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Abstract

A finite difference level set-projection method on rectangular grid is developed for piezoelec-
tric ink jet simulation. The model is based on the Navier-Stokes equations for incompressible
two-phase flows in the presence of surface tension and density jump across the interface sepa-
rating ink and air, coupled to an electric circuit model which describes the driving mechanism
behind the process, and a macroscopic contact model which describes the air-ink-wall dynamics.
We simulate the axisymmetric flow using a combination of second order projection methods to
solve the fluid equations and level set methods to track the air/ink interface. The numerical
method can be used to analyze the motion of the interface, breakoff and formation of satellites,
and effect of nozzle geometry on droplet size and motion. We focus on close comparison of our
numerical ink jet simulation with experimental data.
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1 Introduction

The goal of this work is to develop a numerical simulation tool for fluid flow phenomena associated

with ink jet printers. The underlying algorithms should be able to accurately capture two phase flow

through an axisymmetric nozzle, handle complicated topological change of ink droplets, conserve

mass to a good approximation, and couple to external models which simulate the ink cartridge,

supply channel, pressure chamber, and piezoelectric actuator.

In Figure 1, we show the typical structure of an ink jet nozzle; the actual geometry is axisym-

metric and is not drawn to scale. Ink is stored in a bath reservoir (cartridge), and driven through

the nozzle in response to a pressure jump at the lower boundary. The dynamics of incompressible

flow through the nozzle, coupled to surface tension effects along the ink-air interface and boundary

conditions along the wall, act to determine the shape of the interface as it moves. A negative

pressure at the lower boundary induces a backflow which causes a bubble to pinch off, separate,

and move through the domain.

The model is based on the Navier-Stokes equations for two-phase immiscible incompressible

flows in the presence of surface tension and density jump across the interface separating ink and

air, coupled to an electric circuit model which describes the driving mechanism behind the process,

and a macroscopic slipping contact line model which describes the air-ink-wall dynamics. The

fluid interface between the air and the ink is treated as an infinitely thin immiscible boundary,

separating regions of differing but constant densities and viscosities. The flow is axisymmetric, and

for boundary conditions on solid walls we assume that both the normal and tangential component

of the fluid velocity vanish; this is amended through a contact model which describes the motion of

the triple point which describes the air-fluid-wall interaction. We simulate axisymmetric flow using

a combination of second order projection methods to solve the fluid equations and level set methods

to track the air/ink boundary. The model is used to analyze the motion of the boundary, breakoff

and formation of satellites, and the effect of nozzle geometry on ink ejection size and motion.

Several different numerical simulations of this process have been performed in recent years,

see, for example, Aleinov et al.[1] and Sou et al.[20]. There are many numerical techniques to

solve the Navier-Stokes equations, including finite difference techniques, finite element techniques,

and spectral techniques, as well as methods to track the fluid interface, including marker particle

techniques and volume-of-fluid techniques. We employ second order finite difference projection

methods to solve the fluid flow equations and level set methods to capture the motion of the fluid

interface.

Projection methods for incompressible Navier-Stokes equations were originally developed by

Chorin[9]. They work by first solving the Navier-Stokes equations to predict the intermediate

velocity fields and then projecting the velocity onto the space of divergence-free fields to enforce
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the incompressibility condition. This method was improved by Bell, Colella, and Glaz[4] in the

late 1980’s with the use of a second-order Godunov-type scheme for the nonlinear convection term.

The implementation of the projection step was then made easier through the introduction of a

finite-element approximate projection by Almgren et al.[2]. The extension of these methods to

two fluid-problems adds extra complexity to the “projection” algorithm in several ways. First,

the region occupied by any one of the two fluids keeps changing. Second, surface tension at the

interface tension contributes an extra term in the governing equations. Third, since the density

and viscosity are not constant, the viscosity term is no longer a product of the Laplacian of the

velocity and the viscosity.

Level set methods, introduced in Osher and Sethian[13], rely in part on the theory of curve and

surface evolution given in Sethian[16, 17] and on the link between front propagation and hyperbolic

conservation laws discussed in Sethian[18]. They recast interface motion as a time-dependent

Eulerian initial value partial differential equation, and rely on viscosity solutions to the appropriate

differential equations to update the position of the front, using an interface velocity that is derived

from the relevant physics both on and off the interface.

For details about projection methods and their coupling to level set methods, see Almgren et

al.[2, 3], Bell et al.[4], Bell and Marcus[5], Chang et al.[7], Chorin[9], Puckett et al.[14], Sussman

and Smereka[22], Sussman et al.[23, 21], and Zhu and Sethian[26].

In this paper, we carefully examine the effects of various contact models and equivalent circuit

driving models on the computed results, and closely compare our results with experimental data.

We provide relevant equations of motion, details of the underlying algorithm, and detailed numeri-

cal tests of robustness and accuracy, followed by simulations of the ink jet process with comparison

to experiment. The paper is meant to provide a clear description of the underlying equations, algo-

rithms and programming details. There is considerable previous work on second order projection

methods coupled to level set methods for fluid flow, and we refer the interested readers to these

works; they have served as a foundation for some of what is discussed in this paper.

2 Level Set Formulation

2.1 Equations of Motion

Both of the fluids are governed by the incompressible Navier-Stokes equation, i.e.

