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Abstract
Developing shape models is an important aspect of computer vision research. Geometric and differential

properties of the surface can be computed from shape models. They also aid the tasks of object representation
and recognition. In this paper we present an innovative new approach for shape modeling which, while retaining
important features of the existing methods, overcomes most of their limitations. Our technique can be applied to
model arbitrarily complex shapes, shapes with protrusions, and to situations where no a priori assumption about
the object's topology can be made. A single instance of our model, when presented with an image having more
than one object of interest, has the ability to split freely to represent each object. Our method is based on the level
set ideas developed by Osher & Sethian to follow propagating solid/liquid interfaces with curvature—dependent
speeds. The interface is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed
or a speed that depends on the curvature. We move the interface by solving a "Hamilton-Jacobi" type equation
written for a function in which the interface is a particular level set. A speed function synthesized from the image
is used to stop the interface in the vicinity of the object boundaries. The resulting equations of motion are solved
by numerical techniques borrowed from the technology of hyperbolic conservation laws. An added advantage of
this scheme is that it can easily be extended to any number of space dimensions. The efficacy of the scheme is
demonstrated with numerical experiments on synthesized images and noisy medical images.

1 Introduction
An important goal of computational vision is to recover the shapes of 2D and 3D objects from various types of visual
data. To achieve this goal, shape models that satisfy constraints imposed by sensory data must be synthesized.
Shape models aid the computation of certain geometric and differential properties of surfaces. They also serve the
purpose of an intermediate stage in object recognition tasks, since they provide a more stable and useful description
than the original intensity images. In this paper we present a new approach to shape modeling which, while retaining
important features of the existing methods, overcomes most of their limitations.

Shape reconstruction typically precedes the symbolic representation of surfaces. The shape models must recover
detailed structure from noisy data using only the weakest among the possible assumptions about the observed
shape. Several variational reconstruction methods have been proposed and there is abundant literature on the same
[1 , 15, 2, 2 1 , 10]. Generalized spline models with continuity constraints are well suited for fulfilling the goals of shape
reconstruction (see [2, 3, 19]). Generalized splines are the key ingredient of the dynamic shape modeling paradigm
introduced by Terzopoulos e al., [20]. Incorporating dynamics into shape modeling enables the creation of realistic
animation in computer graphics applications and for tracking moving objects in computer vision. Following the
advent of the dynamic shape modeling paradigm, there was a flurry of research activity in the area, with numerous
application specific modifications to the modeling primitives, and external forces derived from data constraints
[8, 5, 22, 23, 24, 25, 6]. However, the aforementioned schemes for shape modeling have two serious limitations — the
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Figure 1 : Digital subtraction angiogram of an arterial structure

dependence of the final surface shape on the initial guess made to start the numerical reconstruction procedure, and
a strong assumption on the object's topology. The first of these deficiencies stems from the fact that the nonconvex
energy functionals used in the variational formulations have multiple local minima. As a consequence of this feature,
the numerical procedures, for convergence to a satisfactory solution require an initial guess which is "reasonably"
close to the desired shape. Existing shape representation schemes have an additional shortcoming in that they lack
the ability to dynamically sense the topological changes during the shape reconstruction process. Our method, which
we shall describe presently, makes no assumption about the object's topology, and it leads to a numerical algorithm
whose convergence to the desired shape is completely independent of the shape initialization.

The framework of energy minimization has also been used successfully in the problem domain of extracting salient
image contours — edges and lines. Kass e al. [8] used energy-minimizing "snakes" that are attracted to the image
features such as edges points and edge segments, whereas internal spline forces impose a smoothness constraint.
The weights of the smoothness and image force terms in the energy functional can be adjusted for different kinds of
behavior. Snakes, also referred to as active contour models, are restricted examples of the more general techniques
of matching deformable models to image data by means of energy minimization [20] . The scheme seeks to design
energy functionals whose local minima comprise the set of alternative solutions available to high-level processes.
In the absence of a well-developed high-level mechanism to make a choice among these solutions, an interactive
approach is used to explore the alternatives. By adding suitable energy terms to the minimization, the user pushes
the model out of a local minimum toward the desired solution. In the problem area of automatic segmentation of
noisy images, snakes perform poorly unless they are placed close to the preferred shapes. In a move to make the
final result relatively insensitive to the initial conditions, Cohen [4] defines an inflation force on the active contour.
This new force makes the model behave like an inflating balloon. The contour model with the above change will be
stopped by a strong edge and will simply pass through a spurious edge which is too weak relative to the ambient
inflation force.

