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Abstract

We present a fast, general computational technique for computing the phase-space solution of static Hamilton-
Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive “Escape
Equations” which are static, time-independent Fulerian PDEs. They represent all arrivals to the given boundary
from all possible starting configurations. The solution is numerically constructed through a ‘one-pass’ formulation,
building on ideas from semi-Lagrangian methods, Fast Marching Methods, and Ordered Upwind Methods. To
compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computa-
tional order O(Nlog N), where N is the total number of points in the computational phase-space domain; any
particular set of boundary conditions is then extracted through rapid post-processing. Suggestions are made for
speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an
application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to
the Eikonal equation.

1 Introduction

We present a fast, general computational technique for computing phase space solutions of static Hamilton-Jacobi
equations. We derive a set of “Escape equations” which are static, time-independent Eulerian partial differential
equations which represent all arrivals to the given boundary from all possible starting configurations. Following the
strategy proposed in [15] we solve these Escape Equations by systematically constructing space marching the solution
in increasing order, using a ‘one-pass’ formulation. This means that the solution at each point in the computational
mesh is computed only & times, where k& does not depend on the number of points in the mesh. The algorithm
combines ideas of semi-Lagrangian methods, Fast Marching Methods and Ordered Upwind Methods [28, 31]. The
method is unconditionally stable, with no CFL time-step restriction, and can be made higher order accurate. We
demonstrate the applicability of this technique by computing multiple arrivals to the Eikonal equation in a variety
of settings.

The methods presented here are efficient. The Escape Equations are posed time-independent Eulerian equations
in phase space, whose solution gives the exit time and location for all possible trajectories, starting from all interior
points, initialized in all directions. The computational speed depends on whether one wants to in fact obtain results
for all possible boundary conditions, or in fact only for a particular subset of possibilities.

To illustrate, consider a two-dimensional problem consisting of a region and its boundary; we discretize the region
with a square mesh with N points on each side. Thus, the physical space corresponding to the interior consists of
N? points, with N points on the boundary (we ignore constants).

*This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department
of Energy, under Contract Number DE-AC03-765SF00098, and the Office of Naval Research under under grant FDN00014-96-1-0381.



In the most general form of boundary conditions, such as those which occur in applications such as tomography
and seismic migration, one needs to solve multiple boundary problems with H(z, Vu) = 0 and the point-source
boundary condition u(z) = 0 for z = s with a set of sources s distributed on the surface of the observational domain.
In this case, the solutions span three-dimensional space, composed of z and s. Because of our use of a fast ordering
scheme, we can find all possible exit times and locations for all possible trajectories in O(N3log N). One can use the
output of such computation either for extracting multiple arrivals for a particular set of sources or directly, as in the
method of angle-gather migration [36, 5]. In constrast with our approach, we note that to obtain the exit time and
position from each of the N? interior grid points using a Lagrangian approach would require integration from each
of N3 starting values; a typical integration would require N steps, giving an operation count of N*. Analogously,
for a problem in three-dimensional physical space with N points on each edge of a computational cube in physical
space, we find all possible exit trajectories for all possible boundary conditions in O(N? log N).

In the case where particular boundary conditions are known in advance, computational speedup is possible; this
is discussed after the algorithm is introduced.

2 Formulation of Problem

Consider the static Hamilton-Jacobi equation H(z,Vu) = 0. A nonlinear Hamiltonian H may not have a unique
solution, even with smooth boundary data and smooth H. A particular, viscosity-type solution can be selected
[9, 10], corresponding to the earliest arrival from the given boundary. Fast algorithms for computing these viscosity-
satisfying first arrival solutions have been developed in recent years, in particular, the Fast Marching Method,
developed by Sethian [28] for computing the solution to the Eikonal equation [28] and “Ordered Upwind Methods
(OUM)”, introduced by Sethian and Vladimirksy [31, 32] for computing the solution of convex static Hamilton-Jacobi
equations which arise in anisotropic front propagation and optimal control. These first arrivals are of considerable
importance in a large collection of problems such as computing seismic travel times [29]; see [30, 35] for reviews.

However, later arrivals may carry additional valuable information, and it is often desirable to compute all possible
solutions. For example, in geophysical simulations, first arrivals may not correspond to the most energetic arrivals,
and this can cause problems in seismic imaging [1, 17].