ρi
Dui

Dt
= −∇pi +∇ · (2µiD) , ∇ · ui = 0 , i = 1, 2 . (2.1)

In the above equations,

D =
1

2

[
∇u + (∇u)T

]
,

u = ue1 + ve2 ,
(2.2)
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are the rate of deformation tensor and the fluid velocity, respectively, D
Dt = ∂

∂t + (u · ∇) is the

Lagrangian time derivative, p the pressure, ρ the density, and µ the dynamic viscosity. The subscript

i = 1, 2 is used to denote the variable or constant in fluid #1 (ink) or fluid #2 (air). The boundary

conditions at the interface of the two phases are the continuity of the velocity and the jump condition

(2µ1D − 2µ2D) · n = (p1 − p2 + σκ)n , (2.3)

where n is the unit normal to the interface drawn from fluid #2 to fluid #1 and κ is the curvature

of the interface. Because the size of typical ink jet print heads is small, the gravity term is not

important and is omitted. We note that the inclusion of a gravity term does not change any part

of the numerical scheme described in the next section.

We use the level set method to trace the interface (see Osher and Sethian[13]). The interface is

the zero level of the level set function φ

φ(x, y, t)






< 0 if (x, y) ∈ fluid #2 (air)

= 0 if (x, y) ∈ interface

> 0 if (x, y) ∈ fluid #1 (ink)

. (2.4)

Here, the level set function φ is initialized as the signed distance to the interface. The unit normal

on the interface can be expressed in terms of φ

n =
∇φ

|∇φ|

∣∣∣∣
φ=0

,

κ = ∇ ·

(
∇φ

|∇φ|

)∣∣∣∣
φ=0

.
(2.5)

Let

u =





u1 , φ > 0

u2 , φ < 0 .
(2.6)

The governing equations for the two-phase flow and the boundary condition at the interface can

be re-written as

∇ · u = 0 , (2.7)

and

ρ(φ)
Du

Dt
= −∇p+∇ · (2µ(φ)D)− σκ(φ)δ(φ)∇φ , (2.8)

where δ is the Dirac delta function. We note that the Navier-Stokes equations for two-phase flows

(2.8) have been written in similar form and used by Unverdi and Tryggvason[24]. The fact that

the surface tension can be written as a body force concentrated at the interface has been used by

Unverdi and Tryggvason as well as others. The form (2.8) is due to Chang et al.[7].
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To make the governing equations dimensionless, we choose the following definitions

x = Lx′, y = Ly′, u = Uu
′, t =

L

U
t′,

p = ρ1U
2p′, ρ = ρ1ρ

′, µ = µ1µ
′ ,

(2.9)

where the primed quantities are dimensionless and L, U, ρ1, µ1 are respectively the characteristic

length, characteristic velocity, density of fluid #1, and dynamic viscosity of fluid #1.

Substituting the above into equations (2.7) and (2.8), and dropping the primes, we have

∇ · u = 0 , (2.10)

Du

Dt
= −

1

ρ(φ)
∇p+

1

ρ(φ)Re
∇ · (2µ(φ)D)−

1

ρ(φ)We
κ(φ)δ(φ)∇φ , (2.11)

where the density ratio, viscosity ratio, Reynolds number, and Weber number are defined by

ρ(φ) =





1 if φ ≥ 0

ρ2/ρ1 if φ < 0
,

µ(φ) =





1 if φ ≥ 0

µ2/µ1 if φ < 0
,

Re =
ρ1UL

µ1
,

We =
ρ1U

2L

σ
.

(2.12)

Since the interface moves with the fluid, the evolution of the level set is governed by

∂φ

∂t
+ u · ∇φ = 0 . (2.13)

We choose this form because the interface moves advectively.

Since equations (2.5), (2.10), and (2.11) are expressed in terms of the vector notation, they

assume the same form in Cartesian coordinates and axisymmetric coordinates. In axisymmetric

coordinates (r, z), the curvature can be expanded as

κ(φ) = ∇ ·

(
∇φ

|∇φ|

)
=
φrrφ

2
z − 2φrzφrφz + φzzφ

2
r + φr(φ

2
r + φ2

z)/r

(φ2
r + φ2

z)
3/2

, (2.14)

where the subscripts r and z denote the partial derivatives, i.e.

φr ≡
∂φ

∂r
, φz ≡

∂φ

∂z
, φrz ≡

∂2φ

∂r∂z
, and so on . (2.15)

By including appropriate definitions of the derivatives, the viscosity term becomes

∇ · [2µ(φ)D]

=

{
1

r

∂

∂r

(
2µ(φ)r

∂u

∂r

)
− 2µ(φ)

u

r2
+

∂

∂z

[
µ(φ)

(
∂v

∂r
+
∂u

∂z

)]}
er

+

{
1

r

∂

∂r

[
µ(φ)r

(
∂v

∂r
+
∂u

∂z

)]
+

∂

∂z

(
2µ(φ)

∂v

∂z

)}
ez .

(2.16)
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2.2 Boundary Conditions

On solid walls, we assume that both the normal and tangential components of the velocity vanish

(this must be amended at the triple point, which we discuss below). At both inflow and outflow, our

formulation allows us to specify either velocity or pressure boundary conditions. Time-dependent

inflow conditions are provided by an equivalent circuit model which mimics the charge-driven

mechanism which forces ink from the bath into the nozzle.

2.3 Contact Models

At the triple point, where air and ink meet at the solid wall, several choices are available for the

boundary conditions.

• We can choose to enforce the no-slip condition. In this case, the triple point will remain fixed,

since the fluid does not move tangential to the walls, and produce a very long fluid bubble

which remains attached to the wall.

• We can choose to enforce some sort of condition which restricts the critical angle that is al-

lowed, this means that the triple point will move. To do so without connecting this movement

to the fluid velocity violates conservation of mass.

• A third option is to relax the no-slip condition in the neighborhood of the triple point once

the critical angle is exceeded; the idea here is to allow the local flow at the triple point to

quickly accelerate whenever the critical angle is exceeded (see, for example, Bertozzi[6]).

