An Overview of Level Set Methods for Etching,
Deposition, and Lithography Development*

J.A. Sethian and D. Adalsteinsson |

Department of Mathematics
and
Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

Submitted for Publication: Jan. 8, 1996

IEEE Transactions on Semiconductor Manufacturing

Abstract

The range of surface evolution problems in etching, deposition, and lithography develop-
ment offers significant challenge for numerical methods in front tracking. Level set methods
for evolving interfaces are specifically designed for profiles which can develop sharp corners,
change topology, and undergo orders of magnitude changes in speed. They are based on solv-
ing a Hamilton-Jacobi type equation for a level set function, using techniques borrowed from
hyperbolic conservation laws. Over the past few years, a body of level set methods have been
developed with application to microfabrication problems. In this paper, we give an overview of
these techniques, describe the implementation in etching, deposition, and lithography simula-
tions, and present a collection of fast level set methods, each aimed at a particular application.
In the case of photoresist development and isotropic etching/deposition, the fast marching level
set method, introduced by Sethian in [40, 39], can track the three-dimensional photoresist pro-
cess through a 200 x 200 x 200 rate function grid in under 55 seconds on a Sparc10. In the case
of more complex etching and deposition, the narrow band level set method, introduced in [2], can
be used to handle problems in which the speed of the interface delicately depends on the orien-
tation of the interface vs. an incoming beam, the effects of visibility, surface tension, reflection
and re-emission, and complex three-dimensional effects. Our applications include photoresist
development, etching/deposition problems under the effects of masking, visibility, complex flux
integrations over sources, non-convex sputter deposition problems, and simultaneous deposition
and etch phenomena.

1 Introduction

In this paper, we survey the use of level set methods for interface evolution problems in etching,
deposition, and the photoresist development. The goal are accurate, stable, and efficient techniques
for surface advancement due to complex motion which, under different physical effects, may include
effects of anisotropy, visibility conditions, and material-dependent propagation rates. Level set
methods are numerical techniques for tracking evolving interfaces which naturally handle and are
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specifically designed for profiles which can develop sharp corners, change topology, and undergo
orders of magnitude changes in speed as they move. They are based on solving a Hamilton-Jacobi
type equation for a level set function, using techniques borrowed from hyperbolic conservation laws.

In this paper, we present a collection of fast level set methods, each aimed at a particular applica-
tion. In the case of photoresist development and isotropic etching/deposition, the fast marching level
set method, introduced by Sethian in [40, 39], can track the three-dimensional photoresist process
through a 200 x 200 x 200 rate function grid in under 55 seconds on a Sparc10. In the case of more
complex etching and deposition, the narrow band level set method, introduced in [2], can be used
to handle problems in which the speed of the interface delicately depends on the orientation of the
interface vs. an incoming beam, the effects of visibility, surface tension, reflection and re-emission,
and complex three-dimensional effects.

A variety of numerical algorithms are available to advance fronts in etching, deposition and
photolithography processes. These methods are not unique to such simulations, and in fact are
in use in such areas as dendritic growth and solidification, flame/combustion models, and fluid
interfaces. Roughly speaking, they fall into three general categories:

e Marker/String Methods: In these methods, a discrete parametrized version of the interface
boundary is used. In two dimensions, marker particles are used; in three dimensions, a nodal
triangularization of the interface is often developed. The positions of the nodes are then up-
dated by determining front information about the normals and curvature from the marker
representation. Such representations can be quite accurate, however, limitations exist for com-
plex motions. To begin, if corners and cusps develop in the evolving front, markers usually
form “swallowtail” solutions which must be removed through delooping techniques which at-
tempt to enforce an entropy condition inherent in such motion (see [33]). Second, topological
changes are difficult to handle; when regions merge, some markers must be removed. Third,
significant instabilities in the front can result, since the underlying marker particle motions
represent a weakly ill-posed initial value problem (see [23]). Finally, extensions of such meth-
ods to three dimensions require additional work; for an application of marker particle methods
to lithography problems, see [15].

e Cell-Based Methods: Tn these methods, see [22], the computational domain is divided into a set
of cells which contain “volume fractions” These volume fractions are numbers between 0 and 1,
and represent the fraction of each cell containing the physical material. At any time, the front
can be reconstructed from these volume fractions. Advantages of such techniques include the
ability to easily handle topological changes, adaptive mesh methods, and extensions to three
dimensions. However, determination of geometric quantities such as normals and curvature
can be inaccurate. For a good review of such techniques, see [25].

o Characteristic Methods: In these methods, “ray-trace”-like techniques are used. The charac-
teristic equations for the propagating interface are used, and the entropy condition at forming
corners (see [33]) is formally enforced by constructing the envelope of the evolving charac-
teristics. Such methods handle the looping problems more naturally, but may be complex in
three-dimensions and require adaptive adding and removing rays, which can cause instabilities
and/or oversmoothing.

Level set methods, introduced by Osher and Sethian in [23], offer a highly robust and accurate
method for tracking interfaces moving under complex motions. Their major virtue is that they
naturally construct the fundamental weak solution to surface propagation posed by Sethian [32, 33].
They work in any number of space dimensions, handle topological merging and breaking naturally,
and are easy to program. They approximate the equations of motion for the underlying propagating
surface, which resemble Hamilton-Jacobi equations with parabolic right-hand sides. The central



mathematical idea is to view the moving front as a particular level set of a higher dimensional
function. In this setting, sharp gradients and cusps can form easily, and the effects of curvature
may be easily incorporated. The key numerical idea is to borrow the technology from the numerical
solution of hyperbolic conservation laws and transfer these ideas to the Hamilton-Jacobi setting,
which then guarantees that the correct entropy-satisfying solution will be obtained.

Since their introduction in [23], level set techniques have been used in a wide collection of prob-
lems involving moving interfaces. Some of these applications include the generation of minimal
surfaces [10], singularities and geodesics in moving curves and surfaces in [11], flame propagation
[27, 47], fluid interfaces [21], shape reconstruction [19, 18], as well as etching, deposition and lithog-
raphy calculations in [3, 4]. Extensions of the basic technique include fast methods in [2], level set
techniques for multiple fluid interfaces and triple point junctions in [38], crystal growth [42], and
grid generation in [36]. The fundamental Eulerian perspective presented by this approach has since
been adopted in many theoretical analyses of mean curvature flow, in particular, see [12, 9].

