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Abstract

A variety of numerical techniques are available for tracking moving interfaces. In this re-
view, we concentrate on techniques that result from the link between the partial differential
equations that describe moving interfaces and numerical schemes designed for approximating
the solutions to hyperbolic conservation laws. This link gives rise to computational techniques
for tracking moving interfaces in two and three space dimensions under complex speed laws. We
discuss the evolution of these techniques, the fundamental numerical approximations involved,
implementation details, and applications. In particular, we review some work on two aspects of
materials sciences: semiconductor process simulations and optimal structural topology design.

1 Overview and Introduction

A large number of computational problems and physical phenomena involve the motion of interfaces
separating two or more regions. These can include problems in such areas as fluid mechanics,
combustion, materials science, meteorology, and computer vision. In these problems, challenging
issues often involve:

e Interfaces that change topology, break, and merge as they move.
e Formation of sharp corners, cusps, and singularities.

e Dependence of the interface motion on delicate geometric quantities such as curvature and
normal direction.

e Complexities in three dimensions and higher.

e Subtle feedback between the physics and chemistry off the interface and the position/motion
of the front itself.

One approach to formulating, modeling, and building computational techniques for some aspects
of these problems is provided by level set methods, introduced by Osher and Sethian [52]. These
techniques work by embedding the propagating interface as the zero level set of a time-dependent,
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implicit function, and then solving the resulting equations of motion in a fixed grid Eulerian setting.
They have been used with considerable success in a wide collection of settings, including fluid
mechanics, crystal growth, combustion, medical imaging, A general overview of the theory, numerical
approximation and range of applications may be found in [75].

Level set methods rely in part on the theory of curve and surface evolution given in [63] and
on the link between front propagation and hyperbolic conservation laws discussed in [64]. They
recast interface motion as a time-dependent Eulerian initial value partial differential equation, and
rely on viscosity solutions to the appropriate differential equations to update the position of the
front, using an interface velocity that is derived from the relevant physics both on and off the
interface. These viscosity solutions are obtained by exploiting schemes from the numerical solution
of hyperbolic conservation laws. Level set methods are specifically designed for problems involving
topological change, dependence on curvature, formation of singularities, and host of other issues that
often appear in interface propagation techniques. Over the past few years, various aspects of these
techniques have been refined to the point where a general computational approach to arbitrary front
propagation problems can be developed. This general computational approach allows one to track
the motion of very complex interfaces, with significant and delicate coupling between the relevant
physics and the interface motion.

Level set methods cast interface propagation in terms of a time-dependent initial value problem.
More recently, a set of numerical techniques, known as Fast Marching Methods [69], have been
developed for solving the Eikonal equation, which is a boundary value partial differential equation.
These techniques rely on a marriage between the numerical technology for computing the solution
to hyperbolic conservation laws and the causality relationships inherent in finite difference upwind
schemes. Fast Marching Methods are Dijkstra-type methods, in that they are closely connected to
Dijkstra’s well-known network path algorithms [26], however they approximate the solution to the
underlying Eikonal equation in a consistent manner. While the Eikonal equation itself describes
some front propagation problems, the important link we shall emphasize in this review is that Fast
Marching Methods provide a general, efficient, and accurate way to actually implement some aspects
of level set methods.

Both sets of techniques, that is, level set methods and Fast Marching methods, require an adaptive
methodology to obtain computational efficiency. In the case of level set methods, this leads to the
Narrow Band level set method introduced by Adalsteinsson and Sethian in [1]. In the case of Fast
Marching methods, adaptivity and speed stem from the causality relationship and the use of heap
data structures.

In this review, we discuss some aspects of the evolution and implementation of these techniques.
We give pointers to some of the many applications, and then focus on two in particular. First, we
discuss interface propagation techniques for process simulation in semiconductor manufacturing, and
focus on etching and deposition simulations. The goal in these simulations is to follow the profile
evolution during the various stages of building a silicon chip. The evolving profile depends on such
factors as material-dependent etch and deposition rates, visibility and masking, complex flux laws,
and integral equations arising from re-emission and re-deposition processes. Here, we follow closely
the work of Adalsteinsson and Sethian, [2, 3, 4]. Second, we discuss the application of level set
techniques to optimal structural topology design. Here, the goal is to design materials which can
carry given loads and minimize the amount of material involved.



I. Formulations of Moving Interfaces, Hyperbolic
Equations, and Connections with Shock Schemes

2 Characterizations of Moving Interfaces

2.1 Mathematical Formulations

There are at least three ways to characterize a moving interface, and none of them are new. Interest-
ingly, each comes from its own branch of mathematics. For simplicity, we discuss the issues in two
space dimensions, that is, a one-dimensional interface which is a simple closed curve I'(¢) moving
in two dimensions. Assume that a given velocity field @ = (u, v) transports the interface. All three
constructions carry over to three dimensions.

e The Geometric View: Suppose one parameterizes the interface, that is, I'(t) = x(s, t), y(s, t).
Then one can write (see [75]) the equations of motion in terms of individual components
Z=(z,y) as

— Ys
Ty = U ((I2+y2)1/2) 3

(1)
w= v (Gmm).

This is a differential geometry view; the underlying fixed coordinate system has been aban-
doned, and the motion is characterized by differentiating with respect to the parameterization
variable s.

e The Set Theoretic View: Consider the characteristic function x(z,y,t), where y is one
inside the interface I' and zero otherwise. Then one can write the motion of the characteristic
function as

Xt =1u-Vx (2)

In this view, all the points inside the set (that is, where the characteristic function is unity)
are transported under the velocity field.

e The Analysis View: Consider the implicit function ¢ : R? x [0, 00) — R, defined so that the
zero level set ¢ = 0 corresponds to the evolving front I'(¢). Then the equation for the evolution
of this implicit function corresponding to the motion of the interface is given by

¢t +u-Vo=0 (3)

2.2 Discretizations

Each of these views is perfectly reasonable, and each has spawned its own numerical methodology
to discretize the equations of motion. Marker particle methods, also known as string methods and
nodal methods, discretize the geometric view, and take a finite number of points to divide up the
parameterization space S. Volume-of-fluid methods, also known as cell methods and volume fraction
methods, use a fixed underlying grid and discretize the characteristic function, filling each cell with a
number that reflects the amount of characteristic function contained in that cell. Level set methods
approximate the partial differential equation for the time-dependent implicit function ¢ through a
discretization of the evolution operators on a fixed grid.

These discretizations contain keys to both the virtues and the drawbacks of the various ap-
proaches.



e The geometric/marker particle view keeps the definition of a front sharp. It requires special
attention when marker particles collide; these can create corners and cusps, as well as changes
in topology. These techniques often go by names such as contour surgery, reconnection al-
gorithms, etc.; at their core, they reflect user-based decisions about the level of resolution.
In addition, this discrete parameterized characterization of the interface can be intricate for
two-dimensional surfaces moving in three dimensions.

e The characteristic/volume-of-fluid approach straightforwardly applies in multiple dimensions,
and handles topological merger easily, since this results from Boolean operations on sets. It
requires some method of differentiating the characteristic function y; since by definition this
object is discontinuous, one must devise an approximation Vy in order to perform the evolution
update. This is typically done through algorithms which locally reconstruct the front from the
volume or cell fractions, and then use this reconstruction to build the appropriate transport
terms.

e The implicit/level set approach extends to multiple dimensions and handles topological changes
easily. In addition, because the function ¢ is defined everywhere and smooth in many places,
calculation of gradients in the transport term, as well as geometric quantities such as nor-
mal derivatives and curvature is straightforward. It requires a way of delineating the actual
interface, since its location does not necessarily correspond to the discretization grid points.

2.3 Implicit Formulations of Interface Motion

In order to take this implicit approach, there are three additional issues.

e First, an appropriate theory and strategy must be chosen in order to select the correct weak
solution once the underlying smoothness is lost; this is provided by the work on the evolution
of curves and surfaces and the link between hyperbolic conservation laws and propagation
equations, see Sethian [62, 63, 64]; leading up to the introduction of level set methods by
Osher and Sethian in [52].

e Second, the Osher-Sethian level set technique which discretizes the above requires an additional
space dimension to carry the embedding, and hence is computationally inefficient for many
problems. This is rectified through adaptive Narrow Band Method given by Adalsteinsson and
Sethian in [1].

e Third, since both the level set function and the velocity are now defined away from the orig-
inal interface, appropriate extensions of these values must be constructed. These extension
velocities have been explicitly constructed for a variety of specific problems, see, for exam-
ple, [4, 16, 17, 84, 47, 58, 79, 91]. One general technique for doing so for arbitrary physics
and chemistry problems is given by Adalsteinsson and Sethian in [5] through the use of Fast
Marching Methods to solve an associated equation which constructs these extensions.

