and
a traditional methodology which will patch these smooth grids together. For details of this
approach, see [30].
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VI. Shape Representation and Recognition
Roughly speaking, image processing and analysis includes four stages:

e Enhancement. In this step, the original image, which may be given by an image
intensity at grid points, or in fact represent range data, is enhanced and modified.
This enhancement includes techniques to sharpen features, heighten contrasts, remove
noise, remove blur, etc.

e Segmentation. In this step, the goal is to isolate a particular desired feature within
an image. For example, in medical images such as MRI and CAT scans, one may
want to isolate a particular shape, such as those corresponding to tumors, which are
suggested by sharp contrasts in the image intensity; thus the goal is to "segment” a
shape from an image. Traditional techniques often exploit ”snakes” or balloon-methods
which attempt to follow a parameterized curve as it deforms to fit the boundary of the
desired shape.

e Representation. In this step, the goal is to represent the segmented shape in some
convenient way, such as splines or cylindrical patches, such that various geometric
properties (area, curvature variation, etc.) can be easily calculated.

e Recognition. Given the above representation, the goal is to somehow match the repre-
sentation to a given library of shapes. Techniques often exploit neural nets or direct
distance function comparisons of carefully chosen ”feature-vectors” which characterize
information about the desired shape.

Partial differential-based approaches have played a major role in revolutionizing these
four stages. To begin, enhancement schemes based on applying shock filtering schemes and
curvature-driven flows, approximated using the level set approach have provided significant
improvement in techniques to enchance images. In these approaches, the idea is to view the
image intensity map as something akin to a ”"level set function”, and evolve the function
under geometry-driven flows which depend on the curvature and both sharpen features and
anisotropically smooth. A level set approach to segmentation was introduced in [21] and
independently in [5]. In [21], an initial front was placed inside a field, and an intensity-
driven speed law devised to attract this interface to the boundary of the shape. The front
is again moved using the level set approach, providing the ability to change topology and
evolve into sharp corners and limbs of the desired shape. Once segmented by the level set
approach, the resulting distance function representation can be used to compare the found
shape with a library of test images; in [22], these techniques were used to perform optical
character recognition.

As examples of the level set approach applied to the last three stages of the above process
(segmentation, representation, and recognition), in Figure 8, we show two different examples.
In Figure 8a, we show a level set technique applied to extract the arterial structure from a
digital subtraction angiogram (DSA). The level set approach starts with a small front inside
the artery, and expands easily as it evolves into the intricate channel structure; for details,
see [21]. In Figure 8b, we show our level set technique applied to character recognition;
using the NIST Database 3 and 7 as our training sets, we use a neural net based approach



and train on the signed distance function as the feature vector. Those shapes which are
not identified within the given threshold are then altered under flow rules based on our
hyperbolic conservation law approach to bring them into a given test category. Figure 8b
shows handwritten characters which have been identified using this approach; for details, see

22].

Acknowledgements: All calculations were performed at the University of California at

Berkeley and the Lawrence Berkeley Laboratory.

References

1]

2]

Adalsteinsson, D., and Sethian, J.A., A fast level set method for propagating interfaces,
submitted for publication, Jour. Comp. Phys., 1994.

Altshuler, S., Angenent, S.B., and Giga, Y., Mean Curvature Flow through Singularities
for Surfaces of Rotation, preprint, 1993.

Merriman, B., Bence, J., and Osher, S.J., Motion of Multiple Junctions: A Level Set
Approach, to appear, Jour. Comp. Phys., 1994.

Bourlioux, A., and Sethian, J.A., A Conservative Level Set Method for Fluid Interfaces,
to be submitted, 1994.

Casselles, V., Catte, F., Coll, T., and Dibos, F., A Geometric Model for Active Contours,
Numerische Mathematic, Vol. 60, pp. 1-31, 1993.

Chen, Y., Giga, Y., and Goto, S., Uniqueness and Existence of Viscosity Solutions of
Generalized Mean Curvature Flow Fquations, J. Diff. Geom, Vol. 33, 749, 1991.

Chang, Y.C., Hou, T.Y., Merriman, B., and Osher, S.J., A Level Set Formulation of
FEulerian Interface Capturing Methods for Incompressible Fluid Flows, submitted for
publication, Jour. Comp. Phys., 1994.

Chopp, D. L., Computing minimal surfaces via level set curvature flow, Journal of
Computational Physics, Vol. 106, pp. 77-91, 1993.