The outline of this paper is as follows:

1. Theory
(a) A Time-Dependent Level Set Formulation
(b) A Stationary Time Level Level Set Formulation
(c) Shocks, Entropy Conditions, Curvature and Viscosity
2. Numerical Schemes
(a) Approximations to the Gradient
(b) Fast Narrow Band Methods for the Time-Dependent Formulation
(¢) Fast Marching Methods for the Stationary Formulation
3. Applications
(a) PhotoResist Development
(b) Uni-Directional and Source Deposition/Etching: Visibility, Masking, etc.
(¢) Non-Convex Flux Laws: sputter etching/deposition
(d) Strongly Discontinuous Etch Rates and Simultaneous Etching/Deposition

4. Summary and Future Work

2 Theory of Level Set Methods

Consider a boundary, either a curve in two dimensions or a surface in three dimensions, separating
one region from another, and imagine that this curve/surface moves in its normal direction with a
known speed function F'. The goal is to track the motion of this interface as it evolves. We are
only concerned with the motion of the interface in its normal direction, and shall ignore tangential
motion. This speed F' can depend on a variety of factors; typically, we can categorized them as:

F=F(L,G,I), (1)
where

e L= Local Properties of the front are those determined by local geometric information, such as
curvature and normal direction.

e (GG= Global Properties of the front, such as integrals along the front and associated differential
equations, are those that depend on the shape and position of the front. For example, if the
interface is a source of heat which affects diffusion on either side of the interface which in
turn influences the motion of the interface, then this would be characterized as front-based
argument.




e [: Independent Properties are those that are independent of the shape of the front, such as an
underlying fluid velocity which passively transports the front.

In terms of microfabrication problems, we can categorize some of the typical effects in terms of
the above classification. For example,

e Photoresist development is an “independent property” speed function, since the speed function
is only a function of position and supplied by an external calculation.

e Surface diffusion and angle-dependent speed laws, such as sputter deposition calculations, are
“local properties”, since the orientation of normal to the interface with respect to the incoming
beam controls the front speed.

o Visibilityis a “global property”, since the position of the entire front affects the speed at each
point.

Our goal is to assemble a single framework for looking at these problems.

2.1 A Time-Dependent Level Set Formulation

We now derive the level set formulation. Given an initial position for an interface I', where T is a
closed curve in R?, and a speed function F which gives the speed of I in its normal direction, the
level set method takes the perspective of viewing ' as the zero level set of a function ¢(z,¢ = 0) from
R? to R. That is, let ¢(z,t = 0) = +d, where d is the distance from z to T, and the plus (minus)
sign is chosen if the point z is outside (inside) the initial hypersurface T'. Then, by the chain rule,
an evolution equation for the interface may be produced [23, 35], namely

¢t+F|v¢|:0a (2)
o(z,t =0) = given. (3)

This is an initial value partial differential equation in one higher dimension than the original
problem.! In Figure 1 (taken from [36]), we show the outward propagation of an initial curve and
the accompanying motion of the level set function ¢. There are several advantages to this level set

2= Pry,t=0)

@ N A

©

9=0

Figure 1: Propagating Circle

perspective:

I This is a particular form of the more general Hamilton-Jacobi equation which can be abtractly written as ¢; +

H(¢z, dy).



1. Although ¢(z,) remains a function, the level surface ¢ = 0 corresponding to the propagating
hypersurface may change topology, as well as form sharp corners as ¢ evolves (see [23]).

2. Second, a discrete grid can be used together with finite differences to devise a numerical scheme
to approximate the solution. Care must taken to adequately account for the spatial derivatives
in the gradient.

3. Third, intrinsic geometric properties of the front are easily determined from the level set

function ¢. The normal vector is given by 7 = Y9 and the curvature of each level set is

vo [Vl

4. Finally, the formulation is unchanged for propagating interfaces in three dimensions.

2.2 A Stationary Time Level Set Formulation

In the above level set equation

¢+ FIVe[=0 (4)

the position of the front is given by the zero level set of ¢ at a time ¢. Suppose we now restrict
ourselves to the particular case of a front propagating with a speed F' that is either always positive
or always negative. In this case, we can convert our level set formulation from a time-dependent
partial differential equation to a stationary one in which time has disappeared. We now describe
the stationary level set formulation, given in [40, 39], and common in control theory.

To explain this transformation, imagine the two-dimensional case in which the interface is a
propagating curve, and suppose we graph the evolving zero level set above the zy plane. That is,
let T'(z,y) be the time at which the curve crosses the point (z,y). The surface T'(z,y) then satisfies
the equation

|VT|F = 1. (5)

Eqn. 5 simply says that the gradient of arrival time surface is inversely proportional to the speed of
the front. This is a form of the well-known Eikonal equation, which too is a Hamilton-Jacobi equa-
tion, and the recasting of the problem into a stationary one is common in a variety of applications,
see [13, 14]. The requirement that the speed function always be positive? is so that the crossing
time surface T'(z,y) is single-valued.

To summarize,

e In the time-dependent level set equation, the position of the front I' at time ¢ is given by the
zero level set of ¢ at time ¢, that is T'(t) = {(z, y)|¢(z,t) = 0}.

e In the stationary level set equation, the position of the front T is given by the level set of value
t of the function T'(z,y), that is T'(t) = {(z,y)|T(z,y) = ¢}.

What we shall see in the following section is that in both cases, the the evolving curve/surface can
develop corners where the evolving interface focuses, rarefaction fans where it expands, and regions
where it changes topology. The key to constructing numerical schemes which correctly handle these
mechanisms is to construct what are known as “entropy-satisfying” approximations to the gradient

=

term in both Eqn. 2 and Eqn. 5

2.3 Shocks, Entropy Conditions, Curvature, and Viscosity

As shown in [32, 33, 35], a propagating interface can develop corners and discontinuities as it evolves,
which require the introduction of a weak solution in order to proceed. The correct weak solution

2or conversely, always negative
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Figure 2: Cosine Curve Propagating with Unit Speed

comes from enforcing an entropy condition posed by Sethian [33] for the propagating interface,
similar to the one in gas dynamics. Furthermore, this entropy-satisfying weak solution is the one
obtained by considering the limit of smooth solutions for the problem in which curvature plays a
regularizing role.