In this paper, we adopted the following slipping contact line model. Consider the air-liquid

interface and the contact line shown in Fig. 2. We first define the contact angle θ as the angle

made by the air-liquid interface and the solid, measured from the side of the liquid by approaching

the contact line (i.e. the triple point) as close as possible. The advancing critical contact angle θa

and receding critical contact angle θr are the maximum and minimum contact angles for the triple

point to stay. In most situations θr < θa. But the receding critical angle may be very close or even

equal to the advancing critical angle. Actual values of θa and θr depend on both the fluids and

the solid surface. The velocity vB is the tangential velocity of the air-liquid interface at point B,

which is located on the interface and is ξC from the contact point. For Epson’s dye-based ink and

print head nozzle wall, θa and θr are about 70◦ and 20◦. We used ξC = 0.5 µm in all the numerical

computations presented in this work.

We use the following criteria to decide whether to let the triple point move:

• The triple point is allowed to move toward the air side if θ ≥ θa and vB > 0.

• The triple point is allowed to move toward the liquid side if θ ≤ θr and vB < 0.
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• The triple point should not move otherwise.

We note that according to this model, the triple point is not allowed to move toward the ink (air)

side if θ ≥ θa (θ ≤ θr).

If the triple point is not allowed to move, the boundary condition at the solid wall is the no-slip

condition. If the triple point is allowed to move, the no-slip condition in a close vicinity of the

triple point is switched to the free slip condition. In this work, we chose to set two cells at each

side of the contact point to free slip should the triple point be allowed to move. For example, the

cells containing A, C, and D are given the free slip boundary condition while the cell containing

E is given the no slip condition (since most part of its solid wall is more than two cells from the

contact point).

We note that, applying the above contact model, the slipping velocity of the contact point is

always decided by the flow instead of by anything artificial.

2.4 Equivalent circuit

In a piezo ink jet print head, the formation of the ink droplet is controlled by a piece of piezoelectric

PZT (lead zirconate titanate) actuator. Driven by the input voltage, the PZT pushes and, then

pulls the ink. To numerically simulate an ink jet, one needs to prescribe a velocity or pressure at

the inflow to the nozzle. However, only the input voltage to the PZT is known.

An equivalent circuit model can be used to model the problem. The ink flow rate and pressure

are first taken as dependent variables. Each component of the ink jet print head, such as the

nozzle, pressure chamber, vibration plate, PZT actuator, and ink cartridge, is expressed in terms

of the compliance and acoustic resistance. These acoustics elements are finally transferred to their

equivalent inductance, capacitance, and electric resistance to form an equivalent circuit. By solving

the equivalent circuit and the flow equations in turn, one simulates a real ink jet.

The particular equivalent circuit we use is not described here; readers are referred to Sakai[15]

for an introduction to print head structures and equivalent circuits. A typical driving voltage

pattern and a typical inflow pressure are as shown in Figures 3 and 4. The driving voltage is such

that the ink is first pulled back, pushed and fired, and then pulled back to get ready for the next

jetting. The inflow pressure shown in Figure 4 reflects the reaction of a typical nozzle-ink channel-

PZT-cartridge system to the applied voltage. The pressure pattern contains several high frequency

signals. The biggest one is basically the fundamental natural frequency of the system, which is

five to six times higher than the driving voltage frequency in this case. The small oscillations are

probably related to the natural frequencies of the components in the system.
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3 Numerical Algorithms on Rectangular Grids

In the paper, the superscript n (or n+ 1) denotes the time step, i.e.

u
n = u(t = n∆t) (3.1)

and so on. Given quantities u
n, pn, φn, the purpose is to obtain u

n+1, pn+1, φn+1 which satisfy the

condition of incompressibility (2.10). The explicit algorithm we describe will be first-order accurate

in time and second-order accurate in space.

3.1 Temporal Discretization

The boundary condition on the nozzle wall stems from the proposed contact model. The inflow

pressure at tn+1 is given by the equivalent circuit.

3.1.1 Level set update

The level set is updated by

φn+1 = φn −∆t [u · ∇φ]n+1/2 . (3.2)

The time-centered advection term [u · ∇φ]n+1/2 is evaluated using an explicit predictor-corrector

scheme that requires only the available data at tn; more detail is given in section 3.2. Once φn+1

is obtained, we compute φn+1/2 by using the update rule

φn+1/2 =
1

2

(
φn + φn+1

)
. (3.3)

3.1.2 Explicit algorithm for Navier-Stokes equations

In Puckett et al.[14] and Sussman et al.[21], the temporal discretization is explicit for the advection

term and semi-implicit for the viscosity term. In our work, an explicit temporal discretization is

applied to the viscosity term to limit the compute time spent on the inversion of the viscosity term:

this explicit temporal discretization is given by

u
n+1 − u

n

∆t
+ [(u · ∇)u]n+1/2

= −
1

ρ(φn+1/2)
∇pn+1 +

1

ρ(φn+1/2)Re
∇ ·

[
2µ(φn+1/2)Dn

]

−
1

ρ(φn+1/2)We
[κ(φ)δ(φ)∇φ]n+1/2 .

(3.4)

If we define

u
∗ = u

n + ∆t

{
− [(u · ∇)u]n+1/2 +

1

ρ(φn+1/2)Re
∇ ·

[
2µ(φn+1/2)Dn

]

−
1

ρ(φn+1/2)We
[κ(φ)δ(φ)∇φ]n+1/2

}
,

(3.5)
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the time-discretized Navier-Stokes equations can be written as

u
n+1 = u

∗ −
∆t

ρ(φn+1/2)
∇pn+1 . (3.6)

We apply a second-order explicit Godunov scheme for the advection term and the central differ-

ence for the viscosity term in (3.5). They will be explained later. It is clear that the determination

of u
∗ needs only values at time step n.

