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Abstract

Several silicon dioxide chemical vapor deposition processes using high density plasma sources
have been recently proposed in the literature [11, 7] for deposition of self-planarizing inter-level
dielectric deposition. All these processes exhibit the competitive effect of simultaneous depo-
sition and etching mechanisms. This paper describes the use of a robust simulation technique
that can include all physical mechanisms involved in these processes.

The techniques rely on level set methods [20] for tracking evolving interfaces. These tech-
niques are based on solving a Hamilton-Jacobi type equation for a propagating level set function,
using techniques borrowed from hyperbolic conservation laws. Topological changes, corner and
cusp development, and accurate determination of geometric properties such as curvature and
normal direction are naturally obtained in this setting. The equations of motion of a unified
model, including the effects of isotropic and unidirectional deposition and etching, visibility,
surface diffusion, reflection, and material dependent etch/deposition rates are presented and
adapted to a level set formulation. In the case of isotropic etching/deposition, a particularly
fast marching level set method can be employed.

Using these techniques, we demonstrate results applied to two and three-dimensional prob-
lems analyzing isotropic deposition, ion milling, simultaneous etching and deposition, and mul-
tiple effects of re-emission and redeposition.

1 Introduction

Several silicon dioxide chemical vapor deposition processes using high density plasma sources have
been recently proposed in the literature [11, 7] for deposition of self-planarizing inter-level dielectric
deposition. All these processes exhibit the competitive effect of simultaneous deposition and etching
mechanisms. This paper describes the use robust simulation techniques based on level set methods
that can include all physical mechanisms involved in these processes.

2 Level Set Techniques

Level set techniques [15, 12, 20, 21] numerically approximate the equations of motion for a propa-
gating front by transforming them into an initial value partial differential equation, whose unique
solution gives the position of the front. In this setting, corners and cusps are naturally handled, and
topological change occurs in a straightforward and rigorous manner. Complex motion, particularly
those that require surface diffusion, sensitive dependence on normal directions to the interface, and
sophisticated breaking and merging, result from a straightforward implementation of the scheme,
with no user intervention.
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Figure 1: Cosine Curve Propagating with Unit Speed

2.1 Background

Consider a boundary, either a curve in two dimensions or a surface in three dimensions, separating
one region from another, and imagine that this curve/surface moves in its normal direction with a
known speed function F . The goal is to track the motion of this interface as it evolves. We are
only concerned with the motion of the interface in its normal direction, and shall ignore tangential
motion.

As shown in [14, 15, 17], a propagating interface can develop corners and discontinuities as it
evolves, which require the introduction of a weak solution in order to proceed. The correct weak
solution comes from enforcing an entropy condition for the propagating interface, similar to the
one in gas dynamics. Furthermore, this entropy-satisfying weak solution is the one obtained by
considering the limit of smooth solutions for the problem in which curvature plays a regularizing
role.

As an example, consider the initial cosine curve propagating with speed F = 1 shown in Figure
1. As the front moves, a corner forms in the propagating front which corresponds to a shock in the
slope, and a weak solution must be developed beyond this point. If the motion of each individual
point is continued, the result is the swallowtail solution shown in Fig. 1a, which is multiple-valued
and does not correspond to a clear interface separating two regions. Instead, an appropriate weak
solution is obtained by considering the associated smooth flow obtained by adding curvature κ to
the speed law, that is, letting F = 1 − ǫκ, see Fig. 1b. The limit of these smooth solutions as ǫ
goes to zero produces the weak solution shown in Fig. 1c; this is the same solution obtained by
enforcing an entropy condition, similar to the one for a scalar hyperbolic conservation law, which
selects the envelope obtained by Huygens principle as the correct solution, see [14]. This weak
solution corresponds to a decrease in total variation of the propagating front and is irreversible [15].
For details, see [15].

As a numerical technique, this suggests using the technology from hyperbolic conservation laws to
solve the equations of motion, as described in [16]. This leads to the level set formulation introduced
in [12], which we now describe.

2.2 The Level Set Method

Given an initial position for an interface Γ, where Γ is a closed curve in R2, and a speed function
F which gives the speed of Γ in its normal direction, the level set method takes the perspective of
viewing Γ as the zero level set of a function φ(x, t = 0) from R2 to R. That is, let φ(x, t = 0) = ±d,
where d is the distance from x to Γ, and the plus (minus) sign is chosen if the point x is outside
(inside) the initial hypersurface Γ. Then, by the chain rule, an evolution equation for the interface
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Figure 2: Propagating Circle

may be produced [12, 17], namely

φt + F |∇φ| = 0, (1)

φ(x, t = 0) = given. (2)

This is an initial value partial differential equation in one higher dimension than the original
problem. In Figure 2 (taken from [18]), we show the outward propagation of an initial curve and
the accompanying motion of the level set function φ.

There are several advantages to this level set perspective:

1. Although φ(x, t) remains a function, the level surface φ = 0 corresponding to the propagating
hypersurface may change topology, as well as form sharp corners as φ evolves (see [12]).

2. Second, a discrete grid can be used together with finite differences to devise a numerical scheme
to approximate the solution. Care must taken to adequately account for the spatial derivatives
in the gradient.

3. Third, intrinsic geometric properties of the front are easily determined from the level set
function φ. The normal vector is given by ~n = ∇φ

|∇φ|
and the curvature of each level set is

κ = ∇ · ∇φ
|∇φ| .