Although the inflation force prevents the curve from getting "trapped" by isolated spurious edges, the active contour
model cannot segment complex shapes with significant protrusions like the one shown in figure (1). Moreover, despite
a good initialization, the active contour model, due to its arc-length and curvature minimization properties, cannot
be forced to extrude through any significant protrusions that a shape may posses. One possible solution to this
problem is to embed the snake model, which is an instance of a 1D thin-plate-membrane-spline, in an adaptive
environment wherein the material parameters controlling the. relative strengths of elasticity and rigidity are adapted
(see [14]). The merits of such an approach are suspect since it is not always possible to derive criteria upon which to
base the adaptation algorithm. So the problem is one of accurately modeling bifurcations and protrusions in complex
structures. In [20] it has been shown that multiple instances of deformable models are required to handle shapes
with several distinct parts. This can be very cumbersome, for it involves excessive user interaction and presumes
that the shape has already been deciphered into its constituent parts. Instead, we propose a method that will start
with a single instance of the model and will sprout the branches during the evolutionary process. Once the shape
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has been segmented from the image, its constituent part structure can be inferred [9].
Most existing surface modeling techniques require that the topology of the object be known before the reconstruc-

tion can commence. However, it is not always possible to specify the topology of an object prior to its reconstruction.
As a result, most reconstruction schemes end up making strong assumptions about object topology. Vision systems
which derive quantitative models of complex object shapes by integrating different visual modalities cannot evade
the issue of unknown and unpredictable topologies. Unknown topology is also an important concern in object track-
ing and motion detection applications where the positions of object boundaries are tracked in an image sequence
through time. During their evolution, these closed contours may change connectivity and split, thereby undergoing a
topological transformation. A heuristic criterion for splitting and merging which is based on monitoring deformation
energies of points on the elastic curve has been discussed in [13]. More recently, molecular dynamics has been used
to model surfaces of arbitrary topology [18]. Smoothness and continuity constraints are imposed by subjecting a
particle system to interaction potentials which locally prefer planar or spherical arrangement. Particles can be added
and deleted dynamically to enlarge and trim the surface respectively, while the system dynamics strive continually
to organize the particles into smooth shapes. The result is a versatile method with applications in surface fitting to
sparse data and 3D medical image segmentation.

The scheme described in this paper can be applied to situations where no a priori assumption about the object's
topology can be made. A single instance of our model, when presented with an image having more than one object
of interest, has the ability to split freely to represent each object [11].

1.1 Overview
In this subsection we briefly outline the scheme we use to model complex shapes. Our method is inspired by ideas
first introduced in Osher & Sethian [12, 17] to follow propagating fronts with curvature-dependent speeds. Two
such examples are flame propagation and crystal growth, in which the speed of the moving interface normal to itself
depends on transport terms modified by the local curvature. The challenge in these problems is to devise numerical
schemes for the equations of the propagating front which will accurately approximate these highly unstable physical
phenomena. Sethian [16] has shown that direct parameterization of the moving front may be unstable since it relies on
local properties of the solution. In contrast, a method which preserves the global properties of the motion is sought.
Osher and Sethian [12, 17] achieve this by embedding the surface in a higher-dimensional function. The equation of
motion for this function is reminiscent of an initial valued Hamilton-Jacobi equation with a parabolic right-hand side
and is closely related to a viscous hyperbolic conservation law. In our work we adopt these level set techniques to the
problems of shape reconstruction. To isolate a shape from its background, we first consider a closed, nonintersecting,
initial hypersurface placed inside it. Following the level set approach above, this hypersurface is then made to flow
along its gradient field with some speed F(K), where K is the curvature of the hypersurface. As in [12], we adopt
a global approach and view the (N — 1) dimensional moving surface as a level set of a time-dependent function
of N space dimensions. The equations of motion written for this higher dimensional function are then amenable
to stable entropy-satisfying numerical schemes designed to approximate hyperbolic conservation laws. Topological
changes can be handled naturally in this approach, since a particular level set {/.' =O} of the function b need not be
simply connected. However, there are two problems that need to be surmounted before we can use this design for
shape reconstruction. First, it is required that we stop the hypersurface in the neighborhood of the desired shape.
We do this by synthesizing a negative speed function from the image. Secondly, we have to construct an extension
of this speed function to other level sets {i/ = C) in the image (see figure 2). In the following sections we outline a
possible solution to these problems.