3.1.3 Projection for u
n+1

To satisfy the incompressibility condition for time step n+ 1, we apply the divergence operator on

both sides of (3.6). Since ∇ · un+1 = 0, we have

∇ · u∗ = ∇ ·

(
∆t

ρ(φn+1/2)
∇pn+1

)
. (3.7)

The projection equation (3.7) is elliptic. It reduces to a Poisson equation if the density ratio

ρ(φn+1/2) is a constant. After the pressure pn+1 is solved from equation (3.7), the velocity field

u
n+1 can be obtained by (3.6).

To simplify the implementation for arbitrary geometries, we use a finite element projection of

the form ∫

Ω
u
∗ · ∇ψdx =

∫

Ω

∆t

ρ(φn+1/2)
∇pn+1 · ∇ψdx +

∫

Γ1

ψu
BC · ndS , (3.8)

where ψ is the finite element weighting function, Γ1 denotes all the boundary with inflow or outflow,

and u
BC is the given boundary velocity. It is easy to see by the divergence theorem that the implied

boundary condition at Γ1 is

∆t

ρ(φn+1/2)

∂pn+1

∂n
=
(
u
∗ − u

BC
)
· n . (3.9)

The use of the finite element projection (3.8) in an otherwise finite difference scheme was first

proposed by Almgren et al.[2], where the finite element projection was called an “approximate

projection.” This idea was then applied to variable density flows by Puckett et al.[14]. The choice

of the weighting function, as well as the approximant for the pressure and velocity, is flexible. In

our implementation, the weighting function and the pressure are chosen to be piecewise bilinear,

and the velocity be piecewise constant.

3.1.4 Re-initialization of the level set

To correctly capture the interface and accurately calculate the surface tension, the level set function

should remain a signed distance function to the interface as the calculations unfolds. However, if we

update the level set by (2.10), it will not remain as such. Instead, we periodically stop the simulation
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and recreate a new level set function φ which is the signed distance function, i.e. |∇φ| = 1, without

changing the zero level set of the original level set function. Details about re-initialization times

and criteria can be found in Sethian[19].

The need to do so in level set calculations was first recognized by Chopp[8]. Re-initialization

was an integral part of the level set fluid calculations in Sussman et. al.[23]. A direct and simple

method for re-initialization is to first find the interface (the zero level set) using a standard contour

plotting algorithm and then recalculate the signed distance from each cell to the interface. Another

simple re-initialization choice is to solve the crossing time problem

φt′ + F |∇φ| = 0 , (3.10)

where F is a given normal velocity. We not that we have used t′ in the equation to emphasize that it

is a pseudo time variable and the equation is solved solely for the purpose of re-initialization. With

F = 1, we flow the interface forwards and backwards in time and calculate the time t′ at which the

level set function changes sign for each cell. The crossing times (both positive and negative) are

equal to the signed distances.

We have tried both of the two simple methods in our code and do not notice any differences in

simulation results. Readers are referred to Sethian[19] for an introduction to other re-initialization

techniques.

3.2 Approximation of the Advection Term

The algorithm for the advection terms is based on the unsplit Godunov method introduced by

Colella[11].

Referring to Figures 5a and 5b, the velocity components u
n
i,j and the level set function values

φn
i,j are located at cell centers, and the pressure pn

i,j is located at grid points. The time-centered

edge velocities and level set function values (also called the “predictors”), such as u
n+1/2
i+1/2,j, φ

n+1/2
i+1/2,j,

and so on, are located at the middle point of each edge. To evaluate the advection terms, we use

[(u · ∇)u]
n+1/2
i,j =

u
n+1/2
i+1/2,j + u

n+1/2
i−1/2,j

2

u
n+1/2
i+1/2,j − u

n+1/2
i−1/2,j

∆r

+
v

n+1/2
i,j+1/2 + v

n+1/2
i,j−1/2

2

u
n+1/2
i,j+1/2 − u

n+1/2
i,j−1/2

∆z
,

(3.11)

[(u · ∇)φ]
n+1/2
i,j =

u
n+1/2
i+1/2,j + u

n+1/2
i−1/2,j

2

φ
n+1/2
i+1/2,j − φ

n+1/2
i−1/2,j

∆r

+
v

n+1/2
i,j+1/2 + v

n+1/2
i,j−1/2

2

φ
n+1/2
i,j+1/2 − φ

n+1/2
i,j−1/2

∆z
.

(3.12)

In the above equations, the edge velocities and edge level sets are obtained by using a Taylor

expansion in space and time. The time derivative u
n
t and φn

t are given by the Navier-Stokes
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equations and the level set convection equation. We extrapolate from both sides of the edge and

then apply the Godunov type upwinding to decide which extrapolation to use. Here we explain

in detail how to obtain u
n+1/2
i+1/2,j; the other time-centered edge values may be derived in a similar

manner.

To begin, extrapolate from the left:

u
n+1/2,L
i+1/2,j = u

n
i,j +

∆r

2
u

n
r,i,j +

∆t

2
u

n
t,i,j

= u
n
i,j +

1

2

(
∆r −∆tun

i,j

)
u

n
r,i,j −

∆t

2
(v̂uz)i,j +

∆t

2
F

n
i,j ,

(3.13)

where

F
n
i,j =

{
−

1

ρ(φ)
∇p+

1

ρ(φ)Re
∇ · (2µ(φ)D)−

1

ρ(φ)We
κ(φ)δ(φ)∇φ

}n

i,j

. (3.14)

We then extrapolate from the right:

u
n+1/2,R
i+1/2,j = u

n
i+1,j −

∆r

2
u

n
r,i+1,j +

∆t

2
u

n
t,i+1,j

= u
n
i+1,j −

1

2

(
∆r+ ∆tun

i+1,j

)
u

n
r,i+1,j −

∆t

2
(v̂uz)i+1,j +

∆t

2
F

n
i+1,j .