As an example, consider the initial cosine curve propagating with speed F' = 1 shown in Figure
2. As the front moves, a corner forms in the propagating front which corresponds to a shock in the
slope, and a weak solution must be developed beyond this point. If the motion of each individual
point is continued, the result is the swallowtail solution shown in Fig. 2a, which is multiple-valued
and does not correspond to a clear interface separating two regions. Instead, an appropriate weak
solution is obtained by considering the associated smooth flow obtained by adding curvature & to
the speed law, that is, letting F = 1 — €k, see Fig. 2b. The limit of these smooth solutions as € goes
to zero produces the weak solution shown in Fig. 2c.

Another way to obtain this same solution is through enforcing an entropy condition posed by
Sethian [32], similar to the one for a scalar hyperbolic conservation law. Tmagine that the front is
the boundary of a propagating flame, separating a burning region below from an unburnt region
above. The front at any time ¢ is the just the set of all points located a distance ¢ from the initial
front. Thus, the entropy condition may be stated briefly as “once a point burns, it stays burnt”, see
[32]. This weak solution corresponds to a decrease in total variation of the propagating front and is
irreversible [33]. For details, see [33].

Since the entropy condition is similar to the one for hyperbolic conservation laws, as a numerical
technique it suggests using that technology to solve the equations of motion, as described in [34].

3 Numerical Schemes

Our goal is to solve both the time-dependent level set equation and the stationary level set equation
for a front propagating with speed F', namely

Time-Dependent Formulation Stationary Formulation
¢t + F|Ve|=0 IVT|F =1 (6)
Front=T'(t) = {(z,y)|¢(z,t) = 0} Front=T(t) = {(z,y)|T(z,y) =t}
Applies for arbitrary F' Requires F > 0

In both cases, we require an “entropy-satisfying” approximation to the gradient term. In this
next section, we discuss appropriate approximations for this term, leading to schemes for both the
time-dependent and stationary level set formulations.



3.1 Approximations to the Gradient
3.1.1 An initial attempt using central differences

As motivation for approximating the gradient, we will study the simpler case of an evolving curve
whose position can always be described as the graph of a function. Consider the initial front given by
the graph of f(z), with f and f’ periodic on [0, 1], and suppose that the propagating front remains a
function for all time. Let 3 be the height of the propagating function at time ¢, thus ¥(z,0) = f(z).
The tangent at (z,) is (1,%). The change in height V in a unit time is related to the speed F in
the tangent direction by

V(e -

F 1 ’ (™

and thus the equation of motion becomes v, = F(1 4 12)'/2.

Suppose we approximate the solution by replacing all spatial derivatives with central differences
and the time derivative with a forward difference. However, it is easy to see that such an algorithm
may not work. Let F(x) = 1 and consider the initial value problem

v = (14 wg)l/z’ P(z,0) = f(z) = { i/f I/QZZ ig };3 } ®)

The initial front is a “V” formed by rays meeting at (1/2,0). By our entropy condition, the solution
at any time ¢ is the set of all points located a distance ¢ from the initial “V”. To construct a numerical
scheme, divide the interval [0, 1] into 2M — 1 points, and form the central difference approximation
to the spatial derivative ¢, in Eqn. 8, namely

1
A 41— it

At 97z 1Y% =1+ D7) 9)

e =[14]
where in the last expression we have used standard notation for the central difference.

Since zpr = 1/2, by symmetry, ¥pr41 = ¥ar—1, thus the right-hand-side is 1. However, for all
x # 1/2, ¢ is correctly calculated to be V/2, since the graph is linear on either side of the corner and
thus the central difference approximation is exact. Note that this has nothing to do with the size
of the space step Az or the time step At. No matter how small we take the numerical parameters,
as long as we use an odd number of points, the approzimation to iy at x = 1/2 gets no better. It
is simply due to the way in which the derivative 1, is approximated. In Figure 3 we show results

using this scheme, with the time derivative i, replaced by a forward difference scheme.

.
<

Exact Solution Central Differences At = .005 Central Differences At = .0005

Figure 3: Central difference approximation to level set equation

It is easy to see what has gone wrong. In the exact solution, v, = v/2 for all  # 1/2. This should
also hold at # = 1/2 where the slope is not defined; the Huyghens construction sets i, (z = 1/2,1)
equal to lim,_,1/5 ¢;. Unfortunately, the central difference approximation chooses a different (and,



for our purpose, wrong) limiting solution. It sets the undefined slope ¥, equal to the average of
the left and right slopes. As the calculation progresses, this miscalculation of the slope propagates
outwards from the spike as wild oscillations. Eventually, these oscillations cause blowup in the code.

3.1.2 Entropy-satisfying upwind differences schemes

We focus on the gradient term (1 + 1/)x2) (we call this a gradient term because ¥, is the one-
dimensional gradient.) Consider now the following finite difference approximation introduced by
Osher and Sethian [23]

Ve’ & (max(DF¥e, 0)% 4+ min(D; "¢, 0)?) (10)

where we have used standard finite difference notation that

_ Y — i DTy = Yiy1 — i (11)

De
h h

(3

<

where ; is the value of ¥ on a grid at the point ¢h with grid spacing h.

Eqn. 10 is an “upwind” scheme (see [41]); it chooses grid points in the approximation in terms
of the direction of the flow of information. Intuitively, upwind means that if a wave progresses
from left to right, then one should use a difference scheme which reaches upwind to the left in order
to get information to construct the solution downwind to the right (see [41]). If we consider our
propagating “V” curve from the example above, we see that at the symmetric point, the symmetry
of the scheme is changed, and a non-zero value is chosen. In Figure 4, we show what happens if
we use the scheme given in equation 10. The exact answer is shown, together with two simulations.
The first uses the entropy-satisfying scheme with only 20 points (Figure 4(b)), the second (Figure
4(c)) with 100 points. In the first approximation, the entropy condition is satisfied, but the corner
is somewhat smoothed due to the small number of points used. In the more refined calculation, the
corner remains sharp, and the exact solution i1s very closely approximated. Thus we see that this

<
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(a) Exact Solution (b) Scheme with 20 Points (c) Scheme with 100 Points

Figure 4: Upwind, entropy-satisfying approximations to the level set equation

scheme does a correct job of satisfying the entropy-condition

While a vast array of other upwind, entropy-satisfying schemes are available to approximate the
gradient, for our purposes, the above approximation (and one small variation) will be sufficient.
More details on upwind schemes, hyperbolic conservation laws, and their role in level set equations

may be found in [33, 40, 41].