2.4 Interrelations Between Techniques

It is important to state at the outset that each of the above techniques has evolved to the point
where they provide practical, efficient, and accurate methodologies for computing a host of com-
putational problems involving moving interfaces. Marker particles methods have been around for
a very long time, and have been used in a collection of settings, including, for example, bubble
interactions and fluid instabilities (see, for example, Bunner and Tryggvasson [14], Esmaeeli and
Tryggvason [27, 28], and Glimm et al. [30, 31]). Volume-of-fluid techniques, starting with the



initial work of Noh and Woodward [51] (see also [33]), have been used to handle shock interac-
tions and fluid interfaces (see, for example, Puckett [55] and Popinet and Zaleski [54]). Level set
techniques have been applied to a large collection of problems; general reviews may be found in
[71, 72, 75, 74]; a popular review may be found in [73] and an introductory web page may be found
at www.math.berkeley.edu/~sethian/level set.html. In companion articles in this issue, a variety of
interface techniques and applications will be discussed in detail.

Finally, we note that the strict delineations between various approaches is not meant to imply
that the various techniques have not influenced each other. Modern level set methods often use a
temporary marker representation of the front to help build the extension velocities; volume-of-fluid
methods use differentiation ideas in level methods to help construct normal vectors and curvature
values; and marker models often use an underlying fixed grid to help with topological changes. Good
numerics is ultimately about getting things to work; the slavish and blind devotion to one approach
above all others is usually a sign of unfamiliarity with the range of troubles and challenges presented
by real applications.

3 Theory and Algorithms for Front Propagation

3.1 Propagating Fronts, Entropy Conditions, and Weak Solutions

In order to build up to the numerical implementation of the level set method introduced in [52], we
review some of the background work. One of the main difficulties in solving the front propagation
equations is that the solution need not be differentiable, even with arbitrarily smooth boundary
data. This non-differentiability is intimately connected to the notion of appropriate weak solutions.
The goal is to construct numerical techniques which naturally account for this non-differentiability
in the construction of accurate and efficient approximation schemes, and admit physically correct
non-smooth solutions.

In [62, 63], the equation for a curve propagating normal to itself with a given speed F' and which
remains a graph as it moves was studied. Consider the simple speed function F' = 1, and a front
which is an initial periodic cosine curve, as shown in Figure 1. In Figure 1(a), the front propagating
with speed F' = 1 passes through itself and becomes the double-valued swallowtail solution; this can
be seen by noting that for the case F' = 1, there is an exact solution to the equations of motion
(Equs. 1) given by the geometric view. This a perfectly reasonable view of the solution, however
one that does not lend itself to the view of the front as a boundary between two regions.

However, suppose the moving curve is regarded as an physical interface separating two regions.
From a geometrical argument, the front at time ¢ should consist of only the set of all points located a
distance t from the initial curve. Figure 1(b) shows this alternate weak solution. Roughly speaking,
one wants to remove the “tail” from the “swallowtail” (see [63].) One way to build this solution
is through a Huygens’ principle construction; the solution is developed by imagining wave fronts
emanating with unit speed from each point of the boundary data and the envelope of these wave
fronts always corresponds to the “first arrivals”. This will automatically produce the solution given
on the right in Figure 1. This is the approach taken in [63].

Another way to obtain the solution is through the notion of an entropy condition proposed in
[62, 63]; if one imagines the boundary curve as a source for a propagating flame, then the expanding
flame satisfies the requirement that once a point in the domain is ignited by the expanding front,
it stays burnt. This construction also yields the entropy-satisfying Huygens’ construction given in
Figure 1.

3.2 Curvature-Driven Limits and Viscous Hyperbolic Conservation Laws

Yet another way of obtaining this non-differentiable weak solution after the occurrence of the singu-
larity is through the limit of curvature-driven flows. This is what was done in [63, 64], and clearly
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Figure 1: Cosine curve propagating with unit speed.

indicates the link with hyperbolic conservation laws.

Following those discussions, consider now a speed function of the form F' = 1 — ex, where € is
a constant. The modifying effects of the term ex are profound, and in fact pave the way toward
constructing accurate numerical schemes that adhere to the correct entropy condition. Following
[63], a curvature evolution equation can be written as

Ki = €Rga + €K — K2, (4)

where the second derivative of the curvature x is taken with respect to arc length «. This is a
reaction-diffusion equation; the drive toward singularities due to the reaction term (ex® — k?) is
balanced by the smoothing effect of the diffusion term (ekqq).

Consider again the cosine front and the speed function F(k) = 1 — ek, € > 0. As the front moves,
the trough is sharpened by the negative reaction term (because x < 0 at such points) and smoothed
by the positive diffusion term. For € > 0, it can be shown that the moving front stays C*°, as shown
in Figure 2a. However, with € = 0, one has a pure reaction equation x; = —x?2, and the developing
corner can be seen in the exact solution k(s,t) = k(s,0)/(1 + tx(s,0)). This is singular in finite time
t if the initial curvature is anywhere negative. The entropy solution to this problem when F' =1 is
shown in Figure 2(b).

The limit of the curvature-driven flow as the curvature coefficient € vanishes produces the entropy-
limiting solution. This link can be seen more clearly by following the argument given in [64], which
we now repeat. Consider the initial front given by the graph of f(x), with f and f’ periodic on
[0,1], and suppose that the propagating front remains a graph for all time. Let 1) be the height of
the propagating function at time ¢, and thus t(x,0) = f(z). The tangent at (x,1) is (1,%,). The
change in height V in a unit time is related to the speed F' in the normal direction by

F 1 ’
and thus the equation of motion becomes
Yo = F(1+ ]! (6)
Use of the speed function F(k) = 1 — ex and the formula & = ), /(1 + 12)3/? yields
2\1/2 1/)9690
v — 1+ =g (7)
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Fig. 2(a) F =1—-0.25k Fig. 2(b) Entropy solution (F = 1.0)
Figure 2: Entropy solution is the limit of viscous solutions.
This is a partial differential equation with a first order time and space derivative on the left side, and

a second order term on the right. Differentiation of both sides of this equation yields an evolution
equation for the slope u = dv/dx of the propagating front, namely,

1/2]m_e[ s ] ®)

1+ u?

ug + [—(1 + u?

~—

Thus, as shown in [64], the derivative of the curvature-modified equation for the changing height
1 looks like some form of a viscous hyperbolic conservation law, with G(u) = —(1 4+ u?)*/? for the
propagating slope u. Hyperbolic conservation laws of this form have been studied in considerable
detail and our entropy condition is equivalent to the one for propagating shocks in hyperbolic
conservation laws.

3.3 Link to Numerical Schemes for Hyperbolic Conservation Laws

Given this connection, the next step in development of PDE-based interface advancement techniques
was to in fact exploit the considerable numerical technology for hyperbolic conservation laws to tackle
front propagation itself. In such problems, schemes are specifically designed to construct entropy-
satisfying limiting solutions and maintain sharp discontinuities wherever possible; these goals are
required to keep fluid variables such as pressure from oscillating, and to make sure that discontinuities
are not smeared out. This is equally important in the tracking of interfaces, in which one wants
corners to remain sharp and to accurately track intricate development. Thus, the strategy laid out
in [64] was to transfer this technology to front propagation problems, and led up to the level set
method introduced in [52].



II. Basic Algorithms for Interface Advancement

4 Level Set Methods: Basic Algorithms, Adaptivity and Con-
structing Extension Velocities

The above discussion focussed on curves which remain graphs. The numerical Osher-Sethian “level
set method” recasts the front in one higher dimension, and uses the implicit analytic framework
given in Section 2.1 to tackle problems which do not remain graphs; in addition, that work developed
multi-dimensional upwind schemes to approximate the relevant gradients. Here, we briefly review low
order versions of those schemes before turning to issues of adaptivity and construction of extension
velocities.

4.1 Equations of Motion

Level set methods rely on two central embeddings; first the embedding of the interface as the
zero level set of a higher dimensional function, and second, the embedding (or extension) of the
interface’s velocity to this higher dimensional level set function. More precisely, given a moving
closed hypersurface T'(t), that is, I'(t = 0) : [0,00) — RY, propagating with a speed F in its
normal direction, we wish to produce an Eulerian formulation for the motion of the hypersurface
propagating along its normal direction with speed F', where F' can be a function of various arguments,
including the curvature, normal direction, etc. Let +d be the signed distance to the interface. If
this propagating interface is embedded as the zero level set of a higher dimensional function ¢, that
is, let ¢(x,t = 0), where z € R" is defined by

¢(x,t =0) = +d, (9)
then an initial value partial differential equation can be obtained for the evolution of ¢, namely
¢t + F|Vo| =0 (10)

¢(z,t =0) given (11)

This is the implicit formulation of front propagation given in [52]. As discussed in [62, 63, 64],
propagating fronts can develop shocks and rarefactions in the slope, corresponding to corners and
fans in the evolving interface, and numerical techniques designed for hyperbolic conservation laws
can be exploited to construct schemes which produce the correct, physically reasonable entropy
solution.

There are certain advantages associated with this perspective. First, it is unchanged in higher
dimensions; that is, for surfaces propagating in three dimensions and higher. Second, topological
changes in the evolving front I' are handled naturally; the position of the front at time ¢ is given by
the zero level set ¢(x,y,t) = 0 of the evolving level set function. This set need not be connected,
and can break and merge as t advances. Third, terms in the speed function F' involving geometric
quantities such as the normal vector n and the curvature x may be easily approximated through the
use of derivative operators applied to the level set function, that is,

L Ye
Vol

Vo

n=— K=V
Vol

Fourth, the upwind finite difference technology for hyperbolic conservation laws may be used to
approximate the gradient operators.