(3.15)

We use the monotonicity-limited central difference scheme (Colella[10]) for the evaluation of the

normal slopes, which is u
n
r,i,j in this case. The limiting is done on each component of the velocity

at tn separately. The transverse derivative term (v̂uz)i,j is evaluated by first extrapolating u to the

transverse faces from the cell center, using normal derivatives only, and then applying the Godunov

type upwinding. The detail will be given later in subsections 3.2.1 and 3.2.2.

The next step is the Godunov upwinding. We choose u
n+1/2,L
i+1/2,j or u

n+1/2,R
i+1/2,j according to

u
n+1/2
i+1/2,j =






u
n+1/2,L
i+1/2,j if u

n+1/2,L
i+1/2,j > 0 and u

n+1/2,L
i+1/2,j + u

n+1/2,R
i+1/2,j > 0

u
n+1/2,R
i+1/2,j if u

n+1/2,R
i+1/2,j < 0 and u

n+1/2,L
i+1/2,j + u

n+1/2,R
i+1/2,j < 0

0 otherwise

(3.16)

v
n+1/2
i+1/2,j

(
or φ

n+1/2
i+1/2,j

)
=






v
n+1/2,L
i+1/2,j

(
or φ

n+1/2,L
i+1/2,j

)
if u

n+1/2
i+1/2,j > 0

v
n+1/2,R
i+1/2,j

(
or φ

n+1/2,R
i+1/2,j

)
if u

n+1/2
i+1/2,j < 0

v
n+1/2,L
i+1/2,j + v

n+1/2,R
i+1/2,j

2



or
φ

n+1/2,L
i+1/2,j + φ

n+1/2,R
i+1/2,j

2



 if u
n+1/2
i+1/2,j = 0 .

(3.17)

These intermediate edge velocities are, in general, not divergence-free. We need to use an

intermediate marker-and-cell (MAC) projection to make all the normal edge velocities divergence-

free. Suppose q is a function which is smooth enough and u
e the edge velocities obtained as in

(3.13)-(3.17). We want

u
e −

1

ρ(φn)
∇q (3.18)

11



to be divergence-free. By taking the divergence of (3.18), we have

∇ ·

(
1

ρ(φn)
∇q

)
= ∇ · ue . (3.19)

Since we apply the MAC projection for edge velocities, we let q be cell-centered. Multiplying

(3.19) by r for axi-symmetric coordinates, we have

∂

∂r

(
r

ρ(φ)

∂q

∂r

)
+

∂

∂z

(
r

ρ(φ)

∂q

∂z

)
=

∂

∂r
(rue) +

∂

∂r
(rve) , (3.20)

where we have omitted the superscript n for the level set. Hence, the discretized equation is given

by
1

∆r2

[
ri+1/2,j

(ρ(φ))i+1/2,j
(qi+1,j − qi,j)−

ri−1/2,j

(ρ(φ))i−1/2,j
(qi,j − qi−1,j)

]

+
ri,j
∆z2

[
1

(ρ(φ))i,j+1/2
(qi,j+1 − qi,j)−

1

(ρ(φ))i,j−1/2
(qi,j − qi,j−1)

]

=
ri+1/2,ju

n+1/2
i+1/2,j − ri−1/2,ju

n+1/2
i−1/2,j

∆r
+
ri,j

(
v

n+1/2
i,j+1/2 − v

n+1/2
i,j−1/2

)

∆z
.

(3.21)

The boundary condition for the intermediate projection should be compatible with the physical

boundary conditions. On solid walls, u · n = 0, which is already used in the construction of the

edge velocity u
e; thus, we have a homogeneous Neumann boundary condition on q, namely ∂q

∂n = 0.

At the inflow or outflow, if a velocity is prescribed, it is again a homogeneous Neumann boundary

condition on q, since the given velocity at tn+1/2 has been included in obtaining u
e. If a pressure

is given, the corresponding condition on q is

q =
∆t

2
pboundary , (3.22)

where the factor 2 in the denominator appears because the edge velocity is time-centered.

After qi,j is solved, we replace all the normal edge velocities by

u
n+1/2
i+1/2,j ← u

n+1/2
i+1/2,j −

1

(ρ(φ))i+1/2,j

qi+1,j − qi,j
∆r

,

v
n+1/2
i,j+1/2 ← v

n+1/2
i,j+1/2 −

1

(ρ(φ))i,j+1/2

qi,j+1 − qi,j
∆z

.
(3.23)

3.2.1 Evaluation of the normal derivatives

The normal derivatives in (3.13) and (3.15) are evaluated using the fourth-order monotonicity-

limited central difference scheme by Colella[10]. For uniform rectangular grid, we show how to

calculate ur,i,j. We begin with the following difference operators defintions:

Dc
r(u)i,j = (ui+1,j − ui−1,j)/2 ,

D+
r (u)i,j = (ui+1,j − ui,j) ,

Dc
r(u)i,j = (ui,j − ui−1,j) .