3.2 Schemes for Level Set Methods

Based on the above approximation to the gradient, we can now write down difference schemes for
both of our level set methods. If one initializes the level set function with the signed distance function



and ¢ negative on the inside, the direction of upwinding changes signs in the above approximation
to the gradient, and we have (in three dimensions)
Solve:

e Time-Dependent Level Set Equation

ot = ol — At[max(Fij, 0)VF + min(Fjj4,0)V 7] (12)
where
vt = [max(Di_jz, 0)% + min(D;"ji, 0)% + (13)
max(Di_quﬁ, 0)% + min(D;l'quS, 0)% +
max(Dl._jz¢, 0)%+ min(D?'quS, 0)2]1/2

V™ = [max(D;"jZ¢>, 0)% + min(Di_jiqS, 0)

1rnauX(D;|'jZ<;$7 0)% + min(Di_quS, 0)

max(D};.¢,0)? + min(Dj;6,0)%'/2.

24 (14)
4+

where ¢(z,y,z,0) = +d.

e Stationary Time Level Set Equation

18

Fijel  max(D;3T,0)* + min(D}T, 0)? (15)
+max(D_ YT, 0)* + min(DF4T, 0) (16)
+max(Dj;; T, 0)* + min(DELT, 0)%)] =1 (17)

(18)

where T'(z,y,2,0) = 0. Here, we avoided writing the difference approximation to the terms
that influence the speed function F'; see below.

The time-dependent method updates the level set function ¢ by advancing the solution one time
step using a first order forward Euler scheme. This method can be made much faster through the
use of so-called “narrow-band methods”, introduced in [2]. The solution to the stationary equation
is obtained by constructing a single solution to the problem, and can be made extremely fast in
some special cases using a scheme introduced by Sethian in [40, 39] which marries the narrow-band
methodology to a fast heap sort scheme with back pointers.

3.3 Fast Narrow Band Methods for the Time-Dependent Formulation

The time-dependent level set scheme above requires computing evolution of all the level sets, not
simply the zero level set corresponding to the front itself. As such, it is a computationally expensive
technique, since an extra dimension has been added to the problem.

As an alternative, an efficient modification is to perform work only in a neighborhood of the
zero level set; this is known as the narrow band approach. In this case, the operation count in three
dimensions for N3 grid points drops to O(kN?), where k is the number of cells in the width of
the narrow band, providing a significant cost reduction. This “narrow band method” method was
introduced in [10], used in recovering shapes from images in [19], and analyzed extensively in [2].

The basic idea is to tag grid points as either “alive”, “land mines”, or “far away”, depending on
whether they are inside the band, near its boundary, or outside the band, respectively (see Figure
5).



Figure 5: Pointer Array Tags Alive, Narrow Band, and Far Away Points

In Figure 5, the black disks are “alive”, the black disks on the edge of the band are “narrowband”
points, and the open circles correspond to “far away” points. Instead of storing the full three-
dimensional grid of points, a one-dimensional pointer array contains the value of the level set function
and a pointer to its location in a three-dimensional space.

Thus, work is performed only on the alive points, and the band is reconstructed once land mine
points are reached. There are several ways to perform this reconstruction, which is known as “re-
initialization”. One way is to find the new position of the front, and then simply recalculate the
signed distance function around the new position, which yields a new narrow band. A variety of
faster techniques are possible, and discussed in detail in [40, 41].

Typically, this narrow band method is an order of magnitude faster than the full band level set
method. In problems where calculations of additional effects such flux integration over the visible
range of the source are important, the actual update of the level set portion using this narrow band
technique requires an insignificant amount of computational labor.

3.4 Fast Marching Methods for the Stationary Formulation

An extreme one-cell version of this narrow band method leads to the fast marching level set method
introduced by Sethian in [40, 39]. For ease of discussion, we limit ourselves to a two-dimensional
problem inside a square from [0, 1] x [0, 1] and imagine that the initial front is along the line y = 0;
furthermore, we assume that we are given a positive speed function F(z,y) that is periodic in
z. Thus, the front propagates upwards off the initial line, and the speed does not depend on the
orientation of the front (it depends only on independent variables, using our earlier terminology).
Using our approximation to the gradient, we are then looking for a solution in the unit box to the
equation

Fij [max(D3;"T,0)* + min(DE* T, 0)* + max(D;;YT, 0)* + min( DY T,0)%)] = 1 (19)
where T'(z,0) = 0.

Since Eqn. 19 is in essence a quadratic equation for the value at each grid point (assuming the
others are held fixed), we can iterate until convergence by solving the equation at each grid point,
selecting the largest possible value as the solution in accordance with obtaining the correct viscosity
solution. An iterative algorithm for computing the solution to this problem was introduced by Rouy
and Tourin in [28]; there, a different approximation to the gradient was chosen which is less diffusive
than the one given in [23], namely

Fys [max(max(DijT, 0), — min(D;;IT, 0))? + max(max(Di_ij, 0), — min(D;;yT, 0))2] =1 (20)

We shall use this approximation to the gradient in our fast marching level set method.

10



The key to constructing a fast marching algorithm is the observation that the upwind difference
structure of Eqn. 20 means that information propagates “one way”, that is, from smaller values
of T to larger values. Hence, our algorithm rests on “solving” Eqn. 20 by building the solution
outwards from the smallest time value T'. The idea in [40] is to sweep the front ahead in an upwind
fashion by considering a set of points in narrow band around the existing front, and to march this
narrow band forward, freezing the values of existing points and bringing new ones into the narrow
band structure. The key 1s in the selection of which grid point in the narrow band to update. The
technique is easiest to explain algorithmically, see Figure 6, taken from [40]. We imagine that we
want to propagate a front upwards through an N by N grid with speed Fj; giving the speed in the
normal direction at each grid point. Here the set of grid points 7 = 1 correspond to the y axis, and
we assume that Fj; > 0.