4. Finally, the formulation is unchanged for propagating interfaces in three dimensions.

Since its introduction in [12], the above level set approach has been used in a wide collection of
problems involving moving interfaces. Some of these applications include the generation of minimal
surfaces [5], singularities and geodesics in moving curves and surfaces in [6], flame propagation
[13, 23], shape reconstruction [10, 9], as well as etching, deposition and lithography calculations in
[2, 3]. Extensions of the basic technique include fast methods in [1], level set techniques for multiple
fluid interfaces [19], and grid generation in [18]. The fundamental Eulerian perspective presented by
this approach has also been adopted in many theoretical analyses of mean curvature flow.



2.3 Numerical Approximation

As mentioned above, a careful approximation to the gradient in the level set equation (Eqn. 1) is
required in order to produce the correct weak solution. One of the simplest such schemes is given
in [12], namely

φn+1

ij = φn
ij − ∆t (max(D−x

ij φ, 0)2 + min(D+x
ij φ, 0)2 max(D−y

ij φ, 0)2 + min(D+y
ij φ, 0)2)1/2, (3)

where here we have taken the speed F = 1 and employed difference operator notation that, for
example, D+x

ij φ = (φi+1,j − φi,j)/(∆x). The crucial point in this (any such appropriate) numerical
scheme is the correct direction of the upwinding and treatment of sonic points.

2.4 Fast Level Set Methods

2.4.1 Narrow Band Methods

The above method can be made fast in two ways. First, one can restrict the update of the level
set function to a small neighborhood around the zero level set. This is known as the narrow band

approach, see [1]. In this case, the operation count in three dimensions for N3 grid points drops to
O(kN2), where k is the number of cells in the width of the narrow band, providing a significant cost
reduction. This “narrow band method” method was introduced in [5], used in recovering shapes
from images in [10], and analyzed extensively in [1].

2.4.2 Fast Marching Level Set Methods

A second fast version can be applied when the speed function F is only a function of position; such
is the case in isotropic etching/deposition, in which the speed function is constant. This results in
the fast marching level set method, introduced by Sethian [21, 20], in which the problem is converted
to a stationary solution, and the level sets correspond to positions of the front at various times.
The key to this fast approach lies in a marriage of the above narrow band method and heapsort
algorithm with back pointers, which, together with the entropy-satisfying schemes presented above,
produce a very fast technique.

In more detail, suppose the speed of the front is given as F = F (x) (this is the case in pho-
tolithography resist development). Then start with the level set equation given by

φt + F |∇φ| = 0, (4)

Let T be the time at which the curve crosses the point (x). The surface T (x) then satisfies the
equation

|∇T |F = 1. (5)

Eqn. 5 simply says that the gradient of arrival time surface is inversely proportional to the speed of
the front. Thus, we have replaced a time-dependent partial differential equation with a stationary
equation in this particular case. We can then march through the grid points in an orderly upwind
fashion, updating the values from smallest to largest, to obtain the solution in one sweep. This
method, for this particular case, is extremely fast. For example, a complete three-dimensional prop-
agation isotropic deposition/etching or lithograhic etch problem can be computed on a 150x150x150
grid in less than 45 seconds on a Sparc 10.

For details of these and many other level set schemes, see [20, 22].



3 Level Set Methods for Etching, Deposition, and Lithogra-

phy

Using these versions of level set methods, in [2, 3, 21], problems in etching, deposition, and pho-
tolithography development were analyzed. The model allows for physical mechanisms which include
the effects of visibility, masking, non-convex sputter laws under ion milling, bulk diffusion, and
sensitive flux integration laws.

3.1 Isotropic Deposition

First, we consider the case of simple isotropic deposition above a trench, with corresponding speed
function F = 1, using the fast marching level set method introduced in [20, 21]. In Figure 3, taken
from [21], we show a two-dimensional trench being filled in with a deposition layer; we note the
sharp corner that develops when the entropy condition is invoked.

Figure 3: Isotropic Deposition Above Trench

3.2 Sputter Deposition: Non-convex flux laws

In Figure 4, taken from [3], we show etching of a saddle surface under ion milling with a non-convex
speed law, where θ is the angle of the surface normal with the vertical.

Initial Shape : T = 0 F = [1 + 4 sin2(θ)] cos(θ) T = 8 F inal Rotated

Figure 4: Downward Saddle Under Ion Milling

We note the interesting effects at the the convex corners, the concave corners, and the saddle
surfaces. The non-convex yield law means that special versions of our schemes must be used, see
[2, 3].



3.3 Combined Effects: Simultaneous Etching and Deposition

Recently reported evidence [8] strongly suggests that the deposition process can be modeled by a
deposition rate mainly composed by ion induced deposition, low pressure chemical deposition, re-
deposition from material back-scattered from the gas phase, and direct re-deposition from material
sputtered from the surface. Furthermore, it is shown that the etch component as predominantly due
to physical sputtering. This last component introduces instabilities in the simulation result when
using surface advancement techniques such as string algorithms producing artificial roughness.

We include results to show the application of the level set technique using a deposition rate as
a combination of direct deposition from the gas phase (to emulate the contribution of re-deposited
material) and a perfectly conformal contribution (as in the case of a small sticking coefficient con-
tribution), and an ion-milling component for the etch rate. Figure 5, taken from [4], shows the
robustness of this technique when varying the individual contributions over a wide range of param-
eters.

No artificial roughness is observed on the surface, and additionally, under certain conditions the
material is etched through the interface.
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F = (1 − α)Fetch + αFDeposition

Fetch = (5.2249 cosθ − 5.5914 cos2 θ + 1.3665 cos4 θ) cos θ

FDeposition = βFIsotropic + (1 − β)FSource

α Increases F rom Left to Right
β Increases F rom Bottom to Top

Figure 5: Simultaneous Etching and Deposition