(3.24)
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These operators are then used to define the limiting slope

δlim(u)i,j =





min(2|D−

r (u)i,j|, 2|D
+
r (u)i,j|) if (D−

r (u)i,j)(D
+
r (u)i,j) > 0

0 otherwise ,
(3.25)

and the second-order limited slope

δf (u)i,j = min(|Dc
r(u)i,j|, δlim(u)i,j)× sign(Dc

r(u)i,j) . (3.26)

The fourth-order limited slope is given by

δ4r(u)i,j = min

(∣∣∣∣
4Dc

r(u)i,j

3
−
δf(u)i+1,j + δf(u)i−1,j

6

∣∣∣∣ , δlim(u)i,j

)
× sign(Dc

r(u)i,j) , (3.27)

and the fourth-order monotonicity-limited normal derivative is simply

ur,i,j = δ4r (u)i,j/∆r . (3.28)

3.2.2 Evaluation of the tangential derivatives

In Taylor’s extrapolations (3.13) and (3.15), the normal derivatives are computed using the monotonicity-

limited central difference scheme. However, to ensure stabilitiy, the tangential derivative should be

computed using some sort of upwind schemes. Here we illustrate one possible approach, namely

(v̂uz)i,j =
v̂adv
i,j+1/2 + v̂adv

i,j−1/2

2

ûi,j+1/2 − ûi,j−1/2

∆z
. (3.29)

In the above equation, ûi,j+1/2 and v̂adv
i,j+1/2 are again derived from Taylor’s extrapolation from the

top and bottom of the edge. Neglecting pressure, viscosity, and surface tension terms as well as

the tangential derivatives, this yields:

û
B
i,j+1/2 = u

n
i,j +

1

2

(
∆z −∆tvn

i,j

)
u

n
z,i,j ,

û
T
i,j+1/2 = u

n
i,j+1 −

1

2

(
∆z + ∆tvn

i,j+1

)
u

n
z,i,j+1 .

(3.30)

The derivatives at the right hand side are again computed using the monotonicity-limited central

difference described in subsection 3.2.1.

All that remains is to perform the upwind evaluation to obtain û
n
i,j+1/2 and v̂adv

i,j+1/2:

v̂adv
i,j+1/2 =






v̂B
i,j+1/2 if v̂B

i,j+1/2 > 0 and v̂B
i,j+1/2 + v̂T

i,j+1/2 > 0

v̂T
i,j+1/2 if v̂T

i,j+1/2 < 0 and v̂B
i,j+1/2 + v̂T

i,j+1/2 < 0

0 otherwise ,

(3.31)

ûi,j+1/2 =






û
B
i,j+1/2 if v̂adv

i,j+1/2 > 0

û
T
i,j+1/2 if v̂adv

i,j+1/2 < 0

û
B
i,j+1/2 + û

T
i,j+1/2

2
if v̂adv

i,j+1/2 = 0 .

(3.32)
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3.3 Thickness of the Interface

Because of the numerical difficulty caused by the Dirac delta function and by the sharp change of

ρ and ν across the free surface, the Heaviside and Dirac delta functions are replaced by smoothed

functions. The Heaviside function (see Sussman et al.[23]) is redefined as

H(φ) =






0 if φ < −ε
1

2
[1 +

φ

ε
+

1

π
sin(πφ/ε)] if |φ| ≤ ε

1 if φ > ε .

(3.33)

Accordingly, the smoothed delta function is

δ(φ) =
dH(φ)

dφ
. (3.34)

It is clear that the thickness of the interface is 2ε if the level set is a distance function.

In our numerical calculation, the parameter ε is chosen to be related to the mesh size

ε =
α

2
(∆r + ∆z) , (3.35)

where α = 2 in this work. The thickness of the interface reduces as we refine the mesh. Nonetheless,

for any numerically practical choices, the interface will necessarily have some smearing.

3.4 Constraint on Time Step

Since our time integration scheme is 2nd-order explicit for the convection term and 1st-order explicit

for viscosity, the constraint on time step ∆t is determined by the CFL condition, surface tension,

viscosity, and total acceleration (Sussman[21]), as in

∆t < min
i,j

[
∆r

u
,
∆z

v
,

√
We

ρ1 + ρ2

8π
h3/2 ,

Re

2

ρn

µn

(
1

∆r2
+

1

∆z2

)−1

,

√
2h

|F |

]
, (3.36)

where h = min(∆r,∆z) and F is defined in (3.14).

3.5 Formulation of FEM projection

We let u
∗ be piecewise constant while pn+1 and ψ be piecewise bilinear. For the term

∫
Ω

∆t
ρ(φn+1/2)

∇pn+1·

∇ψdx, we show how to derive the integral related to the weighting function ψi,j. As shown in Figure

6a, the contribution to the ψi,j-related integral comes from the cell with corner points A1, A2, A3, A4

because the weighting function ψi,j has the value ψ̂i,j at node (i, j) and vanishes at all other nodes.
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The contribution from A1 is

∫

A1

(
1

ρ(φ)
∇pn+1

)
· ∇ψi,jdx

=

∫

A1

(
1

ρi,j
∇pn+1

)
· ∇ψi,jdx

=
2π

ρi,j(∆r∆z)2

∫ 0

z=−∆z

∫ 0

r=−∆r
∇
[
pn+1

i,j (r+ ∆r)(z + ∆z)− pn+1
i−1,jr(z + ∆z)

−pn+1
i,j−1(r + ∆r)z + pn+1

i−1,j−1rz
]

·∇
[
ψ̂i,j(r+ ∆r)(z + ∆z)

]
(ri,j + r)drdz

=
2π

3ρi,j
ψ̂i,j

[
pn+1

i,j

(
∆z

∆r
Q1ri,j −

∆z

2
Q3

)
− pn+1

i−1,j

(
∆z

∆r
ri,j −

∆z

2

)
Q4

−pn+1
i,j−1

(
∆r

∆z
Q5ri,j +

∆z

4
Q2

)
− pn+1

i−1,j−1

(
∆z

2∆r
ri,j −

∆z

4

)
Q1

]
,

(3.37)

where ri,j is the radius at the center of cell (i, j) and

Q1 = 1 +
∆r2

∆z2
, Q2 = 1−

∆r2

∆z2
,

Q3 = 1 +
∆r2

2∆z2
, Q4 = 1−

∆r2

2∆z2
,

Q5 = 1−
∆z2

2∆r2
.