4.2 Approximation Schemes

Entropy-satisfying upwind viscosity schemes for this initial value formulation were introduced in
[62]. One of the simplest first order scheme is given as

Pkt = o — At[max(Fyjr, 0)V + min(Fijx, 0)V 7], (12)

where s

[ max(Dy;%, 0)% + min(DJ2, 0)2+ 1

VT = | max(Dg},0)? + min(D;}},0)*+

max(D;;3,0)* + min(D;rj‘,i, 0)?
r max(piﬁ,())? + min(D;7,0)2+ 17

V™ = | max(Dy, 0)? + min(D;;{, 0)%+

maX(D;rj;, 0)% + min(D,;;, 0)?

Higher order schemes are available, see [52].
The above formulation reveals two central embeddings.

1. First, in the initialization step (Eqn. 9), the signed distance function is used to build a
function ¢ which corresponds to the interface at the level set ¢ = 0. This step is known as
“initialization”; when performed at some later point in the calculation beyond ¢t = 0, it is
referred to as “re-initialization”.

2. Second, the construction of the initial value PDE given in Eqn. 10 means that the velocity F
is now defined for all the level sets, not just the zero level set corresponding to the interface
itself. We can be more precise by rewriting the level set equation as

¢¢ + F V| =0, (13)

where F¢*! is some velocity field which, at the zero level set, equals the given speed F. In
other words,
Fe' = F on ¢ = 0.

This new velocity field F¢* is known as the “extension velocity”.

Both of these issues need to be confronted in order to efficiently apply level set methods to
complex computational problems.

4.3 Adaptivity: The Narrow Band Level Set Method

Equation 12 is an explicit scheme, and hence can be solved directly. The time step requirement
depends on the nature of the speed function F'; for an F' that depends only on position, the time
step behaves like %F < 1. In the case when the speed function F' depends on curvature terms (for
example, F' = —k), the equation has a parabolic component, and hence the time step requirement
resembles that of a non-linear heat equation; the time step depends roughly on %.

In the level set formulation, both the level set function and the speed are embedded into a higher
dimension. This then implies computational labor through the entire grid, which is inefficient. A
rough operation count for the original level set method assumes N grid points in each space dimension
of a three-dimensional problem. For a simple problem of straightforward propagation with speed
F =1; assuming that it takes roughly N time steps for the front to propagate through the domain
(here, the CFL condition is taken almost equal to unity), this produces an O(N*) method.

Considerable computational speedup in the level set method comes from the use of the “Narrow
Band Level Set Method”, introduced by Adalsteinsson and Sethian in [1]. It is clear that performing



calculations over the entire computational domain is wasteful. Instead, an efficient modification is
to perform work only in a neighborhood (or “narrow band”) of the zero level set. This drops the
operation count in three dimensions to O(kN?3), where k is the number of cells in the narrow band.
This is a significant cost reduction; it also means that extension velocities need only be constructed
at points lying in the narrow band, as opposed to all points in the computational domain.

The idea of limiting computation to a narrow band around the zero level set was introduced in
Chopp [19], and used in recovering shapes from images in Malladi, Sethian and Vemuri [46]. The
idea is straightforward, and can be best understood by means of figures.
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Figure 3: Grid points in dark area are members of narrow band.

Figure 3 shows the zero level set corresponding to the front with a dark, heavy line, surrounded
by a few neighboring level sets. Figure 4 shows the data structures used to keep track of the narrow
band. The entire two-dimensional grid of data is stored in a square array. A one-dimensional object
is then used to keep track of the points in this array (dark grid points in Figure 4 are located in a
narrow band around the front of a user-defined width) (see Figure 4). Only the values of ¢ at such
points within the tube are updated. Values of ¢ at grid points on the boundary of the narrow band
are frozen. When the front moves near the edge of the tube boundary, the calculation is stopped,
and a new tube is built with the zero level set interface boundary at the center. This rebuilding
process is known as “re-initialization”.

Thus, the narrow band method consists of the following loop:

e Tag “Alive” points in narrow band.

e Build “Land Mines” to indicate near edge.

e Initialize “Far Away” points outside (inside) narrow band with large positive (negative) values.

e Solve level set equation until land mine hit.

e Rebuild, loop.

Use of narrow bands leads to level set front advancement algorithms that are computationally
equivalent in terms of complexity to traditional marker methods and cell techniques, while maintain-
ing the advantages of topological merger, accuracy, and easy extension to multi-dimensions. Typi-
cally, the speed associated with the Narrow Band Method is about ten times faster on a 160 x 160
grid than the full matrix method. Such a speed-up is substantial; in three-dimensional simulations,
it can make the difference between computationally intensive problems and those that can be done

with relative ease. Details on the accuracy, typical tube sizes, and number of times a tube must be
rebuilt may be found in Adalsteinsson and Sethian [1].
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Figure 4: Pointer array tags interior and boundary band points

4.4 Constructing Extension Velocities

As discussed above, the characterization of an interface as an embedding in an implicitly defined
function means that that both the front and the velocity of the front are assumed to have meaning
away from the actual interface. Thus, to be precise, one has

¢+ F Vg =0 (14)

where F¢*! is some velocity field which, at the zero level set, equals the given speed F'. In other
words,
Fe' = F on ¢ = 0.

There are several reasons why one needs to build these extension velocities.

1. No natural speed function: In some physical problems, the velocity is given only at the
front itself. For example, semi-conductor manufacturing simulations of the etching and de-
position process require determination of the visibility of the interface with respect to the
etching/deposition beam (see [2, 3, 4], as well as later in this paper). There is no natural
velocity off the front, since it is unclear what is meant by the “visibility” of the other level
sets. In this case, an extension velocity must be specifically constructed.

2. Sub-grid resolution: In some problems, such as etch under very sharp material changes,
the speed of the interface changes very rapidly or discontinuously as the front moves through
the domain. In such cases, the exact location of the interface determines the speed, and
constructing a velocity from the position of the interface itself, rather than from the coarse
grid velocities, is desirable.

3. Accurate representation of front velocities: In some problems, the speed of the inter-
face needs to calculated from jump conditions or subtle relations involving the solution of an
associated partial differential equation on either side of the interface; examples include Stefan
problems and problems involving Rankine-Hugoniot speeds. The extension velocity view allows
one to construct the correct front velocity and use this to move the front and the neighboring
level sets.

4. Maintaining a nice level set representation: Under some velocities, such as those which
arise in fluid mechanics simulations, the level sets have a tendency to either bunch up or
spread out, which is seen when ¢ becomes either very steep or flat. The extension velocity
discussed here is designed so that an initial signed distance function is essentially maintained
as the front moves. The reason to maintain the signed distance function is that by keeping a
uniform separation for the level sets around the front, calculation of variables such as curvature
becomes more accurate. The algorithm to be presented avoids all re-initialization, which can
often perturb the front, and the problem of bunching or stretching is greatly ameliorated.
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Figure 5: Constructing extension velocities.

How much freedom does one have in the construction of this extension velocity F¢*'? Beyond the
requirement that equal the velocity on the front itself, there is considerable freedom. The original
level set calculations in [52] were concerned with interface problems with geometric propagation
speeds, and hence an extension velocity was naturally built by using the geometry of each given
level set. In more non-geometric/local applications, many different extension velocities have been
employed. In many fluid simulations, one can choose to directly use the fluid velocity itself to act as
F.... This is what was done by Rhee, Talbot, and Sethian [58] in a series of simulations of turbulent
combustion. They built an extension velocity using an underlying elliptic partial differential equation
coupled to a source term along the interface. This was also done in the two phase flow simulations of
Chen, Hou, Merriman, and Osher [16] and Sussman, Smereka, and Osher [84]. In these simulations,
some bunching and flattening of the level set function occurs. This is repaired at every time step
through a re-initialization process which rebuilds the signed distance function using an iterative
process given in [84].

When there is no choice available for an extension velocity, Malladi, Sethian, and Vemuri [47]
introduced the idea of extrapolating the velocity from the front. Their idea was to stand at each grid
point and use the value of the speed function at the closest point on the front. Another approach is to
build a speed function from the front using some other, possibly less physical quantity. Sethian and
Strain [79] developed a numerical simulation of dendritic solidification; in this model, the velocity
at the interface depended on a jump condition across the interface and hence had no meaning for
the other “non-physical” level sets. A boundary integral expression was developed for the velocity
on the interface and evaluated both on and off the front to provide an extension velocity. The
crystal growth study of Chen, Merriman, Osher, and Smereka [17] worked directly with the partial
differential equations (rather than the conversion to a boundary integral), and built an extension
velocity by solving an advection equation in each component, again coupled to a re-initialization
procedure.

The important point is that the velocity field F... used to move the level sets neighboring the
zero level set need have nothing to do with the velocity suggested by the physics in the rest of the
domain. It need only agree with the velocity F' at the zero level set corresponding to the interface.