= = o o

Figure 6: Narrow Band Approach to Marching Level Set Method

Algorithm:
1. Initialize

(a) (Alive Points: Grey Disks): Let A be the set of all grid points {i,j = 1}; set 7; 1 = 0.0
for all points in A.

(b) (Narrow Band Points: Black Circles): Let NarrowBand be the set of all grid points
{1, = 2}, set T; 1 = dy/F;; for all points in NarrowBand.

(c) (Far Away Points: Black Rectangles): Let FarAway be the set of all grid points {, j > 2},
set T; ; = oo for all points in FarAway.

2. Marching Forwards

(a) Begin Loop: Let (imin, jmin) be the point in NarrowBand with the smallest value for T
(b) Add the point (émin, jmin) to A; remove it from NarrowBand.

c to the narrow band list any nei oring points (¢min — 1, Jmin), (2min + 1, Jmin),

Add h band i ighboring 1 ) 1,7 ) 1,7
(%min s Jmin — 1), (¢min, jmin + 1) that are not Alive. If the neighbor is in Far Away, remove
it from that list.

(d) Recompute the values of T at all neighbors according to Eqn. 20, selecting the largest
possible solution to the quadratic equation.

(¢) Return to top of Loop:

We take periodic boundary conditions where required. Assuming for the moment that it takes
no work to determine the member of the narrow band with the smallest value of T, the total work
required to compute the solution at all grid points is O(N?), where calculation is performed on an
N by N grid.

Why does the above algorithm work? Since we are always locating the smallest value in the
narrow band, its value for 7" must be correct; other narrow band points or far away points with
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larger T values cannot affect it. The process of recomputing the 7' values at neighboring points
(that have not been previously accepted) cannot yield a value smaller than any of that at any of
the accepted points, since the correct viscosity solution is obtained by selecting the largest possible
solution to the quadratic equation. Thus, we can march the solution outwards, always selecting the
narrow band grid point with minimum trial value for 7', and readjusting neighbors. Another way
to look at this is that each minimum trial value begins an application of Huygen’s principle, and
the expanding wave front touches and updates all others. A formal proof of the convergence of the
algorithm to the correct solution may be found in [39].

3.4.1 Finding the smallest value

The key to an efficient version of the above technique lies in a fast way of locating the grid point
in the narrow band with the smallest value for 7. We use a variation on a heapsort algorithm, see
Press et. al. [24] and Sedgewick [31], with the additional feature of back pointers. In more detail,
imagine that the list of narrow band points is initially sorted in a heapsort so that the smallest
member can be easily located. We store the values of these points in the heapsort, together with
their indices which give their location in the grid structure. We keep a companion array which points
from the two-dimensional grid to the location of that grid point in the heapsort array. Finding the
smallest value is easy. In order to find the neighbors of that point, we use the pointers from the
grid array to the heapsort structure. The values of the neighbors are then recomputed, and then
the results are bubbled upwards in the heapsort until they reach their correct locations, at the same
time readjusting the pointers in the grid array. This results in an O(logN) algorithm for the total
amount of work, where N is the number of points in the narrow band. For implementation details
and further application of this technique, see [39, 40, 1].

3.5 Some Clarifying Comments

The time-dependent level set method and the stationary level set method each require careful con-
struction of upwind, entropy-satisfying schemes, and make use of the dynamics and geometry of
front propagation analyzed in [33]. However, we note that the time-dependent level set method
advances the front simultaneously, while the stationary method constructs “scaffolding” to build
the time solution surface T one grid point at a time. This means that the time at which the surface
crosses a grid point (that is, its T value) may be found before other positions of that front at that
time are determined. As such, there is no notion of a time step in the stationary method; one 1s
simply constructing the stationary surface in an upwind fashion.

This means that if one is attempting to solve a problem in which the the speed of a front depends
on the current position of the front (such as in the case of visibility), or on subtle orientations in
the front (such as in sputter yield problems), it is not clear how to use the stationary method, since
the front is being constructed one grid point at a time. In the case where speed F' only depends
on independent variables, such as in the case of photolithography development, the implementation
of the fast marching method is straightforward. Upwind entropy-satisfying schemes which can be
transported to this fast stationary scheme for the case of more general speed functions F' are more
problemmatic, and discussed in detail in [41, 1].

To summarize,

e The stationary method is convenient for problems in which the front speed depends on inde-
pendent variables, such as a photoresist rate function, and only applies if the speed function
does not change sign.

e The time-dependent level set method is designed for more delicate speed functions, and can
accurately fronts evolving under highly complex arguments
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Figure 7: Contrast of Convex vs. Non-convex Speed Laws

3.6 Non-convex Speed Laws

Our approximations to the gradient only work for convez speed functions. We will need a modifi-
cation in the case of non-conver speed functions, which will turn out to be of critical importance in
some problems of interest in etching and deposition. In this brief section, we define some of these
terms, and explain the necessary modifications, for details, see [41].

We focus again on our time-dependent level set equation, namely

¢t + F|Ve[=0 (21)
We rewrite this as
¢+ H(Ve) =0 (22)

where the “Hamiltonian” H = F|V¢|.
To make things clear, we focus on the one-dimensional case, in which we have that H = F(¢y)|¢z|,
where we have included the possible dependence of the speed function F' on the derivative of ¢. We

say that such a Hamiltonian is convex if ‘f;[;[ < 0 3. If F does not depend on ¢ (which is the case
in photoresist development and isotropic etching and deposition, see Figure 7a), then it is easy to
see that H is convex. QOur approximations to the gradient are specifically constructed for convex
Hamiltonians; that is, at points where the derivative does not exist, a careful blending of values from
the left state and the right state results.

Now, suppose H is not convex. A simple example of a non-convex speed function is provided in
sputter deposition, in which a speed function ¥ may depend on the angle § between the normal and
an incoming beam in such a way that the maximal speed occurs at a value between 0 and /2, see
Figure 7b. In this case, our scheme fails at places where the front has corners.