(3.38)

Similarly, one can obtain the contribution to the ψi,j-related integral from A2, A3, and A4.

For the term
∫
Ω u

∗ · ∇ψdx, we show all the contribution from the point A1, which includes the

ψi,j, ψi,j−1, ψi−1,j−1, and ψi−1,j-related quantities:

∫

A1

u
∗ · ∇ψdx

=
2π

∆r∆z

∫ 0

z=−∆z

∫ 0

r=−∆r

{
ψ̂i,j∇ [(r + ∆r)(z + ∆z)]− ψ̂i,j−1∇ [(r+ ∆r)z]

−ψ̂i−1,j∇ [r(z + ∆z)] + ψ̂i−1,j−1∇ (rz)
}
· u∗

i,j(ri,j + r)drdz

= π

{
ψ̂i,j

[
(∆rv∗i,j + ∆zu∗i,j)ri,j −

∆r

2
(∆zu∗i,j +

2∆r

3
v∗i,j)

]

−ψ̂i,j−1

[
(∆rv∗i,j −∆zu∗i,j)ri,j +

∆r

2
(∆zu∗i,j −

2∆r

3
v∗i,j)

]

+ψ̂i−1,j

[
(∆rv∗i,j −∆zu∗i,j)ri,j +

∆r

2
(∆zu∗i,j −

4∆r

3
v∗i,j)

]

−ψ̂i−1,j−1

[
(∆rv∗i,j + ∆zu∗i,j)ri,j −

∆r

2
(∆zu∗i,j +

4∆r

3
v∗i,j)

]}
.

(3.39)

For the boundary integral
∫
Γ1
ψu

BC · ndS, we show the formula for the case that Γ1 is a

horizontal line at the bottom of the solution domain (see Figure 6b). We also assume that u
BC is

given at the middle point of each cell edge and is piecewise constant. The integral for the bottom

15



edge of the cell (i, 1) is thus given by
∫

bottom of (i,1)
ψu

BC · ndS

=

∫ 0

−∆r

2π

∆r

[
ψ̂i,0(r + ∆r)− ψ̂i−1,0r

](
−vBC

i

)
(ri,0 + r) dr

= −π∆r

[
ψ̂i,0

(
ri,0 −

∆r

3

)
+ ψ̂i−1,0

(
ri,0 −

2∆r

3

)]
vBC
i .

(3.40)

4 Numerical Results

4.1 Convergence study

For a convergence check of our code for ink jet simulation, we considered a typical nozzle as in

Figure 1. The diameter is 26 microns at the opening and 65 microns at the bottom. The length of

the nozzle opening part, where the diameter is 26 microns, is 20.8 microns. The slant part is 59.8

microns and the bottom part is 7.8 microns.

The inflow pressure is given by an equivalent circuit which simulates the effect of the ink

cartridge, supply channel, vibration plate, PZT actuator, applied voltage, and the ink inside the

channel and cartridge. We assumed that the input voltage is given by Figure 3. The corresponding

inflow pressure is as shown in Figure 4. The outflow pressure at the top of the solution domain is

set to zero.

The solution domain was chosen to be {(r, z)|0≤ r ≤ 39µm , 0 ≤ z ≤ 312µm}. Since the slant

part of the nozzle wall is not parallel to the coordinate axes, we applied the “method of obstacle

cells” (see Griebel et al.[12]) in discretizing the nozzle geometry using homogeneous rectangular

cells. As a result the nozzle wall has a staircase pattern (see Fig. 7). A better approximation would

result from using a body-fitted quadrilateral mesh. In [25], the projection method is extended to

an arbitrary general quadrilateral mesh. Those results indicate that the difference between using a

staircase representation vs. a body-fitted mesh, while important for small-scale boundary effects,

is not significant in terms of computing the pinch-off time, bubble velocity, and satellite formation.

The contact angle was assumed to be 90◦ all the time and the initial meniscus is assumed to be

flat and 2.6 microns lower than the nozzle opening.

For the purpose of normalization, we chose the nozzle opening diameter (26 microns) to be

the length scale and 6 m/sec to be the velocity scale. The normalized solution domain is hence

{(r, z)|0 ≤ r ≤ 1.5 , 0 ≤ z ≤ 12}. Since the density, viscosity, and surface tension of ink are

approximately

ρ1 = 1070 Kg/m3 , µ1 = 3.34× 10−3 Kg/m · sec , σ = 0.032 Kg/sec2 , (4.1)

we have the following non-dimensional parameters

Re = 50. , We = 31.3 . (4.2)
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The density and viscosity of air are

ρ2 = 1.225 Kg/m3 , µ2 = 1.77625× 10−3 Kg/m · sec . (4.3)

To check the convergence of our code, we list in Tables 1, 2, and 3 the time of droplet pinch off,

droplet head velocity, and droplet volume obtained from our code using various meshes.

It is seen that the 25×200 mesh does not conserve mass well. This is because the widest part of

the ink droplet is only 7 to 8 cells wide. On such coarse meshes, level set methods incur substantial

mass loss. While remedies have been proposed, they typically maintain global mass conservation

but suffer from local mass loss. The most effective remedy is a careful attention to re-initialization

issues, higher order schemes, and sufficient grid resolutions.