What are desirable properties of an extension velocity? First, it should match the given velocity
on the front itself. Second, it is desirable if it moves the neighboring level sets in such a way that
the signed distance function is preserved. Consider for a moment an initial signed distance function
¢(x,t =0), and suppose one builds an extension velocity which satisfies

VF,. Vé=0. (15)

It is straightforward to show that under this velocity field, the level set function ¢ remains the signed
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distance function for all time, assuming that both F' and ¢ are smooth. To see that this is so (see,
for example, Zhao et al.[91]), suppose that initially |V¢(xz,¢ = 0)] = 1, and one moves under the
level set equation ¢ + F...|V¢| = 0; then note that

dvVel> d B d
o= (V- Vo) =2Ve- Vo

= —2V§ VE..|Vé| —2Ve - V|V|F.

The first term on the right is zero because of the way the extension velocity is constructed; the second
is zero because |Vé(z,t = 0)] = 1. Thus, one solution satisfies |[V¢| = 1; this plus a uniqueness
result for this differential equation shows that |[V¢| =1 for all time.

Thus, the strategy introduced by Adalsteinsson and Sethian [5] uses a two-tiered system. Given
a level set function at time n, namely ¢;}, one first constructs a signed distance function QEZ around
the zero level set. Simultaneous with this construction, one then constructs the extension velocity
F.,, satisfying Eqn. 15. This velocity is used to update the level set function ¢™.

There are several important things to note about this approach:

e This construction finds an extension velocity which is then used to update the level set function.
One can, of course, use a method of as high an order method as desired for the level set
update. If one wants to perform this update restricted to a narrow band using the narrow
band methodology of [1], one is free to do so. However, this methodology provides a way of
doing so at all of the points where one wants to build this extension velocity.

e In this approach, one can choose never to re-initialize the level set function as follows:

1. Consider a level set function ¢™ at time step nAt = 0.

2. Build the extension velocity by simultaneously constructing a temporary signed distance
function ¢*™® and an extension velocity such that

V(bmmp ' Vcht = Oa

with ¢*™ matching ¢™ at their zero level sets, and F,,, matching the F' given on the
interface.

3. Then advance the level set function ¢™ under the computed extension velocity to produce
a new ¢" ! by solving ¢ + F...|V¢| = 0.

This algorithm never re-initializes the evolving level set function, yet moves it under a velocity
field that maintains the signed distance function. This avoids a large set of problems that
have plagued some implementations of level set methods, namely that re-initialization steps
can perturb the position of the front corresponding to the zero level set.

e In this approach, one explicitly finds the zero level set corresponding to the interface in order
to build the extension velocity. This may seem slightly “illegal”: one of the appealing features
of level set methods is that the front need not be explicitly constructed and that all of the
methodology may be executed on the underlying grid. Here, the front is explicitly built;
however, one neither moves nor updates that representation. In cases of speed functions that
depend on factors like visibility, this is completely natural. The central virtue of level set
methods lies in the update of the level set function on a discrete mesh to embed the motion
of the interface itself. This strategy and philosophy are maintained.

Thus, given a front velocity F', this choice of extension velocity allows one to update an interface
represented by an initial signed distance function in such a way that the signed distance function is
maintained, and the front is never re-initialized. If one chooses to use the adaptive methodologies
given in the narrow band approach, occasional rebuilding of the narrow band may be required, but
this is performed only occasionally.
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4.5 Summary

To summarize, two ideas which underpin level set methods are the link between schemes for hyper-
bolic fronts and propagating interfaces given in [63, 64], and the implicit formulation which embeds
both the interface and the velocity field into one higher dimension, transforming front propagation
into an initial value partial differential equation. In order to efficiently program level set methods,
one also needs ways to find the signed distance function, both initially and to rebuild the narrow
band. That is, one must quickly and accurately solve

V| =1, ¢=0onT.
In addition, one must solve the associated equation
Ve - VF,, =0,

to efficiently and accurately build an extension velocity. Techniques for performing both of these
steps result from Fast Marching Methods, which we now discuss.

5 Fast Marching Methods for Re-initialization and Extension
Velocities

Fast Marching Methods are finite difference techniques, more recently extended to unstructured
meshes, for solving the Eikonal equation of the form

IVT|F(z,y,2) =1 T=0onT.

This can be thought of as a front propagation problem for a front initially located at I' and propa-
gating with speed F'(x,y, z) > 0. We note that this is a boundary value partial differential equation
as opposed to an initial value problem given by level set methods, even though it describes a moving
interface. This Eikonal equation describes a large number of physical phenomena, including those
from optics, wave transport, seismology, photolithography and optimal path planning, and Fast
Marching Methods have been used to solve these and a host of other problems. Our interest in this
article will be confined only to using this Eikonal equation and Fast Marching Method to construct
efficient ways of re-initializing level set functions and constructing extension velocities. We refer the
reader to [76] and [75] for a large collection of applications based on this technique.

5.1 Fast Marching Methods
Consider the following upwind finite difference scheme for the Eikonal equation, namely

1/2

maX(D;jiu, —Du, 0)24
maX(D;qu, —Diqu, 0)2+ = Fijk, (16)
maX(D;jiu, —D;rj‘,iu, 0)?

which was discussed by Rouy and Tourin [59]. One approach to solving this finite difference scheme
(see [59]), is through iteration, which leads to an O(N*) algorithm in three dimensions, where N is
the number of points in each direction. Instead, Fast Marching Methods take a different approach.

The Fast Marching Method [69] is connected to Huygen’s principle. The viscosity solution to
the Eikonal equation |Vu(z)| = F(z) can be interpreted through Huygen’s principle in the following
way: circular wavefronts are drawn at each point on the boundary, with the radius proportional to
F(x). The envelope of these wavefronts is then used to construct a new set of points, and the process
is repeated; in the limit the Eikonal solution is obtained. The Fast Marching Method mimics this
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construction; a computational grid is used to carry the solution u, and an upwind, viscosity-satisfying
finite difference scheme is used to approximate this wavefront.

The order in which the grid values produced through these finite difference approximations are
obtained is intimately connected to Dijkstra’s method [26], which is a depth-search technique for
computing shortest paths on a network. In that technique, the algorithm keeps track of the speed of
propagation along the network links, and fans out along the network links to touch all the grid points.
The Fast Marching Method exploits a similar idea in the context of a continuous finite difference
approximation to the underlying partial differential equation, rather than discrete network links.

In more detail, the Fast Marching Method is as follows. Suppose at some time the Eikonal
solution is known at a set of points (denoted Accepted points). For every not-yet accepted grid
point such that it has an accepted neighbor, a trial solution to the above quadratic Eqn. 16 is
computed, using the given values for u at accepted points, and values of oo at all other points.
Observe that the smallest of these trial solutions must be correct, since it depends only on accepted
values which are themselves smaller. This “ causality” relationship can be exploited to efficiently
and systematically compute the solution as follows (see Figure 6):

NARROW BAND OF TRIAL VALUES

D SIDE

LUES"

Figure 6: Upwind construction of Accepted Values

First, tag points in the initial conditions as Accepted. Then tag as Considered all points one
grid point away and compute values at those points by solving Eqn. 16. Finally, tag as Far all
other grid points. Then the loop is :

1. Begin Loop: Let Trial be the Considered point with smallest value of u.

2. Tag as Considered all neighbors of Trial that are not Accepted. If the neighbor is in Far,
remove it from that set and add it to the set Considered.

3. Recompute the values of u at all Considered neighbors of Trial by solving the piecewise
quadratic equation according to Eqn. 16.

4. Add point Trial to Accepted; remove from Considered
5. Return to top until the Considered set is empty.

This is the Fast Marching Method given by Sethian in [69]. The key to an efficient implementation
of the above technique lies in a fast way of locating the grid point in the narrow band with the
smallest value for u. An efficient scheme for doing so, discussed in detail in [75], can be devised
using a min-heap structure, similar to what is done in Dijkstra’s method. Given N elements in the
heap, this allows one to change any element in the heap and re-order the heap in O(log N) steps.
Thus, the computational efficiency of the Fast Marching Method for the mesh with N points is
O(NlogN) : N steps to touch each mesh point with each step requiring O(log N), since the heap
has to be re-ordered each time the values are changed.
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The Fast Marching Method evolved in part from examining the limit of the Narrow Band level set
method as the band was reduced to one grid cell. Fast Marching Methods, by taking the perspective
of the large body of work on higher order upwind, finite difference approximants from hyperbolic
conservation laws, allow for higher order versions on both structured and unstructured meshes. The
Fast Marching Method has been extended to higher order finite difference approximations by Sethian
in [76], first order unstructured meshes by Kimmel and Sethian [38], and higher order unstructured
meshes by Sethian and Vladimirsky [80]. Some early applications include photolithography in [70],
a comparison of a similar approach with volume-of-fluid techniques in [32], a fast algorithm for
image segmentation in [45] and computation of seismic travel times by Sethian and Popovici [78];
see also [87] for a different Dijkstra-like algorithm which obtains the viscosity solution through a
control-theoretic discretization which hinges on a causality relationship based on the optimality
criterion.