We note that this work on interface motion and hyperbolic conservation laws as discussed in [12, 16, 17], has been
applied in the area of computer vision for shape characterization by Kimia et al. [9] ,who unify many diverse aspects
of shape by defining a continuum of shapes (reaction/diffusion space), which places shapes within a neighborhood
of other similar shapes. This leads to a hierarchical description of a shape which is suitable for its recognition. The
key distinguishing feature of our work from that of Kimia et al., is that they assume the object shape to be known,
while we reconstruct it from noisy data. In other words, they show that by evolving a known shape boundary, explicit
clues can be derived towards the goal of developing a hierarchical shape description. In contrast, we start with an
arbitrary function b and recover complex shapes by propagating it along its gradient field. Shape characterization
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Figure 2: Level set formulation of equations of motion — (a) & (b) show the curve -y and the surface t/(x, y) at t =0,
and (c) & (d) show the curve y and the corresponding surface t/i(x, y) at time t.

can be readily done once the object shape is extracted.
In summary, we present a novel scheme for shape modeling which can be used in both computer vision and computer

graphics applications. Given the reconstructed shape, our approach can also be used for deciphering the constituent
part structure. The remainder of this paper is organized as follows: section 2 introduces the curvature-dependent
front propagation problem and establishes a link between Hamilton-Jacobi equations and a hyperbolic conservation
law. In section 3 we explain our level set algorithm for shape reconstruction and section 4 presents some experimental
results of applying our method to some synthesized and real noisy images. We close with a discussion of advantages
of our approach in section 5.

2 Front propagation problem
In this section we present the level set technique due to Osher and Sethian [12]. For details and an expository review,
see Sethian [17]. As a starting point and motivation for the level set approach, consider a closed curve moving in the
plane, that is, let 7(0) be a smooth, closed initial curve in Euclidean plane R2, and let 7(i) be the one-parameter
family of curves generated by moving 7(0) along its normal vector field with speed F(K), a given scalar function of
the curvature K. Let x(s,t) be the position vector which parameterizes 7(t) by s,0 < s < S.

One numerical approach to this problem is to take the above Lagrangian description of the problem, produce
equations of motion for the position vector x(s,1), and then discretize the parameterization with a set of discrete
marker particles laying on the moving front. These discrete markers are updated in time by approximating the
spatial derivatives in the equations of motion, and advancing their positions one time step. However, there are
several problems with this approach, as discussed in Sethian [16]. First, small errors in the computed particle
positions are tremendously amplified by the curvature term, and calculations are prone to instability unless an
extremely small time step is employed. Second, in the absence of a smoothing curvature (viscous) term, singularities
develop in the propagating front, and an entropy condition must be observed to extract the correct weak solution.
Third, topological changes are difficult to manage as the evolving interface breaks and merges. And fourth, significant
bookkeeping problems occur in the extension of this technique to three dimensions.

As an alternative, the central idea in the level set approach of Osher and Sethian [12] is to represent the front 7(t)
as the level set {b = 0} of a function b. To motivate this approach, we consider the example of an expanding circle.
Suppose the initial front 'y at i = 0 is a circle in the xy-plane (figure 2(a)). We imagine that the circle is the level
set {/ = 0} of an initial surface z = tli(x, y,t = 0) in R3 (see figure 2(b)). We can then match the one-parameter
family of moving curves 7(t) with a one-parameter family of moving surfaces in such a way that the level set {= 0}
always yields the moving front (figures 2(c) & 2(d)).