There are two approaches to computing these multiple arrivals.

e The Lagrangian (ray tracing) approach [6, 26] and its variations [27, 37]. Here, the phase space characteristic
equations are integrated, often from a source point, resulting in a Lagrangian structure which fans out over the
domain. This is a valuable and common approach, however it can face difficulties either in low ray density zones
where there are very few rays or near caustics where rays cross; in addition, the use of irregular computational
grid is often inconvenient.

e A different approach is to work with an Eulerian description of the problem, in either the physical domain or
phase space, and attempt to extract multiple arrivals. In recent years, this has led to many fascinating and
clever Eulerian PDE-based approaches to computing multiple arrivals, including slowness matching algorithms
[34], dynamic surface extension algorithms [33] and its modification [25], segment projection methods [13], and
“big-ray tracing” [2]; see also [3]. We note that the regularity of the phase space has been utilized previously
in theoretical studies on the asymptotic wave propagation [24, 12].

As an example, consider a one-dimensional closed curve bounding a region in the plane, and suppose one has a
collection of sources located along the entire boundary; the goal is to consider a front propagating inwards from this
boundary. The Lagrangian approach is to work in phase space and discretize this boundary into a set of marker points,
whose motion is determined by solving the characteristic equations. The curve then evolves in three-dimensional
phase space; and the projection of the curve back into two dimensional physical space produces the multiple arrivals.
An Eulerian formulation of this same approach was pursued by Engquist, Runborg and Tornberg [13] by using the
Vlasov equation to describe the motion of this curve; in their Segment Projection Method, the curve moving in
three-dimensional phase space is viewed from several different coordinate systems so that it always remains locally
a graph.



The approach presented in this paper computes the solution in phase space, but does so in a reduced, time-
independent Eulerian partial differential equations framework. In contrast to other approaches, we can efficiently
compute the exit time and location for all possible trajectories, starting from all interior points, initialized in all
directions; extraction of particular boundary conditions comes as post-processing. Alternatively, if one is given a
particular set of boundary conditions corresponding to a placement of a sources in advance, this can be incorporated
into ordering process and the resulting solution may be computed more rapidly.

3 Formulation of Equations

3.1 Lagrangian Formulation of Phase-Space Solution
We begin with the static Hamilton-Jacobi equation:
H(z,Vu)=0. (1)

and write the well-known characteristic equations in phase space (2, p), where p corresponds to Vu (see, for example,
[14]). Let o is a parameter varying along the trajectory. Differentiating Eqn. 1 with respect to o, we obtain

dx dp

4V, H - — =0, 2
do TV do )
where the Hamiltonian H is assumed to be twice continuously differentiable. This equation is satisfied when the
characteristics obey

VH -

dz dp .
T = VyH; o = —V:H (3)

Differentiating the function u(z(o)), we obtain an additional equation for transporting the function u along the
characteristics: J J
u x
E:VU-EZP-VPH (4)
The system given by Eqns. 3,4 can be initialized at ¢ = 0: 2(0) = zg, p(0) = po, u(0) = 0.

In the Lagrangian approach, one computes the solution of the point-source Hamilton problem by starting at a
source point zg, taking through different initial values of py and filling the z space with trajectories that follow
Eqns. 3. The strength of this approach is in the fact that the solution is uniquely defined in the phase space by
following individual trajectories. However, when the trajectories collide, the solution in the physical space becomes

multi-valued and interpolating it onto a regular z grid presents a difficult computational problem [22].

3.2 Liouville Formulation of Phase-Space Solution

We now convert the phase space approach into a set of Liouville equations; these have been used extensively in
different applications by Chorin, Hald, and Kuperfman [7, 8]. Eqns. 3,4 form a system of coupled ordinary differential
equations, starting with a particular set of initial conditions. The Liouville equation is a partial differential equation
for the same solution with the differentiation performed with respect to the initial conditions; it describes the local
change in the solution in response to changes in the initial conditions.

To simplify notation, let us denote the phase-space vector (z,p), by y, the right-hand side of system given in
Eqn. 3 by vector function R(y), and the right-hand side of Eqn. 4 by the function r(y). In this notation, the
Hamilton-Jacobi system takes the form

du(yo, o)

8y(y0: U) — R(y); T = 'P(y)v (5)

0o

and is initialized at 0 = 0 as y = yo and u = 0.}

IThe full y space has 2n variables. However, by using the Hamilton equation H(y) = 0 as an additional constraint, we can often
reduce the Hamilton-Jacobi system (5) to 2n — 1 equations of the same form. Therefore, we can assume that y has 2n — 1 independent
components.