Because we strongly suggest using the higher order Fast Marching Method introduced in [75, 76],
we include it here for completeness. Folllowing that discussion, we consider now the switch functions
defined by (the expressions are similar in y and z)

it hix 1 if T%,QJ'JC and Tiflyjyk are known and Ti72,j,k S Tiflyjyk
SW1tC ik — . )
0 otherwise
SWitCthX _ 1 if E+27j7k and Ti+1,j,k are known and Ti+2,j,k S Ti+1,j,k
ijk 0 otherwise '

We can then use these operators in the Fast Marching Method, namely,

- 2 71/2
max | [ DT + switehi* S5 D], — [ DT — switehf¥ 32D 0]
+
2
max | [DUT + switehyy 3D T|, = [DIVT — switehy 45D T 0]
+ (17)
2
| max [ [ DGET + switeh 32D T)  — [ DT — switehii 42D o] |
1
 Fijx

This scheme attempts to use a second order one-sided upwind stencil whenever points are avail-
able, but reverts to a first order scheme in the other cases. It provides higher accuracy in regions
of smoothness; the ultimate accuracy depends on the relationship of causality to shock lines in the
solution. For details and discussion, see [75, 76].

5.2 Using Fast Marching Methods for Re-initialization and Extension
Velocities

We can now use the techniques given by Adalsteinsson and Sethian [5] which exploit Fast Marching
Methods to both re-initialize level set functions and construct extension velocities. Recall the step:

e Build the extension velocity by simultaneously constructing a temporary signed distance func-
tion ¢*™® and an extension velocity such that

Vo V. =0,

with ¢*™P matching ¢™ at their zero level sets, and F,,, matching the F' given on the interface.
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This can be done as follows. First, use the Fast Marching Method to compute the signed distance
¢*™® by solving the Eikonal equation
IVT| =1

on either side of the interface, with the boundary condition that 7' = 0 on the zero level set of ¢. The
solution T" will then be the temporary signed distance function ¢**»». The Fast Marching Method is
run separately for grid points outside and inside the front (note that whether a grid point is inside
or outside is immediately apparent from the level set function ¢™). The most accurate way to build
values to initialize Fast Marching heap is by actually finding the front using an accurate version of
a contour plotter and then using this to build the nearby values; programmed correctly, this is both
fast and accurate.

Once ¢*™? is found, the next step is to extend a speed function which is given along an interface
to grid points around the front. This construction should extend the speed in a continuous manner,
and avoid, if possible, the introduction of any discontinuities in the speed close to the front.

Recall that we want to construct a speed function F,,, that satisfies the equation

VF,. V¢ =0. (18)

The idea is to march outward using the Fast Marching Method, simultaneously attaching to each
grid point both the distance from the front and the extended speed value. We first compute the signed
distance ¢*™ to the front using the Fast Marching Method as described in the previous section.
As the Fast Marching Method constructs the signed distance at each grid point, one simultaneously
updates the speed value F.,, according to Eqn. 18. In the gradient stencil, we use only neighboring
points close to the front to maintain the upwind ordering of the point construction. As an example
of a first order technique, assume that (i+1, j) and (i, j —1) are the points that are used in updating
the distance; if v is the new extension value, it then has to satisfy an upwind version of Eqn. 18,

namely . . ) )
emp _ empjremp __jromp
Oty — 0" G ) (Fg—v v=Figon
h ’ h h ’ h '

Since (i+1,7) and (4,5 — 1) are known, F is defined at those points, and this equation can be solved
with respect to v to produce

Fron (807 — 60 )+ Fr ja (000 — 617)
(GFm = Gar )+ (B — o)

Similar expressions exist at other mesh points. Complete details on the use of Fast Marching Methods
to construct extension velocities may be found in [5].

These two steps allows one to efficiently re-initialize and build extension velocities; higher order
Fast Marching Methods more accurate versions of these constructions.

6 Extensions and Implementations

6.1 Extensions

There have been many algorithmic extensions to these basic ideas, considerably extending the range
and applicability of these techniques. To mention only a few, these include variational level set
methods to handle multiple differing interface types by Zhao et. al. [91, 68], multiple junctions
by Merriman et al.[48], level set methods for unstructured meshes by Barth and Sethian, including
terms for curvature flow [10], adaptive mesh refinement schemes by Milne [49], higher order Fast
Marching Methods [76], Fast Marching Methods for manifolds by Kimmel and Sethian [38] as well as
certain types of non-Eikonal static Hamilton-Jacobi equations by Sethian and Vladimirsky [80], level
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set flows in arbitrary co-dimension by Ambrosio and Sonar [6], hybrid methods, including coupled
level set/volume-of-fluid techniques by Bourlioux [11] and marker/level set methods by Hou et al.
[35], parallel versions [65], and extensions to motion under the intrinsic Laplacian of curvature by
Chopp and Sethian [22, 23]. We refer the reader to these papers, the review in [75], as well as
companion articles in this issue of the Journal. This paper is by no means meant to represent the
large and rapidly growing body of work in these areas.

6.2 Implementations

There are a large number of ways to implement the details of these techniques. These include
various high order schemes, iterative ways of performing re-initializations, variants on the Narrow
Band method, and alternative ways of building extension velocities. In this section, we would like
to offer some comments which address some issues and implementation details:

6.2.1 Sources of Error

There are several sources of error when level set methods are used to propagate fronts. These include:

e Errors due to poor choices of extension velocities. This can lead to distortion in
the neighboring level sets, which can require re-initialization procedures to return the level set
function to the signed distance function. If the extension velocity methodology described earlier
is used, this will ensure, at least formally, that the signed distance function is maintained.

e Error due to over use of re-initialization. Re-initialization has a tendency to move the
location of the interface. While higher order methods can help, including those that attempt
to either re-distribute mass or solve an associated constraint problem, our experience is that
the best approach is to limit re-initialization. This is one of the reasons that the size of the
narrow band in the Narrow Band method is to chosen large enough to limit re-initialization,
rather than a one-cell wide band which would force continuous reinitialization.

e Error due to approximations in the gradient. First order is usually not sufficient; the
numerical diffusion causes sufficient error, and higher order schemes are recommended.

e Time-stepping errors. We typically use a second order in time Heun’s method.

6.2.2 Operation Counts

Next, we revisit the issue of operation counts. Consider a computational domain in three space
dimensions with N points in each grid direction. An adaptive Narrow Band Method focuses all the
computational labor onto a thin band around the zero level set, thus reducing the labor to O(N3k),
where k is the width of this narrow band, providing the optimal technique for implementing level set
methods. On the other hand, the Fast Marching Method is an optimal “adaptive” technique which
drops the computational labor involved in solving the boundary value formulation to O(N?3log N).
At first glance, the computational efficiency of Fast Marching Methods may not be evident on the
basis of these operation counts. However, two additional advantages provide the large computational
savings. First, because the Narrow Band Level Set Method is solving a time-dependent problem,
time step restrictions in terms of CFL conditions based on the speed F' influences the number of
steps required to evolve a front; in contrast, the Fast Marching Method has no such restrictions. The
speed F' of the front is irrelevant to the efficiency of the method. Second, the number of elements
in the heap depends on the length of the front; in most cases, this length is small enough that, for
all practical purposes, the sort is very fast and essentially O(1). It is important to note that Fast
Marching Methods are methods for computing the solution to Eikonal equation in all of space, not
just in a neighborhood of the interface.
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6.2.3 Separation of Labor

One good programming design goal is to provide an environment in which the underlying physics and
mathematical models that drive moving interfaces may be essentially decoupled from the numerical
issues involved in characterizing and advancing these interfaces. While realistic interface problems
typically involve significant and intricate feedback mechanisms between the interface the underlying
physics, from a programming point of view the two steps can be effectively separated. Our approach
is that the two key components, namely (1) the update of the interface given a specific velocity field
from the physics, and (2) the construction of that velocity field from information determined by the
interface, may be split apart, so that each views the other as a “black box”.
Thus, one divides the physical problem into two fundamental components:

1. The user-supplied driver routines, which make calls to the interface routine.

2. The interface advancement routine, which has two functions.

e [t can be queried to produce geometric data about the front, such as location, nodes along
the front, local curvature, etc.

e Given a user-supplied velocity field along the interface, it can be used to advance the
interface position.

By splitting codes in this manner, and building the general routines discussed earlier, robust
software can be built and re—used.

6.2.4 Flow of Codes

Finally, we break down code flow for interface problems. We imagine the problem, somewhat
abstractly, as follows:

e We are given an initial interface I', which may consist of several pieces.

e Given the position of the interface at any time, we are able to solve a set of partial differential
equations on either side of the interface, using information about the interface location itself,
as well as the value of certain quantities on the interface, in order to obtain the speed F' on
the interface

A flow chart for the implementation is shown in Figure 7

III. Two Applications

The range of applications of level set and Fast Marching Methods is vast, and we refer to only a
few for bibliographic reference. These include work on semiconductor manufacturing [2, 3, 4, 32, 77,
70], geometry and minimal surfaces [7, 19, 20, 21], combustion and detonation [8, 9, 29, 58, 93, 94],
fluids and surface tension-driven flows [12, 16, 41, 50, 82, 83, 84, 90, 91, 92, 94], shape recognition
and segmentation [13, 15, 42, 44, 47, 61], crystal growth [17, 79], liquid bridges [18], groundwater
flow [34], constructing geodesics [36, 38], robotic navigation and path planning [37], inverse problems
[60], grid generation [67], and seismology [78].