In the general case, let 7(0) be a closed, nonintersecting, (N — 1) dimensional hypersurface. Let b(x, t), x RN,
be the scalar function such that tb(x, 0) = d(x) is the signed distance from x to the hypersurface 7(0).
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We use the plus sign if x is outside 7(0) and minus sign if x is inside. Each level set of /' flows along itsgradient field
with speed F(K). The gradient Vtt'(x, t) is normal to the (N — 1) dimensional level set passing through x. Thus,
the motion of each level set is given by

t+FIVbI=O, (1)

with an initial condition t/i(x, 0) = We refer to equation (1) as the level set "Hamilton-Jacobi" formulation.
Note that at any time, the moving front 7(t) is simply the level set {b(x, t) = 0). There are several advantages
to this approach. First, since the underlying coordinate system is fixed, discrete mesh points used in the numerical
update equations do not move, resulting in a stable computation. Topological changes in the front can be handled
naturally by exploiting the property that the level surface {i,t = 0) need not be simply connected. (x, t) always
remains a function, even if the level surface {/i = O} corresponding to the front 7(t) changes topology, or forms
sharp corners. The geometric and differential properties of y(t) are captured in the function b and can be readily
extracted. As an example, if x E R2, the curvature is given by

'7 —
— + ,bb) 2' —

(/,22)3/2
This approach can also be easily extended to higher dimensions and appropriate expressions can be obtained for the
mean curvature and the Gaussian curvature [12}.

By substituting F(K) = 1 — eK as a typical speed function in equation (1), the equation of motion becomes

b+ IV I=eK Iv,bI . (3)

Equation (3) resembles a Hamilton-Jacobi equation with viscosity, where "viscosity" refers to the second-order
parabolic right-hand side. This equation can be solved using the stable, entropy-satisfying finite difference schemes,
borrowed from the literature on hyperbolic conservation laws (see {12}).

3 Shape reconstruction with front propagation
In this section, we describe how the level set formulation for the front propagation problem discussed in the previous
section can be used for shape reconstruction. There is a fundamental difference between the problems of front
propagation and shape reconstruction. In the former, the front represents a solid/liquid interface (crystal growth)
or a boundary separating burnt and unburnt regions (flame propagation). In these cases the computation is alive as
long as there remains a physical domain into which the front can be moved. For example, the flame front can be
moved as long as there is a region to be burnt and it hasn't crossed the physical domain in which the solution is
sought. On the contrary, in shape reconstruction the front represents the boundary of an evolving shape. Since the
idea is to extract object shapes from a given image, the front should be forced to stop in the vicinity of the desired
object boundaries. This is analogous to the force criterion used to push the active contour model towards desired
shapes. We define the final shape to be the configuration when all the points on the front come to a stop, thereby
bringing the computation to an end.

Our goal now is to define a speed function from the image data that can be applied on the propagating front as a
stopping criterion. In general the function F can be split into two components: F =FA+ FG . The term FA , referred
to as the advection term, is independent of the moving front's geometry. The front uniformly expands or contracts
with speed FA depending on its sign and is analogous to the inflation force defined in [4]. The second term FG, is
the part which depends on the geometry of the front, such as its local curvature. This (diffusion) term smooths out
the high curvature regions of the front and has the same regularizing effect on the front as the internal deformation
energy term in thin-plate-membrane splines [8]. We rewrite equation (3) by splitting the influence of F as

tI+FAIVt/5I+FGIVbf=O. (4)

First consider the case when the front moves with a constant speed, i.e. F = FA. To this if we add a negalive
speed ierm synthesized from the image, such that their sum tends to zero near large image gradient locations, we

250 / SPIE Vol. 2031 Geometric Methods in Computer Vision 11(1993)



will achieve our goal of bringing the front to a stop in the neighborhood of object boundaries. To this end, we define
a negative speed F1 to be

Fj(x, y) = (M1-A12)
{I VG * I(x, y) -M2} , (5)

where M1 and M2 are the maximum and minimum values of the magnitude of image gradient I VGa * I(x, y)
(2, y) E ft The expression G, * I denotes the image convolved with a Gaussian smoothing filter whose characteristic
width is c Alternately, we could use a smoothed zero-crossing image to synthesize the negative speed function. The
zero—crossing image is produced by detecting zero—crossings in the function V2Ga *I, which is the original image
convolved with a Laplacian-of-Gaussian filter whose characteristic width is o'. The equation of motion with the
addition of imagebased speed is

(6)

El called an ezension of F1 to points away from the boundary -y(t), i.e. at points (x, y) (Q —-y(t)), and is equal
to F1 on 7(t). We shall return to the issue of extension shortly. The value of F1 lies in the range [—FA ,0] as the
value of image gradient varies between M1 and M2 . From this argument it is clear that the front gradually attains
zero speed as it gets closer to the object boundaries and eventually comes to a stop.