Chopp, D. L., Construction of Self-Similar Surfaces Need reference, 1994.

Chopp, D.L. and Sethian, J.A., Flow under Curvature: Singularity Formation, Minimal
Surfaces, and Geodesics, to appear, Jour. Exper. Math, 1994.

Evans, L.C., Sonar, H.M., and Souganidis, P.E., Phase Transitions and Generalized
Motion by Mean Curvature, Communications on Pure and Applied Mathematics, Vol.
45, 1097, 1992.



Digital Image

a ¢« 6 3 ]
i 7 9 s *
€ & D ¥ 2
¥ 3 4L 6 a
S 3 w v 3

Identi fied Characters

Figure 8: Level Set Approach to Image Capturing and Recognition

Final Position



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Evans, L.C., and Spruck, J., Motion of Level sets by Mean Curvature, J. Diff. Geom,
Vol. 33, pp. 635-681, 1991.

Evans, L.C., and Spruck, J., Motion of Level sets by Mean Curvature II, Transactions
of the American Mathematical Society, Vol. 330, 91, 1992.

Falcone, M., Giorgi, T., and Loretti, P., Level Sets of Viscosity Solutions and Applica-
tions, Instituto per le Applicazioni del Calcolo, Rome, preprint, 1990.

Gage, M., Curve Shortening Makes Convexr Curves Circular, Inventiones Mathematica,
Vol. 76, 357, 1984.

Gage, M., and Hamilton, R., The Equation Shrinking Convex Planes Curves, J. Diff.
Geom, Vol. 23, 69, 1986.

Giga, Y., and Goto, S., Motion of Hypersurfaces and Geometric Equations, Journal of
the Mathematical Society of Japan, Vol. 44, 99, 1992.

Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Diff.
Geom., Vol. 26, 285 (1987).

Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.,
Vol. 20, 237, (1984).

Kimmel, R., and Bruckstein, A., Shape from Shading via Level Sets, Center for Intelli-
gent Systems Report No.9209, Technion- Israel Institute of Technology, June 1992,

Malladi, R., Sethian, J. A., and Vemuri, B. C., Shape modeling with front propagation: A
level set approach, Center for Pure and Applied Mathematics, Report PAM-589, Univ.
of California, Berkeley, August 1993.

Malladi, R., Sethian, J.A., A Unified Framework for Shape Segmentation, Representa-
tion, and Recognition, submitted August 1994, CVGIP - Image Understanding.

Osher, S., and Sethian, J. A., Fronts propagating with curvature dependent speed: Al-
gorithms based on Hamilton-Jacobi formulation, Jour. Comp. Phys., Vol. 79, pp. 12-49,
1988.

Rhee, C., Talbot, L. and Sethian, J.A., Dynamical Study of a Premized V Flame,
Submitted for Publication, Jour. Fluid Mech. 1994.

Sethian, J.A., An Analysis of Flame Propagation, Ph.D. Dissertation, Mathematics,
University of California, Berkeley, 1982.

Sethian, J.A., Curvature and the evolution of fronts, Commun. in Math. Physics, Vol.
101, pp. 487499, 1985.

Sethian, J.A., Numerical algorithms for propagating interfaces: Hamilton-Jacobi equa-
tions and conservation laws, Jour. of Diff. Geom., Vol. 31, pp. 131-161, 1990.



[28] Sethian, J.A., Numerical methods for propagating fronts, in Variational methods for
free surface interfaces, edited by P. Concus and R. Finn, (Springer-Verlag, New Work,
1987).

[29] Sethian, J.A., Curvature Flow and Entropy Conditions Applied to Grid Generation, to
appear, J. Comp. Phys. 1994.

[30] Sethian, J.A., Three-Dimensional Grid Generation Using Curvature Flow and Level
Sets. work in progress.

[31] Sethian, J.A. and Strain, J.D., Crystal Growth and Dendritic Solidification J. Comp.
Phys., Vol. 98, pp. 231-253, (1992).

[32] Sethian, J.A., Tracking the Evolution of Multiple Interfaces and Multi-Junctions sub-
mitted for publication, 1994, J. Comp. Phys.

[33] Zhu, J. and Sethian, J.A., Projection Methods Coupled to Level Set Interface Techniques
J. Comp. Phys., Vol. 102, pp.128-138, 1992.

James A. Sethian
Dept. of Mathematics

University of California
Berkeley, California, 94720