In Figure 8, we give a perspective on how some of these topics are related. There are many other
contributors to the evolution of these ideas; the chart is meant to give perspective on how the theory,
algorithms, and applications have evolved. The text and bibliography of [75] gives a somewhat more
complete sense of the literature and the range of work underway.
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Initial Interface I'
(1) Tag Points in Narrow Band
(2) Use Fast Marching Method to Initialize Level Set Function ¢

Compute Interface Velocity F
(1) Local Front Information provides input for Physics
(2) Solve Physics on both sides of Interface

Build Extension Velocity
(1) Use Fast Marching Extension Methodology
(2) Construct F' throughout Narrow Band

Advance Interface
(1) Use Narrow Band Level Set Method
(2) Rebuild Narrow Band if Necessary

| LOOP

Figure 7: Flow Chart for Implementing Narrow Band Level Set Methods
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In the next sections, we discuss two applications in detail. The first, semiconductor processing, is
chosen because it requires much of the above methodology in order to obtain the accuracy, efficiency
and robustness required in semiconductor manufacturing, and because the results have been so
closely matched with experiment. The second, optimal design of materials, is chosen because of the
requirement of delicate elliptic solvers, and because of the more unusual nature of the application.

7 Interface Schemes for Semiconductor Processing

The first major application we consider is the application of these front propagation techniques
to tracking interfaces in the microfabrication of electronic components. The goal is to follow the
changing surface topography of a wafer as it is etched, layered, and shaped during the manufacturing
process. These simulations rest on many of the previously discussed techniques, including Narrow
Band Level Set methods, Fast Marching Methods for the Eikonal equation, and construction of
extension velocities. In addition, they require attention to such issues as masking, discontinuous
speed functions, visibility determinations, algorithms for subtle speed laws depending on second
derivatives of curvature, and fast integral equation solvers.

7.1 Physical effects and background

The goal of numerical simulations in microfabrication is to model the process by which silicon
devices are manufactured. Here, we briefly summarize some of the physical processes. First, a
single crystal ingot of silicon is extracted from molten pure silicon. This silicon ingot is then sliced
into several hundred thin wafers, each of which is then polished to a smooth finish. A thin layer
of crystalline silicon is then oxidized, a light-sensitive “photoresist” that is sensitive to light is
applied, and the wafer is then covered with a pattern mask that shields part of the photoresist.
This pattern mask contains the layout of the circuit itself. Under exposure to a light or an electron
beam, the exposed photoresist polymerizes and hardens, leaving an unexposed material that is then
etched away in a dry etch process, revealing a bare silicon dioxide layer. Ionized impurity atoms
such as boron, phosphorus, and argon are then implanted into the pattern of the exposed silicon
wafer, and silicon dioxide is deposited at reduced pressure in a plasma discharge from gas mixtures
at a low temperature. Finally, thin films such as aluminum are deposited by processes such as
plasma sputtering, and contacts to the electrical components and component interconnections are
established. The result is a device that carries the desired electrical properties.

These processes produce considerable changes in the surface profile as it undergoes various effects
of etching and deposition. This problem is known as the “surface topography problem” in micro-
fabrication and is controlled by a large collection by physical factors, including the visibility of the
etching/deposition source from each point of the evolving profile, surface diffusion along the front,
complex flux laws that produce faceting, shocks and rarefactions, material-dependent discontinuous
etch rates, and masking profiles.

The underlying physics and chemistry that contribute to the motion of the interface profile are
very much areas of active research. Nonetheless, once empirical models are formulated, the problem
ultimately becomes the familiar one of tracking an interface moving under a speed function F.
Simulations and text in this chapter are taken in part from Adalsteinsson and Sethian [2, 3, 4];
complete details may be found therein (see [77] for a review).

The underlying physical effects involved in etching, deposition, and lithography are quite com-
plex. The effects may be summarized briefly as follows:

e Deposition: Particles are deposited on the surface, which causes build-up in the profile. The
particles may either isotropically condense from the surroundings (known as chemical or “wet”
deposition), or be deposited from a source. In the latter case, particles leave the source and
deposit on the surface; the main advantage of this approach is increased control over the
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directionality of surface deposition. The rate of deposition, which controls the growth of the
layer, may depend on source masking, visibility effects between the source and surface point,
angle-dependent flux distribution of source particles, and the angle of incidence of the particles
relative to the surface normal direction. In addition, particles might not stick, but in fact be
re-emitted back into the domain. This process is known as “re-emission” and the “sticking
coefficient” between zero and one is the fraction of particles that stick. A sticking coefficient of
unity means that all particles stick. Conversely, a low sticking coeflicient means that particles
may bounce many times before they eventually become fixed to the surface.

e FEtching: Particles remove material from the evolving profile boundary. The material may be
isotropically removed, known as chemical or “wet” etching, or chipped away through reactive
ion etching, also known as “ion milling”. Similar to deposition, the main advantage of reactive
ion etching is enhanced directionality, which becomes increasingly important as device sizes
decrease substantially and etching must proceed in vertical directions without affecting adja-
cent features. The total etch rate consists of an ion-assisted rate and a purely chemical etch
rate due to etching by neutral radicals, which may still have a directional component. As in
the above, the total etch rate due to wet and directional milling effects can depend on source
masking, visibility effects between the source and surface point, angle-dependent flux distri-
bution of source particles, and the angle of incidence of the particles relative to the surface
normal direction. In addition, because of chemical reactions that take place on the surface,
etching can cause surface particles to be ejected; this process is known as “re-deposition”. The
newly ejected particles are then deposited elsewhere on the front, depending on their angle
and distribution.

e Lithography: The underlying material is treated by an electromagnetic wave that alters the
resist property of the material. The aerial image is found, which then determines the amount
of crosslinking at each point in the material. This produces the etch/resist rate at each point
of the material. A profile is then etched into the material, where the speed of the profile in its
normal direction at any point is given by the underlying etch rate.

We now formalize the above. Define the coordinate system with the x and y axes lying in the
plane, and z being the vertical axis. Consider a periodic initial profile h(x, y), where h is the height
of the surface above the z-y plane, as well as a source Z given as a surface above the profile; we
write Z(x,y) as the height of the source at (z,y). Define the source ray as the ray leaving the source
and aimed toward the surface profile. Let 1) be the angle variation in the source ray away from the
negative z axis; 1 runs from 0 to 7, though it is physically unreasonable to have 7/2 < ¢ < 7. Let
~ be the angle between the projection of the source ray in the z,y plane and the positive x axis. Let
n be the normal vector at a point x on the surface profile and 6 be the angle between the normal
and the source ray.

In Figure 9, these variables are indicated. Masks, which force flux rates to be zero, are indicated
by heavy dark patches on the initial profile. At each point of the profile, a visibility indicator
function M~y (z, 2') is assigned which indicates whether the point x on the initial profile can be seen
by the source point z’.

7.2 Equations of motion for etching/deposition

The goal is to write the effects of deposition and etching on the speed F' at a point x on the front.
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B (visible)

C (not visible) ‘/’

Profile

Figure 9: Variables and setup.

7.2.1 Etching

We consider two separate types of etching:

o Fﬁ;ﬁ%ﬁfc Isotropic etching. Uniform etching, also known as chemical or wet etching.
o FSMNI . Direct etching. Etching from an external source; this can be either a collection of

point sources or an external stream coming from a particular direction. Visibility effects are
included, and the flux strength can depend on both the solid angle from the emitting source
and the angle between the profile normal and the incoming source direction. Etching can
include highly sensitive dependence on angle such as in ion milling.

7.2.2 Deposition

We consider four separate types of deposition:

Deposition ,
® Flsotro;m'c .
tion.

Isotropic deposition. Uniform deposition, also known as chemical or wet deposi-

D it . .- .. . .
FpPosttom: Direct deposition. Deposition from an external source; this can be either a collec-

tion of point sources, or from an external stream coming from a particular direction. Visibility
effects are included and the flux strength can depend on both the solid angle from the emitting
source and the angle between the profile normal and the incoming source.

F I?eef gzgjggwn . Re-deposition. Particles that are expelled during the etching process. These
particles then attach themselves to the profile at other locations. The strength and distribution
of the re-deposition flux function can depend on such factors as the local angle. A re-deposition
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coefficient, Bre—deposition Which can range from zero to unity represents the fraction of re-
deposition that results from the etching process. A value of Bre—deposition = 1 means that
nothing is re-deposited and everything sticks.

F I?:f osttion . Re-emission deposition. Particles are deposited by direct deposition might not
stick and are may be re-emitted into the domain. The amount of particles re-emitted depends

on a StiCkng coefficient 6Refemission- If 6Refemission = 15 IlOthiIlg is re-emitted.