In the case when the front moves with a speed that is a function of local curvature, i.e. FG 0, it is not possible
to find an additive speed term from the image that will cause the net speed of the front to approach zero in the
neighborhood of a desired shape. Instead, we multiply the speed function F = FA + FG with a quantity k1. The
term k1, which is defined as

kj(x,y) = VG*I(x,y) I' (7)

has values that are closer to zero in regions of high image gradient and values that are closer to unity in regions with
relatively constant intensity. The modified equation of motion is given by

b+AI(FA+FG)IVbJ=O. (8)

We now come to an important juncture in our discussion. The image-based speed term, be it F1 or k1, has meaning
only on the boundary 7(t), i.e. on the level set {t' = 0). This follows from the fact that they were designed to
force the propagating level set {t/ = O} to a complete stop in the neighborhood of an object boundary. However, the
equation of motion (6) is written for the function b, which is made up of infinitely many level curves. In other words,
equations (6) & (8) control the evolution of a family of level sets. Therefore, it is imperative that the net speed used
in the evolution equation has a consistent physical meaning for all the level sets, i.e. at every point (x, y) . Speed
functions such as FG which are functions of geometric properties of the surface z = b(x, y), can be readily computed
at any (x, y) E ci. However, F1 is not such a function. It derives its meaning not from the geometry of but from
the configuration of the level set {b = 0) in the image plane. Thus, our goal is to construct an image-based speed
function F1 that is globally defined. We call it an exiension of F1 off the level set {b =O} because it extends the
meaning of F1 to other level sets. Note that the level set {t,b= O} lies in the image plane and therefore F1 must
equal F1 on {t,L = O}. The same argument applies to the coefficient k1.

If the level curves are moving with a constant speed, i.e. FG = 0, then at any time i, a typical level set {t,b = C},
C E R, is a distance C away from the level set {b = 0) (see figure 3(a)). Observe that the above statement is
a rephrased version of Huygen's principle which, from a geometrical standpoint, stipulates that the position of a
front propagating with unit speed at a given time t should consist of only the set of points located a distance t
away from the initial front. On the other hand, if FG 0, the level sets will violate the property that they are a
constant distance away from each other. However, they will never collide and cross each other if the speed function
F = FA + FG is continuous (see [7]). With the above remarks in mind we state the following:

Property 1 Any external (image-based) speed function that is used in the equation of motion written for the function
1' should not cause the level sets to collide and cross each other during the evolutionary process.
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Figure 3: Extension of image-based speed functions off the level set {t/ = O}

Recall that the function b(x, t) has been initialized to d(x), where d(x) is the signed distance from a point x
to the boundary 7(0). Since we cannot attribute any geometric meaning to the function F1 (kj) at points away from
the level set {tb = 0), we look for a meaning that is consistent with property (1). Therefore, the question to ask
is: what is the value of F1 (or kj) at a point (x, y) lying on a level set {t,t'= C)? We answer this question in the
following construction (see figure 3(b)).

Construction 1 The value of Fi (k') aL a poini P lying on a level sei {i,b= C) is exactly the value of F1 (k1) aL
a poin2 Q, such ihaL poini Q is a disLance C away from P and lies on the level seL {/ = 0).

It is easy to see that Fj reduces to F1 on {t = 0). We use the same construction to determine the value of ki at a
point (x , y) lying on some level set {t/ = C). Note that if the definition of a speed function adheres to construction
1 , then it will also be consistent with the property 1 . Thus, having ascribed the intent of pseudodifferential equations
(6) & (8) in the context of shape modeling, we can use finite difference schemes to solve them numerically. Since b
can develop corners and sharp gradients, numerical schemes borrowed from hyperbolic conservation laws are used to
produce stable upwind schemes. Moreover, the equations of motion can be solved on a uniform mesh and the level
sets can be moved without their explicit construction.