In the Appendix, we show that the solution of system (5) as a function of both the trajectory parameter o and
the initial condition yq satisfies the Liouville partial differential equations

9y(yo, o)
———==VuyR 6
o oy R(yo) (6)
and the transported function u satisfies the analogous equation
Ou(yo, o
%’72) = Vou R(yo) + r(30) , (7)

where Vi denotes the gradient with respect to yg. These are the Liouville equations.

3.3 Formulation of the Stationary “Escape” Equations

Assume that there exists a closed boundary 9D in the y space that is crossed by every characteristic trajectory that
originates in yo € D. This defines for every yo the function ¢ = &(yo) of the first crossing of the corresponding
characteristic with 9D.

Let us now introduce a differentiable function T'(y) that identifies the boundary, that is, I'(y) = 0. In particular,
we then have that T (y(yo, o (y0)) = 0. We can differentiate with respect to the initial condition yy to obtain

I (y) [Voy + g—i}_ Voﬁ] =0. (8)
Multiplying equation (8) by R(yo) and using the Liouville equation (6), we obtain
v 2 (1495 - Run)) = 0. )
Eqn. 9 will be satisfied if the function &(yo) satisfies the differential equation
14 Vo5 R(yo) = 0. (10)

We can also define the escape location ¥(yo) = ¥ (yo, 7(y0)). Differentiating with respect to yo yields
~ d ~
Voy:V0y+—yV00 . (11)
0o

Multiplying both sides of equation (11) by R(yo) and applying equations (6) and (10) leads to the homogeneous
differential equation

R By o .
Vo R(y) = Voy Rlyo) + 5 V& - R(yo) = 0. (12)

Using a similar argument and equations (7) and (10) the escape value %(yo) = u (y0,0(yo)) can be shown to satisfy
the equation

Vot - R(y()) + T(yo) =0. (13)
Eqns. 12-13 have the following boundary conditions: y(yo) = yo and @(yo) = 0 if yg lies on 9D, and the corresponding
characteristic flows out of D.

These are the static “escape” equations (12-13) that we will numerically approximate to solve the multiple arrival
problem. We note that the functions @(yo), ¥(yo), and &(yo) provide values for u, y, and o respectively obtained at
the boundary for a trajectory starting at the point in phase space yg. The equations that describe these functions
are linear and possess unique solutions for given boundary conditions.

Escape Equations

14+ Voo - R(yo)
Voy R(yo)
Vot - R(yo) + (o)

0
0
0

(14)



To summarize, rather than compute in physical space z, we have transformed the problem to phase-space y =
(z,p). However, there are three distinct differences between our approach and the typical characteristic ray-tracing
approach to computing in phase space:

e First, we have transformed the problem into a linear, time-independent partial differential equations with the
differentiation with respect to the initial conditions. In the next section, we present an unconditionally stable,
fast technique for computing the solution to these equations.

e Second, and equally importantly, the solution to these equations can be constructed without regards to any
particular boundary conditions and/or placement of sources. Unlike a ray-tracing approach, which starts with
a given source (or sources) on the boundary, and must recompute the entire solution each time these sources are
changed, in this formulation this may be done in postprocessing once the essential solution has been obtained.
As an example, once the {U(yo), ¥(¥0), 7 (yo)} field has been computed, we are then free to extract first arrivals,
later arrivals, arrivals at a particular source on the boundary, etc.

e Third, if one has a particular known set of source boundary conditions in advance, this may be incorporated
into the formulation to limit the parts of phase space which can contain the solution set, thus reducing the
compute time.

3.4 Example: The Eikonal equation
As an example, which will serve as our computational test, the Hamiltonian for the Eikonal equation can be written

in the form

1 1
H(z,p) = §p~p—§n2(m):0, (15)

where n(z) corresponds to the wave slowness (refraction index). In accordance with equations 3, the functions R(y)
and r(y) are specified in this case to be

— V,H _ p

Rly) = < —V:H ) - < n(z)Vn ) (16)
rly) = p-VyH=p p=niz). (17)

Correspondingly, the escape equations transform to
quiapo + n(Io) vpogvl‘on = 0 (18)
Vrnﬂ~p0+n(m0)vp0ﬁ~vxun+n2(ajo) =0. (19)

3.4.1 Constant slowness

In the case when the refraction index n does not depend on the position, the escape equations take a simpler form
qugpo = 0; vl‘ua “po + 77,2 =0. (20)

For a more specific example, let us consider the case of the region D defined by z > 0 and p, < 0, where z is the
first component of zy, and p, is the first component of pg. The escape surface z = 0 corresponds to the Earth surface
in Geophysics, while the condition p, < 0 selects the up-going waves. Eqn. 20 is then supplied with the boundary
conditions

glz:0 = Yo, a|z:0 =0. (21)
The analytical solution of the problem 20-21 then takes the form z =0, z; = z; — I’:—’ z,p=po, and u = —”pzz,

where z; 1s the ith component of g with ¢ > 1, and p; is the corresponding component of pg.