In Figure 9, we generalize all of these effects as the “source.” The plane source is shown in the
figure may consist of locations which emit either unidirectional or point source contributions.

7.3 Assembling the terms

We may, somewhat abstractly, assemble the above terms into the single expression

F = Fl oot + Fiireet” + Flotvopte "+ Fiipeer "+ FreLaeposition + Fretemisaion (19)

The two isotropic terms are evaluated at a point z by simply evaluating the strengths at that
point. The two direct terms are evaluated at a point x on the profile by first computing the visibility
to each point of the source, and then evaluating the flux function. These terms require computing
an integral over the entire source. To compute the fifth term at a point x, we must consider
the contributions of every point on the profile to check for re-deposition particles arising from the
etching process; thus this term requires computing an integral over the profile itself. The sixth term,
F Igeef osthion s more problematic. Since every point on the front can act as a deposition source
of re-emitted particles that do not stick, the total flux function deposition function comes from
evaluating an integral equation along the entire profile.

In more detail, let 2 be the set of points on the evolving profile at time ¢, and let Source be the
external source. Given two points z and z’, let T(z,2’) be one if the points are visible from one
another and zero otherwise. Let r be the distance from x to x’, let 7 be the unit normal vector at
the point x, and finally, let & be the unit vector at the point ' on the source pointing toward the
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point = on the profile. Then we may refine the above terms as:

r FEtching ]
Fl Isotropic

+

fsowce Fluxgii:f:g(r, U, 7,0, )Y (x,2') (7 - &)da’

+

Deposition
Flux[sotropic

F= + (20)
Jsouree Flxpiree " (r, 4,7, 0,2)Y (2, 2') (71 - @) da’
+
Jo(1 = Bre—deposition ) FIux Pt (r.4p, 5,0, 2)Y (2, 2') (7 - &)da’

+

L fg(l - BRefemission)Flqung;:;;:Lon(Ta 1/)5 Vs 9) x)T(xa x/) (ﬁ ’ &)dx/ d

7.4 Evaluating the terms

The integrals are performed in a straightforward manner. The front is located by constructing the
zero level set of ¢; in two dimensions it is represented by a collection of line segments and in three
dimensions by a collection of voxel elements; see [2, 3]. The centroid of each element is taken as the
control point, and the individual flux terms are evaluated at each control point. In the case of the
two isotropic terms, the flux is immediately found. In the case of the two integrals over sources,
the source is suitably discretized and the contributions summed. In the fifth term, corresponding
to re-deposition, the integral over the entire profile is calculated by computing the visibility to all
other control points, and the corresponding re-deposition term is produced by the effect of direct
deposition. Thus, the fifth term requires N? evaluations, where IV is the number of control points
which approximate the front.

7.4.1 Evaluation of the re-emission term

The sixth and last term is somewhat more time-consuming to evaluate, since it requires evaluation of
the flux F lu:cgeef osthion | from each point of the interface, each of which depends on the contribution
from all other points. Thus, this is an integral equation which must be solved to produce the total
deposition flux at any point. When discretized, it produces a full, non-symmetric matrix which
must be solved at every time step in order to compute the relevant flux. In [4], a recurrence
relationship is developed which allows a quick way of solving this discrete integral equation. This
approach constructs an iterative solution to the integral equation, based on a series expansion of the
interaction matrix. Fortunately, the iterative solution reduces to a simple matrix/vector multiply,
and an error bound can be established to predict the number of iterations (which can be thought of
as terms in the expansion) to compute the solution of the desired degree of accuracy.

This problem is a good example of the necessity of constructing extension velocities. There is no
readably available and physical definition of the velocity off the interface with which to move the
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neighboring level sets. Consequently, the extension velocity methodology described earlier can be
used to construct extension velocities in the Narrow Band level set method.

7.4.2 Visibility

In order to evaluate these terms above, we need to compute the visibility, that is, to find out if a
point on the front is illuminated by another point on the front (or, in some cases, by the source
itself). This visibility issue is coming to a host of other problems, including scene rendering in
computer graphics, ray tracing, and optimal placement of transmitters. This is a time-consuming
component of any calculation; programmed directly, it requires O(N?) evaluations, where there are
N points on the front. This is because each point must determine whether it can see each of N
other points, and there are N intermediate points which might block the visibility.

Fortunately, a very fast way of determining the visibility is offered by a combination of level set
methods and Fast Marching Methods, see [2, 3, 4]. In the first step, we determine the signed distance
function away from the interface using the Fast Marching Method as discussed above. Armed with
this, we may easily determine if two points on the front see each other by checking the signed of this
signed distance function along the line segment connecting the two points; if this function changes
sign, then the two points cannot see each other. This search may be done in a binary fashion,
rendering a rapid way of determining visibility. For details, see [2, 3, 4].

7.4.3 Surface diffusion

An additional physical effect comes from surface diffusion, which relates to the motion of metal
boundaries, and corresponds to motion by the second derivative of curvature. Thus, we need to add
an additional term of the form

F =1+ ekqa, (21)

where « is an arc-length parameterization. The problem is delicate because Eqn. 21 is a time-
dependent fourth order partial differential equation, and the presence of the fourth derivative requires
an exceedingly small time step for stability in an explicit scheme; the linear fourth order heat equation
has a stability time step requirement of the form O(At/Ah*). We make use of the methodology
given by Chopp and Sethian in [22]. Approximations and fast methods for solving this sort of flow
may be found in [23].

7.5 Results
7.5.1 Photolithography development

We begin the three-dimensional simulations with a problem in photolithography. Once the elec-
tromagnetic and optical simulations are performed, the problem of photolithography development
reduces to that of following an initially plane interface propagating downward in three dimensions.
The speed in the normal direction is given as a supplied rate function at each point. The speed
F = F(x,y, z) depends only on position; however, it may change extremely rapidly. The goal in
lithography development is to track this evolving front. In order to develop realistic structures in
three-dimensional development profiles, a grid of size 300 x 300 x 100 is not unreasonable. The higher
order Fast Marching Method is of considerable value in the development step. As an example, a
rate function calculated using the three-dimensional exposure and post-exposure bake modules of
TMA’s Depict 4.0 [85] has been coupled to the Fast Marching Method. Figure 10(a) shows the top
view of a mask placed on the board. The dark areas correspond to areas that are exposed to light.
The standing waves in the etching profile are due to factors such as the reflectivity of the surface.
In Figure 10(b) a view of the developed profile is shown from underneath; the etching of the holes
and the presence of standing waves can be seen easily. For further results, see [70].
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(a) Masking pattern

(b) Lithographic development: View from below

Figure 10: Lithographic development using Fast Marching Method.
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Figure 11: Isotropic etching into a hole.

& 2 nd
Initial Midway Final

Figure 12: Source deposition into a hole.

7.5.2 Etching and deposition

Next, we show a straightforward calculation of isotropic etching into a hole, taken from [3]. In
Figure 11 we show a square hole from which a material is being isotropically etched, corresponding
to a simple speed function of F' = —1. As expected, the sides of the cavity are cleanly etched away,
leaving smoothed, rounded walls.

We follow with a calculation of source deposition from a plate located above the hole. The
effects of visibility and shading are included. Along the entire plate, deposition material is emitted
uniformly in each direction. In Figure 12, we show two three-dimensional time plots of the evolving
profile. The trench begins to pinch off due to the effects of visibility and a bulb-shaped profile
evolves.

We end the basic calculations with the modeling (Figure 13) of the effect of non-convex sputter
etch/ion milling of a saddle surface. The non-convex speed law F = (1 + 4sin?(6))cosf causes
faceting of sharp corners and rounded polishing; for details of this effect, see [3]. Here, we use
schemes non-convex Hamiltonians given in [53] for the level set update.

7.5.3 Complex simulations

Next, we include an example of three-dimensional effects of re-deposition. The initial shape is a
double-L, and we consider a combination of two cosine flux deposition sources. That is, the initial
flux at each point is given by

Fluz(z) = cos®(61) cos(fa) + cos(1) cos(62); (22)

in addition, the second deposition term is given a sticking coefficient of 0.1, thus we also consider the
effects of re-deposition. Here, 6, is the angle that the vector v from x to y makes with the normal
at x, and 65 is the angle that the vector v makes with the vertical. The results are shown after some
time evolution in Fig. 14b; a two-dimensional cross-sectional cut is shown in Figure 14c. For more
simulations, see [4].
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Initial Shape: T'=0 F =[1+4sin?(0)]cos(d) T =2

F =[1+4sin*@)]cos(d) T=4 F=[1+4sin?(9)]cos(d) T =6

F =[1+4sin*(@)]cos(d) T =8 Final rotated

Figure 13: Downward saddle under sputter etch.
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Figure 14: Three-dimensional evolution under cosine source distribution with sticking coefficient 0.1.

7.5.4 Timings

The computational labor required in these calculations depends on the grid resolution required to
represent the front and the complexity of the physical effects under consideration. Figure 15 and
Figure 16 give rough timings for various sizes and physical complexities for a Sun Ultra.