Intuitively, the reason non-convex speed functions are difficult is because where the front has a
corner, it is difficult to simply combine the speed on the left and the speed on the right to get a
“good” value for the range of possible speeds in between.

The simplest way of constructing difference approximation which account for non-convex speed
laws is to go back to our idea of a viscosity solution, and simply “smooth out” the corners so that
sharp corners cannot occur. With sophisticated schemes (see [3, 4]), the amount of smoothing can
be limited to a few grid cells.

2
3In N-dimensions, if H is smooth, then H is convex if %l > 0, where P = (p1,...,pn). Alternatively, H is
iPj
convex if H(Ap+ (1 — X)q) < H(P)+ (1—X)H(g) forall0 <= A <=1, p,q € R"”
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Thus, a level set scheme which smoothes the corners is based on a Lax-Friedrichs method, and
is given by [3, 4]

n Dzk+Dzk Dzk+Dzk Dzk+Dzk .
¢z’j-l:1 = iy — At[H( : 2 == 2 e 2 ) (23)
1 i —z 1 + - 1 z -z
(D;;k Dz’jk) - 5%(1)”% Dij%) - 2 (D;;k Dijk)]

where ay, (@y, @y) is a bound on the partial derivative of the Hamiltonian with respect to the first
(second, third) argument, and the non-convex Hamiltonian is a user-defined input function. The
terms on the second row of the above are the smoothing terms, and resemble second derivatives in
each variable (i.e. ¢,2); the amount of smoothing is proportional to the grid spacing.

We will need this scheme when we tackle complex sputter deposition and etching problems.

4 Equations of Motion

4.1 Layout of Variables

In this section, we produce equations of motion. Excellent overviews describing these physical effects
may be found in Scheckler [29], Scheckler, Toh, Hoffstetter and Neureuther [30], Toh [45], and Toh
and Neureuther [46], see also Rey, Cheng, McVittie and Saraswat [26], McVittie, Rey, Bariya, et.
al. [20], Cale and Raupp [6, 7, 8], and Singh [43].

For both etching and deposition, define the source ray to be the ray leaving the source and aimed
towards the surface profile Let i be the angle variation in the source ray away from the negative
z axis; ¥ runs from 0 to 7, though it is physically unreasonable to have ¢ values between 7/2 and
m. Let v be the angle between the projection of the source ray in the zy plane and the positive z
axis. Let n be the normal vector at a point  on the surface profile, and f the angle between the
normal and the source ray. In Figure 8, we indicate these variables. Masks, which force flux rates
to be zero, are indicated by heavy dark patches on the initial profile. At each point of the profile,
we also assign a visibility indicator function M~ (#,Z’) which indicates whether the point # on the
initial profile can be seen by the source point #’.

4.2 Equations of Motion

Ignoring lithography development for the moment, we may, somewhat abstractly, write a single
general expression for the effects of deposition and etching on the speed F' at a point # on the front
as

Etch Etch Dep Dep Dep Dep .
F= FISO + FDir + FIso + F + FRe Dep + FRe Em (24)

where

IEtChmg : Isotropic etching. Uniform (chemical or “wet”) etching.

sotropic
. Fgltrce}éltng Direct etching from an external source (includes visibility).

Dep . »
° FIso : Isotropic depo sition.
. FII))iip" Direct deposit ion from an external source (includes visibility).
° Fg(i%ep: Ton-induced Re-deposition sticking coefficient Bre_deposition -
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Figure 8: Variables and setup

. Flgee_%m: Re-emission deposition: sticking cocfficient Bre_cmission -

The two isotropic terms are evaluated at a point z by simply evaluating the strengths at that
point. The two direct terms are evaluated at a point  on the profile by first computing the visibility
to each point of the source, and then evaluating the flux function; thus these terms require computing
an integral over the entire source. To compute the fifth term at a point z, the contributions of every
point on the profile are checked for re-deposition particles arising from the etching process, thus
this term requires computing an integral over the profile itself. The sixth term, FRe py 1S more
problematic; since every point on the front can act as a deposition source of re-emitted particles that
do not stick, the total flux function deposition function comes from evaluating an integral equation
along the entire profile.

In more detail, let Q be the set of points on the evolving profile at time ¢, and let So be the
external source. Given two points # and &', let M~ (Z,Z') be one if the points are visible from one
another and zero otherwise. Let r be the distance from z to z’, @ be the unit normal vector at the
point z, and finally, let @ be the unit vector at the point ' on the source pointing towards the point
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x on the profile. Then we may refine the above terms for the flux F'L as:

r Etch Etch . I D
FLC + S, FLDi (7,40, 7, 0, &) Mz 2 (77 - G)dE + FLISEP

D - o o
+ fSo FLDierp(r, Y, 0, ) My 3 (A - d)dZ

D — o N g
+ fﬂ ﬁre—depFLR:?dep (7", 1/)a Y 61 I)MT(f,f’)(n ! Oz)dgl‘/

i + o BreeemFLR®. (1,0,7, 6, 8) My (s 21 (7 - §)d& ]
(25)

The integrals are performed in a straightforward manner. The front is located by constructing
the zero level set of ¢; in two dimensions it is represented by a collection of line segments; in three-
dimensions by a collection of voxel elements, see [3, 4]. The centroid of each element is taken as the
control point, and the individual flux terms are evaluated at each control point. In the case of the
two isotropic terms, the flux is immediately found. In the case of the two integrals over sources,
the source is suitably discretized and the contributions summed. In the fifth term, corresponding to
re-deposition, the integral over the entire profile is calculated by computing the visibility to all other
control points and the corresponding re-deposition term produced by the effect of direct deposition.
Thus, as presented, this last term requires N2 evaluations, where N is the number of control points
which approximate the front. This requires the solution of a matrix equation for a matrix M which
is non-symmetric and full. Details may be found in [5].

5 Results: Applications

In this section, we show a series of results using the above level set methods for problems in etching,
deposition, and photoresist development. All calculations are taken from [39, 3, 4, 5].