3.4.2 One-dimensional slowness

Another specific example of the eikonal equation 1s the case of a one-dimensional slowness function. If the boundary
conditions take the form of Eqn.21, while the slowness n(z) only depends on the first component of z, then Eqn. 19
simplifies to

g—zpz +n/(2) n(z) 36;2 +n?(2)=0. (22)
Letting pp = \/n2(z) — pZ, Eqn. 22 becomes
on
08 e = g4t = 0 23
whose analytical solution is
2 5 d
a= [@d (24)
Y n*(&) — P

4
Using similar transformations, the escape equations (18) resolve to z = 0, z; = :L‘Z'—I—J \/%%Pi’ p. = —/n?*(0) — p3,
and p; = p;.
There formulas are well-known in the theory of Lagrangian ray tracing in one-dimensional media [6]. We obtained
them here as the solution of the escape PDEs for the Eulerian formulation of the same problem.

3.4.3 Amplitude computation

A common use of the eikonal equation is for describing the wave propagation in the high-frequency asymptotics [6].
Here, the eikonal equation is often supplemented with the amplitude transport equation for computing not only the
wavefront position but also the corresponding wave amplitude.

In the high-frequency asymptotics, the leading order amplitude contribution comes from the geometrical spread-
ing: a measure of the ray tube focusing effect. We can extract the geometrical spreading information directly from
the phase-space solution of the escape PDEs. Indeed, according to the known formula [18, 19], the squared amplitude
is inversely proportional to

A7 ~ |det [vpl fi]pz ﬁz| ) (25)

where p, and p, are the components of pg and p, normal to the observational boundary, and p; and Z; correspond
to the remaining components.

In the case of multiple arrivals, we can use the simple access to the amplitude information, provided by formula (25)
to select the most energetic arrival from all the branches of the solution.

4 Numerical Algorithm

The numerical algorithm proposed in [15] is to solve Eqns. 18,19 for a numerical computations of traveltimes on a
fixed z, z grid.? Although both #@(yo) and y(yo) are strictly single-valued, we later can extract from them the possibly
multi-valued traveltimes from every grid point z, z to a point on the boundary.

4.1 The Geometry of the Solution

We illustrate the geometry behind the algorithm through an instructive example. Consider a square, and suppose
we wish to find the time u(z, z, ) at which a ray leaving the initial point (z, z) inside the square, initially moving
in direction #, hits the boundary. We assume that the slowness field n(z,z) is given. First, note that the set

2For ease of explanation in this section, we switch to the notation in which a physical domain is given by z, z, and we let 8 be the
angle between the vertical and the vector p.



u(z,z,0) =T, drawn in z, z, § space, gives the set of all initial positions and directions which reach the boundary of
the square at time 7. By the uniqueness of characteristics, the set of all points paramterized by 7" and given by

U(T)={z,2,0 | t(z,2,0)=T)} (26)

sweep out the solution space. In Figure 1, we show the solution surfaces u(z, z, §) for the collapsing square.

L T(x4,24,0)

Figure 1: Geometry of Solution

We begin by noting that Eqn. 19 is a linear equation for the arrival field u and thus we know the characteristic
direction at every point of the phase space z,p. Thus, we can develop a one-pass algorithm designed in the spirit
of of Fast Marching Methods [28] and Ordered Upwind Methods [31]; we march the solution surface outwards from
the boundary, using the characteristic direction to update grid values. This imposes a natural ordering on the grid
points: to update a grid value, the algorithm traces the corresponding characteristic until its [first] intersection with
a cell, for which all of the grid values have been already computed. We note that, due to the linearity of Eqns 14,
the characteristic directions are known in advance, and the grid-point ordering is considerably easier to achieve than
in the case of the non-linear optimal control PDEs discussed in [31].

We note that there is considerable previous work on using characteristics for transport equations; see [23] for an
early example and [20] for a recent parallel implementation.