(a) Initial position

(b) Time evolution

(¢) 2d cross-section

lithography timings were computed using the Fast Marching Method given in [69)].

50 by 50 100 by 100
Test Run time | Steps | time/step | Run time | Steps | time/step
Lithography
(Fast Marching) 6.9ms NA NA 26ms NA NA
Isotropic
(Narrow Band) 82ms 24 34ms 0.4s 49 8ms
Unidirectional
(with visibility) 0.4s 17 23ms 2.3s 34 70ms
Etching and
re-deposition 1.7s 25 68ms 14s 51 0.3s
Deposition and
re-deposition
(Iterative model) 1.1s 17 65ms 12s 39 0.3s

Figure 15: Two-dimensional timings.
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40 by 40 by 40 80 by 80 by 80
Test Run time | Steps | time/step | Run time | Steps | time/step
Lithography
(Fast Marching) 0.16s NA NA 2.1s NA NA
Isotropic
(Narrow Band) 1.3s 8 0.16s 13.6s 24 0.6s
Unidirectional
(with visibility) 16.7s 24 0.7s 270s 47 5.7s
Etching and
re-deposition 224s 12 19s 260m 25 10m
Deposition and
re-deposition
(Iterative model) 265s 11 24s 290m 23 12.6m

Figure 16: Three-dimensional timings.
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Figure 17: Ton-milling: experiment (top) vs. simulation (bottom).

7.6 Validation with experimental results

We end with a collection of applications of the Level Set/Fast Marching methodology comparing
simulations with experiment analyzing various aspects of surface thin film physics. All the simula-
tions in this section are performed using TERRAIN;' a commercial version of these techniques built
by Technology Modeling Associates and specifically designed for process simulation. For further
details about this code and its capabilities, see [86].

7.6.1 Ion milling

We begin with a comparison with experiment of an ion-milling process. Figure 17 shows an ex-
periment on the top and a simulation at the bottom. We note that both the simulation and the
experiment show the crossing non-convex curves on top of the structures, the sharp points, and the
sloping sides.

IWe thank Juan Rey, Brian Li, and Jiangwei Li for providing these results.
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Figure 19: PECVD, small-scale structure: experiment (left) vs. simulation (right).

7.7 Plasma-enhanced chemical vapor deposition

Next, we show comparison with experiment of two plasma-enhanced chemical vapor deposition
(PECVD) simulations. We show a series of experiments. First, two smaller structure calculations
are used to verify the ability to match experiment. Figures 18 and 19 show these results. Figures
20 and 21 show more simulations for more complex structures.
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Figure 20: PECVD: experiment (top) vs. simulation (bottom).
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Figure 21: PECVD: experiment (top) vs. simulation (bottom).
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7.8 Spin-on-glass

Next, in Figure 22, we show a spin-on-glass (SOG) simulation; in which the spin deposition is shown
in sequence on top of a complex structure.

Y WY —

Time 0 Time 1

Time 2 Time 3

Figure 22: Spin-on-Glass: simulation time sequence.

7.9 SRAM simulations

Finally, we show SRAM comparisons between experiment and simulations for both small structures
(Figure 23) and large structures (Figure 24). Each figure shows the original layout together with
the actual pattern printed through photolithography, followed by the sequential processing steps.
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Figure 23: SRAM simulation: Experiment and simulation.
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Figure 24: SRAM simulation: Experiment and simulation.
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8 Optimal Structural Boundary Design

The second application of these methodologies concerns the boundary design of a loaded elastic
structure. The goal is to find efficient designs which satisfy certain constraint equations while
minimizing other variables, such as the total weight. These results are all taken from Sethian and
Wiegmann [81]; we refer the interested reader to that work for considerably more detail, explanations,
and examples.

By way of illustration, consider a clamped and loaded cantilever (see Figure 25). Suppose our
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Figure 25: Bending of the initial design of a cantilever with 105 circular holes. Parts of the left
boundary are clamped; on the rest of the boundary, including all holes, the traction is specified,
with nonzero loading on a small portion about the center of the right boundary. The bending is
beyond the regime of small displacement elastostatics and chosen only to illustrate the behavior.
The larger rectangle is the computational domain, with a 320 x 160 grid indicated in the lower left
corner.

goal is to remove as much material as possible from the original shape, while still making sure that
the compliance (defined as the yield under the load) or the maximal stress in the structure stays
below a certain threshold value. We can start with the original perforated structure and compute
the stress; as illustration, the stress contours on the original design are shown in Figure 26. We can
then try to add and remove material in order to reduce the weight in such a way that the compliance
or stress do not rise above a given user-prescribed level. Different designs (that is, newly introduced,
removed or reshaped holes) will give different compliance and stresses in the design. Our approach
is to devise a systematic way to add and remove material. This requires an accurate technique to
compute the stresses for a given multiply-connected domain and an accurate technique to remove or
reshape existing boundaries and to introduce new ones. We use the Narrow Band level set method
to add and subtract material, and a version of the Explicit Jump Immersed Interface Method to
compute the stress in arbitrary domains.

Our goal is to find a design configuration that minimizes the total weight while keeping the
compliance below a certain prescribed value.

8.1 Overview of Computational Approach

As a general outline, the algorithmic approach is as follows:

e In the first step, the explicit jump immersed interface method is applied to the equations of
2D linear elastostatics in the displacement formulation. These problems on arbitrary domains
are solved quickly and without mesh generation by domain embedding and the use of fast
elastostatic solvers. In brief, in [81] a general technique (the Explicit Jump Immersed Interface
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Figure 26: Stress contours for above initial configuration

Method) is given for solving the linear elastostatic equations in the displacement formulation
and differencing the displacements using the Explicit Jump Immersed Interface Method (see
[88]), a finite difference technique on uniform grids after LeVeque and Li’s Immersed Interface
Method ([40]) that is capable of dealing with non grid-aligned boundaries with the same
truncation error as interior differences. The biggest benefit of this approach is that it is
easy to add material (with some subgrid resolution) at hole boundaries with high stress. In
particular, this approach allows one to start with designs that have holes cut “in the wrong
place”, and see these holes disappear.

e In the second step, the given design is modified. The Narrow Band level set method, is used to
alter the shape, with velocities depending on the stresses in the current design. These stresses
can be found from the displacements that were found in the first step. Boundary motion and
merging as well as the introduction of new holes are all performed using this grid function. This
approach also allows the detection of regions that have become separated from the nontrivial
boundary conditions and have to be dropped from the computations. Criteria are provided
for advancing the shape in an appropriate direction, and to correct the evolving shape when
given constraints are violated.

8.1.1 Summary of Equations and Strategy

The goal is to solve the two—dimensional Lamé equations: u = (u, v) are the displacements in x and
y, respectively, and

— 1 (AU Ugy + Vgy) — A (Uzg +Vzy) = f* in Q,

— 1 (AU + Uy + Vyy) — A (Ugy +Vyy) = f in Q. (23)

Here p and A are the Lamé constants, £ = (f*, f¥) are body forces, and € is an open, connected
but not necessarily simply connected domain. We will also write (with C' = /(1 + A)),

CAU+ Uy +Vyy = _#% in Q, (24)
CAV+ Upy +Vyy = —‘uj% in Q.
Displacement boundary conditions are
u=uon; C 09, (25)

Here u = (@, 9)" are given functions on I'y, t he part of 92, the boundary of 2, where displacements
are give n. Traction boundary conditions are

o(u)n =g on Iy C 9N. (26)
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One assumes that the coefficients, geometry and boundary values are such that the problem has
a unique solution.

We shall not go any further into the derivation of the appropriate jump conditions nor the
algorithmic details of the Explicit Immersed Interface Method and refer the reader to the original
work in [81]. Armed with these algorithmic solvers, the sequence of events is as follows:

Main Algorithm

1 Initialize; find stresses in initial design.

2 While termination criteria are not satisfied do
3  Cut new holes.

Move boundaries.

4

5  Find displacements, stresses, etc.

6  If the constraints are violated reduce removal rate of material and revert to previous iteration.
7

Update removal rate.

The approach in [81] uses a Narrow Band level set method to update the interface and the various
holes, as well as an extension velocity formulation to move the neighboring level sets.

8.2 Results

We show one result from [81], which is the constrained design of a short cantilever. A cantilever of
ratio 1:3 is clamped everywhere on the left boundary and vertically loaded on the mid 6% of the
right boundary. The rest of the right boundary and the top and bottom boundaries are traction
free. The problem was chosen because it is a standard test problem for structural topology design,
(for example, see [89, 56]), with a known solution for a simpler pin—jointed two—truss problem [57].
The optimal height in that case is twice the width of the structure.

In Figure 27a, taken from [81], we show clamping, loading and stresses in the initial design.
Figure 27b shows the improved design under the combination Explicit Jump Immersed Interface
Method and the Narrow Band Level Set Method. A large number of additional examples may be
found in the original work [81].

y
e
o

0 0

0 05 1 0 05 1
x

Stress distribution in initial design Improved design

Figure 27: Improved Shape for Short Cantilever
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