5.1 Lithographic Development

As a first example, we use the fast marching level set method introduced by Sethian [40, 39]
for the stationary level set equation to compute a lithographic development profile for an evolving
front. We start with a flat profile at height z = 1 in the unit cube centered at (.5,.5,.5) and follow
the evolution of the interface downwards with speed given by the model Gaussian rate function

F(z,y,2) = e‘64(r2)(cosz(1'2z) +.01) (26)

where r = /(z — .5)2 + (y — .5)2). This rate function F' corresponds to effect of standing waves
which change the resist properties of the material, and causes sharp undulations and turns in the
evolving profile. In Figure 9, see [39], we show the profile etched out by such an initial state; the
calculation is carried out until 7" = 10.

Figure 10 shows timings and errors for speed function F' = 6_64(r2)(C082(62) + .01). Here,
ExitTfinq is the time when theu profile exits the bottom, Relative Error = W, and
ComputeTime is the time to develop the front until 7%;,4 on a Sparc 10.

As a second example, we use the masking pattern given in Figure 11(a) using an I-line step-
per, numerical aperture 0.6. The rate function is calculated using the three-dimensional exposure
and post-exposure bake modules of Depict 4.0 [44], and this is coupled to our fast marching level
set method. In Figure 11(b), see [41], we show a view of the developed profile looking up from
underneath; the etching of the holes and the presence of standing waves can easily be seen.
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Figure 9: Lithographic Development on 50x50x50 Grid

| GrdSize | 50° | 100° | 150° | 200° | Exact |
| | | | | | |
Exit Tyinal 9.809 | 10.339 [ 10.366 | 10.367 | 10.367
Rel. Error [ .05387 | .00268 | .00014 | .00008 [ 0.0

Compute Time | .5 secs | 5.0 secs | 20.0 secs | 55. secs -

Figure 10: Timings and Accuracy as a Function of Grid Size

(a) Masking pattern (b) Lithographic development: View from below

Figure 11: Lithographic development using fast marching method
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5.2 Isotropic, Uni-Directional and Source Deposition/Etching
5.2.1 Isotropic Etching/Deposition

Next, we study some etching and deposition simulations. In Figure 12 we show a square hole upon
which a material is being isotropically etched; this corresponds to a simple speed function of F' = —1.
This could be performed using either the stationary solution or the time-dependent technique, since
the speed depends only an independent variables; the simulation shown uses the narrow band time-
dependent technique. As expected, the sides of the cavity are cleanly etched away, leaving smoothed,

rounded walls.

Initial Final

Figure 12: Isotropic Etching into Hole

5.2.2 Directional Etching/Deposition

Next, we show some examples of uni-directional etching/deposition. Here, the particles come from a
single direction, and the effects of visibility are included, thus, the time-dependent level set technique
is used.

We begin with a two-dimensional example of directional etching. Material emits from the line
source at an angle of 30 degrees from the vertical. In Figure 13, we show results at various times,
starting with the initial state. There is no yield variation in the etch rate due to angle of incidence
with the normal; in other words, the speed of the profile in the normal direction is just the projection
of the directional etch rate in that normal direction. Due to the effects of shadowing, as the profile
evolves we again see that part of the profile aligns itself tangential to the incoming unidirectional
etching stream.

A three-dimensional simulation is shown in Figure 14. We consider directional etching from a
plate located above a square hole, where the effects of visibility and shading are included. We show
a sequence of three-dimensional time plots which show the evolving profile. The etching direction is
on the upper right in the figure; the etching beam shears away the profile on the left first, and then
as the shadowing wall is eaten away, continues to shear the left side of the profile.
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T=0.0 T=2.0 T=3.0
Fig.13a. Fig.13b Fig.13c

T=4.0 T=5.0 T=6.0
Fig.13d. Fig.13e Fig13f

Figure 13: Directional Etching Into Cavity

Initial Midway Final

Figure 14: Directional Etching into Hole

19



5.2.3 Source Etching/Deposition

Here, we study source deposition into a two-dimensional trench with a cavity on the right. We take
a deposition source above a trench, where deposition material emitted from a line source from the
solid line above the trench. The deposition rate is the same in all directions, and the effects of
shadowing are considered. The cavity is hidden from the deposition source, and grows very slowly;
as the walls pinch toward each other, the seen visible angle decreases and the deposition rate in
cavity slows zero. The calculation is performed on a grid with 160 cells in the horizontal direction
and again a tube width of 6 cells on each side of the interface.

NN

Figure 15: Source Deposition Into Cavity

Next, we show how topology can change under the effects of etching, and study etching of a
bridge, as a cartoon example. The bridge initially has a thin curtain stretched underneath it; the
thickness of the curtain is smallest at the middle, (see Figure 16a). First the thin curtain is etched
away, then the bridge connecting the two pillars is removed.

Initial Midway Final

Figure 16: Source Etching of Bridge
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5.3 Non-Convex Flux Laws: Ion Milling

A more sophisticated set of examples arises in simulations (for example, of ion milling) in which the
normal speed of the profile depends on the angle of incidence between the surface normal and the
incoming beam. This yield function is often empirically fit from experiment, and has been observed
to cause such effects as faceting at corners (see Leon et. al. [17] and Katardjiev, Carter and Nobes
[16]). As shown in [3, 4], such yield functions can often give rise to non-convex Hamiltonians, in
which case alternative schemes must be used.

As an example, consider an etching beam coming down in the vertical direction. In the cases
under study here, the angle § shown in Figure 8 refers to the angle between the surface normal and
the positive vertical. For this set of calculations, in order to focus on the geometry of sputter effects
on shocks/rarefaction fan development, visibility effects are ignored. Following our usual notation,
let () be the speed of the front in direction normal to the surface, and consider three different
speed functions:

1

o F(0)
o F(0) = cos(f)
e F(0) = [1.+ 4sin?(8)] cos(#)

The first case corresponds to isotropic etching. We shall now show that the third case leads to a
non-convex Hamiltonian. We have

d: + F|Vo| = ¢ + [(1+ A)cos 6 — Acos® ]| V| (27)

Noting that cosf = |$2|, some manipulation produces

¢t + H(¢x7 ¢y) =0 (28)

¢
[Vol?

ke

This Hamiltonian is in fact non-convex

where the Hamiltonian H is now H = (1 + A)¢, — A
for A > 0.