4.2 Effect of contact model

Our results indicate that the choice of contact model has an effect on the results. For the first

droplet, the dependence on the particular contact model is not that significant. We simulated the

continuous droplet ejection by repeating the voltage pattern in Fig. 3 at a frequency of 14.4KHz.

Results with the contact model and results assuming a constant contact angle of 90◦ are plotted in

Figs. 8 and 10. Close up views at the triple point are shown in Fig. 9 and 11.

We see from Fig. 8 and 9 that the center of the meniscus retreats deep into the nozzle when

the first droplet pinches off at t = 31.42µs. The ink droplet continues moving upward and breaks

into one major droplet and one or more satellites. At the same time, the capillary force of the

meniscus pulls the ink in the nozzle upward so that the ink flows from the cartridge into the

nozzle. The meniscus returns to the nozzle opening and recovers to almost a straight line before

the nozzle is ready for the next ejection (t = 57.42µs). Thus the second droplet as shown in Fig. 8

is slightly bigger than the first one. This transient phenomenon is consistent with our experimental

observation. If the simulation is continued, the third, fourth, and later droplets are basically as big

as the second droplet.

If the contact angle is assumed to be 90◦ all the time, as is the case in Fig. 10, the capillary

force is not big enough at the pinch off (slightly later than t = 31.42µs) of the first droplet. Hence

the nozzle is not correctly refilled before the start of the second ejection. Subsequent droplets are

smaller than the initial droplet, which is contrary to experimental observations.

4.3 Experimental verification

An experimental result is plotted in Fig. 13. The nozzle used in the experiment is 25 microns

in diameter at the opening and 49.5 microns at the bottom. The length of the nozzle opening

part, where the diameter is 25 microns, is 25 microns. The slant part is 55 microns long and the
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bottom part is 7.5 microns. The nozzle is not shown in Fig. 13 but the position of nozzle exit is

at the upper edge of each of the six images. The density, viscosity, and surface tension of Epson’s

dye-based ink are

ρ1 = 1070 Kg/m3 , µ1 = 3.7× 10−3 Kg/m · sec , σ = 0.032 Kg/sec2 , (4.4)

The dynamic voltage used in the experiment is plotted in Fig. 12, where the peak voltages are

±10.96volts. Simulation results are shown in Fig. 14.

The average droplet size obtained from the experiment is 12.928 pico liters. Simulation of this

ink jet using a 64× 672 grid predicts 11.659 pico liters. Fig. 13 shows that the ink droplet leaves

the nozzle at a time between 30µs and 35µs. Since the pinch off from the meniscus usually happens

somewhere inside the nozzle, we can not see it in the experiment. Our simulation predicts that the

pinch off occurs at t = 30.80µs and that the droplet tail leaves the nozzle at t = 31.50µs, in good

agreement with experiments.

4.4 Effect of parameters

The effects of some design parameters can be seen using the simulation code. Here we only illustrate

two of them. The relation between the ink droplet volume and the peak voltage is plotted in Fig.

15. Although the two-phase flow problem is highly nonlinear, the curve in Fig. 15 is essentially

linear. The droplet velocity increases and the “time to droplet pinch off” becomes longer as the peak

voltage increases. As a result, the ejected droplet gets longer and, due to the capillary instability,

tends to develop into more satellites. Hence increasing the driving voltage is not a solution for

bigger ink droplets. The magnitude of surface tension coefficient does not influence the droplet

size as much as the peak voltage, however it affects the time of pinch off. Plotted in Fig. 16 is

the relation between pinch off time and surface tension coefficient, showing that a larger surface

tension causes earlier pinch off.

5 Summary

We have developed an axisymmetric second order coupled level set projection method with contact

model to model flow in an ink jet printhead, performed numerical simulations to check internal con-

sistency, and compared results with experimental data. In the future, we plan a closer examination

of wall forces, thin structures and temperature terms.
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Mesh number 25× 200 50× 400 75× 600 100× 800

Time to pinch off 8.0944 8.1808 8.1755 8.1738

Table 1: The time to pinch off from various meshes.

Mesh number 25× 200 50× 400 75× 600 100× 800

t=3.20 1.494 1.411 1.471 1.496

t=4.48 1.245 1.188 1.219 1.246

t=5.76 1.047 1.012 1.065 1.093

t=6.72 0.972 0.932 0.990 1.023

Table 2: Droplet head velocities from various meshes.

Mesh number 25× 200 50× 400 75× 600 100× 800

t=8.64 0.5768 0.7318 0.7408 0.7440

t=8.96 0.5659 0.7279 0.7389 0.7429

t=9.28 0.5548 0.7236 0.7369 0.7417

t=9.60 0.5416 0.7189 0.7347 0.7405

t=9.96 0.5281 0.7140 0.7325 0.7396

Table 3: Droplet volumes from various meshes.
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Figure 1: The cross section view of an ink jet nozzle.
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Figure 2: An ink-air interface and the contact point.
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Figure 3: A typical ink jet driving voltage (one cycle).
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Figure 4: A typical inflow pressure (one cycle).
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Figure 5: Location of Variables
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Figure 6: Location of Variables
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t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

Figure 8: The continuous droplet ejection with the use of the contact model.

t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

Figure 9: A close up view at the triple point (with the contact model).
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t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

Figure 10: The continuous droplet ejection by assuming that the contact angle is always 90◦.

t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

Figure 11: A close up view at the triple point (Contact angle = 90◦).
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Figure 12: The driving voltage used in experiment.
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Figure 13: Shape of the ink droplet at t = 25, 30, 35, 40, 45, 50µs.
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Figure 14: Ejection of an ink droplet from simulation.
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Figure 15: The relation between the droplet volume and the peak value of the driving voltage.
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Figure 16: The relation between the time of pinch off and the surface tension.
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