4.2 Algorithm

Consider a discretization of phase space; in two space dimensions, this can be written as U;;x, where the indices %, j, k
run over z, z, and p respectively. Following the terminology of Fast Marching Methods [28] and Ordered Upwind
Methods [31, 32], the nodes are divided into three classes: Far (no information about the correct value of u;; is
known), Accepted (the correct value of U;;x has been computed), and Considered (adjacent to Accepted), for which
Uj;jx has already been computed, but may be corrected by a later computation.

We note that standing at any grid point, one can compute the value u;;; using a ray tracing method, which
traces back along the characteristic to the initial boundary If we were to use this algorithm to compute u;;; at each
grid point, we would have a cell-based Lagrangian ray-trace method. Instead, we use this technique to build the
hypersurfaces incrementally in an outwards fashion.

Start with all nodes in Far. Put the boundary nodes in Accepted, and put all nodes adjacent to Accepted in
Considered. Each Considered node is given a value by using a local cell characteristic method. If the characteristic
at that node does not point back to the boundary, we assign it a large value. Then the algorithm proceeds as follows
(see Figure 2).
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Figure 2: Point A has just been Accepted: Considered point B is updated by tracing characteristic back to point C'
and interpolating from Accepted values.

Algorithm
1. Take the C'onsidered node with the smallest value for 7;;; and make it accepted.
2. Find the octant that the characteristic direction going through that grid point points toward

3. For each neighboring grid point in that octant which is not Accepted, use the discrete cell characteristic update
to compute a (possibly new) value for u;;i as follows (and convert any such point which is Far to Considered):
Trace backwards along the characteristic to intersect a cell face:

a) If all four values of that cell face are Accepted, use the interpolated value of %;; at the intersection point,
J
plus the update of u;;; along the drawn characteristic to produce the tentative value at ijk.

(b) TIf no points on that cell face are Accepted, do not update the value

(c) If more than one but less than four values of that cell face are Accepted, continue tracing along the
characteristic until either (a) or (b) situation is encountered.

(d) Compute ¥;; in parallel with @;j;p.
4. Loop to (1) until all points are Accepted.

For higher accuracy, more than four points are used if available as Accepted. Any ODE solver (Runge-Kutta,
multistep, etc.) can be employed for local characteristic tracing [6]. For efficiency, we use the method of local
parabolic ray tracing, based on Taylor expansion of the trajectory near the starting point. The parabolic rays are
continued until they hit the cell face, which requires a solution of a simple quadratic equation. Analogous cell-based
ray tracing methods were developed in different context in [4, 21].

4.3 Boundary Conditions, Post-Processing, and Timings
4.3.1 Calculating all Trajectories

Suppose we wish to find the exit time and position for all possible trajectories in the interior. For sake of exposition,
we consider the constant slowness Eikonal equation for a two-dimensional square region with N points on each side,
yielding N2 points in the interior. Discretizing over N possible phase angles, this yields a computational phase space
domain of N3 points. On the boundary of the square, the initial values of both & and % for all trajectories that
point out of the domain are set to co. Thus, we ordered upwind march through all of phase space, resulting in an
algorithm of complexity O(N3). We store the dependency tree as the solution is computed.

We can then perform efficient post-processing to extract the results for any particular collection of sources; given
any source, the dependence tree from that source determines the subset of phase space which brackets the trajectories
that reach that source, and the traceback has a lower order operation count. A coarse-fine grid approach adds to the
efficiency.



4.3.2 Calculating Particular Trajectories

Suppose we know in advance that we wish to find the exit time and position for trajectories which reach a particular
subset of the boundary. As an example, suppose we view the boundary as the initial position of a curve propagating
inwards. As boundary conditions, we can then set the initial values of both & and % to oo for all trajectories which
do not start orthogonal to this boundary (since the angles are discretized, we bracket the orthogonal direction). This
may limit the part of phase space that contains the solution.

4.4 Timings

Finally, the timings are as follows. Consider a constant slowness field; in this case the characteristic backtrace stops
in one cell. Using a Pentinum III, on a 50% mesh in three-dimensional phase space, the entire calculation takes
2.7 seconds; on 1003, 20.5 seconds, and on a 100% mesh, 150 seconds. This verifies the O(N log N) nature of the
algorithm, when the backtrace operation is counted as one unit operation.

Further details about the algorithm may be found in [16].