4 Numerical solution and experimental results
The equation (3) poses an initial valued problem. We rewrite it here as

I +(I2+,/2h/2_eV.( V (9'vt yv 'ryl —

with t/'(x, y, t = 0) = distance from (x, y) to 7(0). As shown in Sethian [16], for e > 0, the parabolic right-hand
side diffuses sharp gradients and forces t' to stay smooth at all values of t . For e = 0 , the boundary moves with unit
speed, and a corner must develop from smooth initial data. Once a corner develops, an entropy condition must be
specified which carries the solution through the corner in a way that is the limit of smooth solutions as & —+0.

Fortunately, numerical techniques for computing hyperbolic conservation laws may be exploited to pick out the
correct entropy satisfying weak solution. The key is to use upwind methods which difference in the direction of
propagating characteristics. We use the following entropy-satisfying upwind scheme to advance the position of the
front given in equation (8), namely

= — + (min(Dt,b,,0))2

-1-(max(D1,,0))2 + (min(D1,1,0))2)"2 — ItFGkJ Vt/' , (10)
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where D+ and D are standard forward and backward difference operators. Here, we have not approximated the
second term FGkJ Vb I; one may use a straightforward central difference approximation to this term. Complete
details on this and other aspects of solving hyperbolic conservation laws in the context of level set equations are
given in Osher & Sethian [12, 17].

4.1 Experimental results
In this section we present several shape segmentation results that were obtained by applying the level set algorithm
to image data. We also outline some of the implementation details of our algorithm. Given an image, our method
requires the user to provide an initial contour 7(0). As we shall see, there is absolutely no restriction on where the
initial contour can be placed in the image plane as long as it is inside a desired shape or encloses all the constituent
shapes. This feature is of paramount importance in the context of automatic shape recovery. Our front seeks the
object boundaries by either propagating outward in the normal direction or propagating inward in the negative
normal direction. This choice is made at the time of initialization. Note that after the specification of initial shape
of 7(0) , our algorithm does not require any further user interaction.

The initial value of the function b i.e., b(x, 0) is computed from 7(0). We first discretize the level set function b
on the image plane and denote t,bj as the value of b at a grid point (izx,jLy), where zx and LIy are step sizes in
either coordinate directions. In our implementation, since we usually work with 2kX2k images, the computational
domain is a square one with zx = y = h. We define the distance from a point (i, i) to the initial curve to be
the shortest distance from (i, i) to 7(0). The magnitude of j is set to this value. We use the plus sign if (i, i)
is outside y(O) and minus sign if (i, i) is inside. Once the value of is computed at time I = 0 by following the
above procedure, we use the update equations from the previous section to move the front. It should be observed
that by updating the level set function on a grid, we are moving the level sets without constructing them explicitly.
The stability requirement for the explicit method for solving our level set equation is Et = O(zx2) for the equation
(10). If FG 0, then the stability requirement is it = O(zx). This could potentially force a very small time step
for fine grids making the computation excruciatingly slow. Therefore, we down-sample the image and perform our
calculations at a lower resolution and show that the results obtained are very promising.

We now present our shape reconstruction results in 2D. In our first experiment we recover the complicated structure
of an arterial tree. The real image has been obtained by clipping a portion of a digital subtraction angiogram. This is
an example of a shape with branches and significant protrusions. In this experiment we compare the performance of
our scheme with the active contour model and bring the later's limitations into focus. We first attempt to reconstruct
the complex arterial structure using a snake model with inflation forces. In figures 4(a) through 4(i) , we show a
sequence of pictures depicting the snake configuration in the image. We present the final equilibrium state of the
snake in figures 4(c), 4(f), & 4(i) corresponding to three distinct initializations, one better than the preceding. In all
three cases the active contour model, even after 1000 time iterations, barely recovers the main stem of the artery and
completely fails to account for the branches. Two prominent limitations of the snake model immediately come into
light. The first is the dependence of final result on the initial configuration. This is due to the existence of multiple
local minima in the (nonconvex) energy functional which the numerical procedure explicitly minimizes. The second
feature is the inability of snake model to attain a stable shape with protrusions. Observe how in the third case
despite a good initialization (figure 4(g)), the snake "snaps" back into a relatively "bumpless" configuration in figure
4(h). This inadequacy stems from snake's arc-length (elasticity) and curvature (rigidity) minimizing nature. Snake
prefers regular shapes because shapes with protrusions have very high deformation energies. Now, we apply our level
set algorithm to reconstruct the same shape. After initialization in figure 5(a), the front is made to propagate in the
normal direction. It can be seen that in subsequent frames the front literally "flows" into the branches and finally
in 5(f) it completely reconstructs the complex tree structure. The advantages of our scheme are quite apparent
from this example. Since our front advancement process does not involve optimization of any quantity, the shape
reconstruction results we obtain are independent of initialization. In addition, a single instance of our shape model
"sprouts" branches and recovers all the connected components of a given shape. All calculations were carried out on
a 64 X 64 grid and the time step L2 is set to 0.001.