Thus, in the case of this non-convex Hamiltonian, we must use our the appropriate schemes given
earlier. In Figure 17, we show the results of applying both the convex and the non-convex schemes.
In column A, the effects of purely 1sotropic motion are shown, thus the yield function is F' = 1.
Located above the yield graph are the motions of a downwards square wave under etching. The top
row 1s calculated using the convex scheme, and the second row using the non-convex scheme. In
column B, the effects of directional motion are shown, thus the yield function is F' = cos(6). In this
case, the horizontal components on the profile do not move, and vertical components move with unit
speed. In column C, the effects of a yield function of the form F = [1 + 4sin?(6)] cos(#) are shown.

The results of these calculations are given in Figure 17. The results show that the effects of
angle dependent yield functions are pronounced. In Column A the isotropic rate produces smooth
corners, correctly building the necessary rarefaction fans in outward corners and entropy-satisfying
shocks in inward corners as discussed and analyzed in [32, 33]. In Column B, the directional rate
causes the front to be essentially translated upwards, with minimal rounding of the corners. In
Column C, the yield function results in faceting of inward corners where shocks form and sharp
corners 1n the construction of rarefaction fans. We note that the application of the convex scheme
to the non-convex Hamiltonian in Column C leads to incorrect results, whereas application of the
non-convex scheme produces the expected answer.

A three-dimensional ion-milling simulation into an indented saddle surface is shown in Figure 18.
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F0) =1 F = cos(6) F =[1 + 4sin*(#)] cos(6)
Column A Column B Column C

Top row: Convex scheme
Middle row: Non-Convex scheme
Bottom row: Yield curves

Figure 17: Ton-milling under various yield functions
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Initial Shape : T =0 F =[1+4sin*(f)]cos(d) T =8 Final Rotated

Figure 18: Downward Saddle Under Ton Milling

5.4 Strongly Discontinuous Etch Rates/ Simultaneous Etching and De-
position

Next, we study the effects of etching through different materials. In this example, the etch rates
are discontinuous, and hence sharp corners develop in the propagating profile. The results of these
calculations are show in Figure 19. A top material masks a lower material, and the profile etches
through the lower material first and underneath the upper material. The profile depends on the
ratio of the etch rates. In Figure 19(a), the two materials have the same etch rate, and hence the
front simply propagates in its normal direction with unit speed, regardless of which material it is
passing through. In Figure 19(b), the bottom material etches four times faster that the top; in
Figure 19(c), the ratio is ten to one. Finally, in Figure 19(d), the ratio is forty to one, in which case
the top material almost acts like a mask.

Next, we perform a parameter study of simultaneous etching and deposition is taken from [5],
using speed function

F= (1 - a)Fetch + aFDeposition (29)

where
Feten = (5.2249 cos 6 — 5.5914 cos® 6 + 1.3665 cos™ 6) (30)
FDeposition == ﬂFIsotropic + (1 - ﬂ)FSOUTCS (31)

Visibility effects are considered in all terms except isotropic deposition. Figure 20 shows the results
of varying o and  between 0 and 1.
For details and additional simulations, see [3, 4, 5].

5.5 Ion-Induced Re-deposition

Next, we show a combination of effects. Figure 21, taken from [5], includes a combination of
ion-milling (using a non-convex sputter law) and ion-induced sputtered re-deposition, together with
conformal deposition and direct deposition. In both calculations, the direct deposition term includes
the effect of visibility, and the conformal deposition is isotropic. In Figure 21a, the ion-induced sput-
ter re-deposition coefficient is set to 1.0, which means that there is no re-deposition. In Figure 21b,
which requires integration over the entire profile as well as the source, the re-deposition coefficient
is set to 1/2. re-deposition occurs during the etching process, resulting in considerable rounding of
the sharp corners.
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Etch ratio =1:1

Etch ratio =4:1

1

Etch ratio =10:1

Figure 19: Etch ratio = Bottom material rate to top material rate
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Figure 20: Simultaneous etching and dep
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Fig.21b, With re-deposition

Figure 21: Combination of ion-milling, direct deposition and conformal deposition
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Fig.22a : Sticking Coefficient=.7 Fig.22b : Sticking Coefficient=.45 Fig.22¢ : Sticking Coeflicient=.2

Figure 22: Source Deposition: Re-emission Effects under Various Sticking Coefficients

5.6 Re-emission; Low Sticking Coefficients

Finally, we end with an example, taken from [5], that shows re-emission for various values of the
sticking coeflicient; this requires solving the associated integral equation which computes the total
flux from both the direct source and re-emitted from the evolving surface. In Figure 22, we show a
trench subject to deposition from a line source, including the effects of visibility. In Fig. 22a, the
sticking coefficient is .7, and most of the particles stick. In Fig. 22b, the sticking coefficient is .45,
and in Fig. 22c the sticking coefficient is .2. In the last simulation, the result more closely resembles
isotropic deposition due to the large amount of re-emitted material.

6 Summary and Future Work

The numerical method presented in this paper can be used for a wide variety of three-dimensional
simulations in etching, deposition and lithography; the method naturally takes into account such
effects as incident angles, masks, yield functions, visibility, and anisotropy on the surface motion.
Due to the use of conservative upwind schemes, the method selects the correct entropy condition
and maintains sharp corners where shocks in the tangent occurs; conversely, the correct rarefaction
fan solution is built at outward-facing corners. The method is second order accurate in space and
time in the motion of the front. By using the narrow band approach, the method is of the same
computational work as cell and marker particle methods; that is, the work is a constant times the
number of points which characterize the evolving front. In the case of problems in which the speed
function depends only on independent variables, the fast marching level set method for the stationary
formulation provides an extremely fast technique.
In [5], we focus on additional terms, and provide a wide collection of examples.

Acknowledgements: All calculations were performed at the University of California at Berkeley
and the Lawrence Berkeley Laboratory. We would like to thank B. Coughran, J. Lee, P. Leon, A.
Neureuther, J. Rey, and K. Toh for many helpful conversations. A video tape of the above simulations
is available on request. e-mail may be sent to sethian@math.berkeley.edu In addition, a web page
may be found at http::/math.berkeley.edu/~ sethian/level set.html.
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