5 Results

5.1 Computation of Escape Solution

We begin in Figure 3 with a calculation of the full phase-space arrival field in a rectangular region. The slowness field
corresponds to a Gaussian distribution around the center with peak slower than the surroundings (see Figure 5). On
the upper left, we show the arrival position Z along the top wall (z = 0) of arrivals starting at a fixed slice z = 0.9
through the phase-space z,z,p cube. The vertical axis is the starting value p, (actually, sin @), and the horizontal
axis is the starting value z,; the color scale (shown in the bar on the right) is the arrival position Z. On the upper
right, we show the value of the arrival time u.

On the lower left, again limited to a fixed z slice, we show the z (horizontal axis) and p positions (vertical axis) of
all trajectories that exit at the point z = .5,z = 0. Finally, in the figure on the lower right, again for a fixed z slice,
we show the travel times u required to reach the source exit point z = .5,z = 0, plotted against the physical space
z (horizontal axis). Here, one sees the multiple arrival structure as expected, bending around the central slowness
field and crossing over itself. To verify the accuracy of our methods, in Figure 3 we show the traveltime computed
from Runge-Kutta Lagrangian ray tracing with a fine step, which should emulate the exact solution.

I
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Figure 3: Computation of Escape Solutions



5.2 Extracting Multiple Arrivals

As a different and perhaps more geometrically familiar example, in Figure 4 we show the equiarrivals curves, which
are the set of all points in physical space whose trajectories reach the boundary normal to the source distribution
at the same time. In this case, the source distribution i1s the boundary of the entire square, thus we produce the
non-viscosity multiply-sheeted solution of a square propagating inward with unit speed. Again, we stress that the
calculation need not be repeated to obtain equiarrivals from a different set of sources.

In this case, the multiple arrivals are extracted as follows: the front emanating from the boundary passes through
the point z,, z, at time & = Tepiy if Tepip is a critical point of T'(z,, 2o, p), where differentiation is taken with respect
to p. Thus, we locate the critical points of u with respect to the variable p to determine the arrival front in the
domain space.

Figure 4: Multiple Arrivals from Square

5.3 Extracting Most Energetic Arrivals

As the last example, we show how to compute the most energetic arrival of the Eikonal equation from among all the
potential arrivals using the amplitude computation discussed earlier. First, in Figure 5, the left pair shows all the
arrivals starting from a source at the center of the top wall, together with the slowness field on the right (darker is
slower). The right pair shows the first arrival and on the amplitude of the displayed arrival (the lighter the tone, the
more amplitude).

Slovaens

All arrivals First arrival

Figure 5: All vs. First arrivals

In contrast, in Figure 6 we show the most energetic arrival and the corresponding amplitude field.
More details about the numerical algorithms and further calculations may be found in [16].
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Figure 6: Most Energetic Arrival

6 Appendix: Liouville PDE

We wish to derive Eqns. 6, 7 3. First, we will consider the function

F(un, ) = 32 = Yoy Riun) = R(s) — Yoy Rlyo) 20

and prove that it is identically zero.
We note that at o = 0, y = yg (the initial condition), Voy = 1, and therefore F(yo,0) = 0. Next, differentiating
F with respect to o, we obtain

oF ,, L Oy 0
Oo

Y)F(yo,0) (28)

As a function that satisfies a linear differential equation (28) and has the zero initial condition, F(yo, o) must be
zero for all o, thus F'(yo, o) = 0. According to the definition (27), this is equivalent to (6).
Equation (7) can be proved in an analogous way. Consider the function

ou

55~ Vou - R(yo) = r(yo) = r(y) = r(yo) = Vou - R(yo) . (29)

G(yo,0) =
At 0 =0, G(yo,0) is zero due to the zero initial conditions on u.
Additionally, at any o,

= M) v P Rw)
= r'(y) - R(y) — Vor(y) - R(yo)
= r'(y) - [R(y) — Voy R(yo)]

= (y) - F(yo,0) =0,

Hence, G(yo, o) is identically equal to zero, which is equivalent to equation (7).

Finally, we point out that solutions of the Liouville equations are transported along the same characteristics as
solutions of the Hamilton Eqn. 1, only with the trajectory parameter running backward. This reflects the reciprocity
of the Hamiltonian system: initial conditions are restored by backward ray tracing.

Acknowledgements: We thank A. Chorin, O. Hald, M. Popovici, J. Rausch, W. Symes and A. Vladimirsky for

valuable discussions concerning Liouville equations and multiple arrivals.

30. Hald developed this derivation of the Liouville equation, and we follow it closely.
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