Secondly, in figure (6) we depict a situation when the front undergoes a topological transformation to reconstruct
the constituent shapes in an image. The image consists of three distinct shapes. Initial curve is placed in such a way

SPIE Vol. 2031 Geometric Methods in Computer Vision 11(1993) / 253



that it envelops all the objects. The front is then advanced in the direction of negative normal. The level set { = O}
first wraps itself tightly around the objects (see figures 6(b) & 6(c)) and subsequently splits into four separate closed
curves (figure 6(d)). While the first three closed segments of {t,b = O} recover the three distinct shapes, the one in
the middle (see figure 6(d)), since it does not enclose any object, eventually disappears. Figure 6(e) shows the final
result. Again it should be noted that a single instance of our shape model dynamically splits inio three insLances to
represent each object. In figure 6(f), we also plot the level sets {b = C = 0.05, to verify that the image-based
speed term does not violate property 1. The function b was discretized on a 64 X 64 grid and zt is set to 0.001.

5 Concluding remarks
In this paper we presented a novel shape modeling scheme. Our approach while retaining the desirable features of
existing methods for shape modeling, overcomes most of their deficiencies. We adopt the level set techniques first
introduced in Osher & Sethian [12] to the problem of shape recovery. With this approach, complex shapes can be
reconstructed. Unlike the variational formulations for shape reconstruction which rely on energy minimization, the
final result in our method is completely independent of the initial state. This is a very desirable feature to have,
specially if the problem is to recover object shapes from noisy images. Moreover, our scheme makes no a priori
assumption about the object's topology. Other salient features of our shape modeling scheme include its ability to
split and merge freely without any additional bookkeeping during the evolutionary process and its easy extendibility
to higher dimensions. In the context of 2D shape reconstruction, we force our front to come to a stop in the
neighborhood of object boundaries by synthesizing a negative speed term from noisy images. It is easy to envision
a similar scheme to reconstruct the surface structures of 3D objects from 3D medical image data. The equations
of motion governing our evolutionary system resemble an initial valued Hamilton-Jacobi equation with a parabolic
right-hand side and are amenable to stable entropy-satisfying numerical solution schemes. Thus, the result is a very
general shape modeling algorithm which we believe will find numerous applications in the areas of computer vision
and computer graphics.
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(g) Initialization 3

(1) 1000 iterations

Figure 4: An unsuccessful attempt to reconstruct a complex shape with "significant" protrusions using an active
contour model. Three different (poor) results are shown in parts (c), (f), & (i) corresponding to three distinct
initializations in parts (a), (d), & (g) respectively.
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(a) Initialization 1 (b) 500 iterations (c) 1000 iterations

(d) Initialization 2 (e) 500 iterations

(h) 500 iterations (i) 1000 iterations



Figure 5: Reconstruction of a shape with "significant" protrusions:
done on a 64 X 64 grid with a time step zt = 0.001.

an arterial tree structure. Computation was

SPIE Vol. 2031 Geometric Methods in Computer Vision 11(1993) / 257

(a) Initialization (b) After 60 iterations

(c) After 123 iterations (d) After 200 iterations

(e) After 275 iterations (f) After 391 iterations



(a) Initialization

(c) After 100 iterations (d) After 125 iterations

(e) After 140 iterations (f) Other level sets

Figure 6: Topological split: a single instance of the shape model splits into three instances to reconstruct the
individual shapes. Computation was done on a 64 X 64 mesh with a time step L!t = 0.001.
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(b) After 60 iterations

I)


