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Abstract

We review some recent work in fast, efficient and accurate methods to

compute viscosity solutions and non-viscosity solutions to static Hamilton-

Jacobi equations which arise in optimal control, anisotropic front propagation,

and multiple arrivals in wave propagation. For viscosity solutions, the class of

algorithms are known as “Ordered Upwind Methods”, and rely on a systematic

ordering inherent in the characteristic flow of information. For non-viscosity

multiple arrivals, the techniques hinge on a static boundary value phase-space

formulation which again can be solved through a systematic ordering.
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1. Introduction

This paper reviews recent work on algorithms for static Hamilton-Jacobi equa-
tions of the form H(Du, x) = 0; the solution u depends on x ∈ Rn, and boundary
conditions are supplied on a subset of Rn. These equations arise in such areas as
wave propagation, optimal control, anisotropic front propagation, medical imaging,
optics, and robotic navigation. We develop algorithms to solve these equations re-
markably quickly, with the same optimal efficiency as classic algorithms for shortest
paths on discrete weighted networks, but extended to continuous Hamilton-Jacobi
equations.

The algorithms, which rely on a close examination of the flow of information
inherent in static Hamilton-Jacobi equations, are robust, unconditionally stable
without time step restriction, and efficient. They are “One-pass” schemes, in that
the solution is computed at N grid points in O(N log N) steps.
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1.1. Viscosity vs. Non-Viscosity Solutions

What is meant by a solution to H(Du, x) = 0? Viscosity solutions [3] provide
a unique and well-posed formulation which is linked to the unique viscosity limit
of the associated smoothed equation; these are first arrivals in the propagation of
information. Figure 1a shows an example from semiconductor manufacturing in
which a beam whose strength is angle-dependent is used to anistropically etch away
a metal surface. Figure 1b shows an optimal control problem to find the shortest
exit path for a vehicle with position and direction-dependent speed.
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Figure 1: Viscosity Solutions to Static HJ Equations

The above are viscosity solutions. However, there are many cases in which
later arrivals, or “non-viscosity” solutions, are desirable. Figure 2a shows the prop-
agation of a wave inwards from a square boundary; the evolving front passes through
itself and later arrivals form cusps and swallowtails as they move; Figure 2b shows
multiple arrivals in geophysical wave propagation.
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Figure 2: Non-viscosity solutions
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Our goal is to create efficient algorithms which allow us to compute both types
of solutions. In the case of viscosity solutions, algorithms are provided by the class
of “Ordered Upwind Methods” developed by Sethian and Vladimirsky in [12, 13];
these methods work in physical space and construct the solution in a “One-pass”
manner through a careful adherence to a causality inherent in the characteristic flow
of the information. In the case of non-viscosity solution, algorithms are provided
by the time-independent phase-space formulation developed by Fomel and Sethian
[7], which relies on conversion of multiple arrivals into an Eulerian static boundary
value problem, which can also be solved very efficiently in a “One-pass” manner
which avoids all iteration through a careful ordering procedure. The remainder of
this paper is devoted to describing these two classes of algorithms and providing a
few computational results.

2. Fast Methods for Viscosity Solutions

We first discuss “Ordered Upwind Methods” introduced in [12] for computing
viscosity solutions.

2.1. Discrete Control: Dijkstra’s Method

Consider a discrete optimal trajectory problem on a network. Given a network
and a cost associated with each node, the global optimal trajectory is the most
efficient path from a starting point to some exit set in the domain. Dijkstra’s
classic algorithm [4] computes the minimal cost of reaching any node on a network
in O(N log N) operations. Since the cost can depend on both the particular node,
and the particular link, Dijkstra’s method applies to both isotropic and anisotropic

control problems. The distinction is minor for discrete problems, but significant for
continuous problems. Dijkstra’s method is a “one-pass” algorithm; each point on
the network is updated a constant number of times to produce the solution. This
efficiency comes from a careful analysis of the direction of information propagation
and stems from the optimality principle.

We briefly summarize Dijsktra’s method, since the flow logic will be important
in explaining our Ordered Upwind Methods. For simplicity, imagine a rectangular
grid of size h, where the cost Cij > 0 is given for passing through each grid point
xij = (ih, jh). Given a starting point, the minimal total cost Uij of arriving at
the node xij can be written in terms of the minimal total cost of arriving at its
neighbors:

Uij = min (Ui−1,j, Ui+1,j, Ui,j−1, Ui,j+1) + Cij. (2.1)

To find the minimal total cost, Dijkstra’s method divides mesh points into
three classes: Far (no information about the correct value of U is known), Accepted
(the correct value of U has been computed), and Considered (adjacent to Accepted).
The algorithm proceeds by moving the smallest Considered value into the Accepted
set, moving its Far neighbors into the Considered set, and recomputing all Considered
neighbors according to formula 2.1. This algorithm has the computational com-
plexity of O(N log(N)); the factor of log(N) reflects the necessity of maintaining a
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sorted list of the Considered values Ui to determine the next Accepted mesh point.
Efficient implementation can be obtained using heap-sort data structures.

2.2. Continuous Control: Ordered Upwind Methods

Consider now the problem of continuous optimal control; here, the goal is to find
the optimal path from a starting position to an exit set. Dijkstra’s method does not
converge to the continuous solution as the mesh becomes finer and finer, since (see
[11]) it produces the solution to the partial differential equation max(|ux|, |uy|) =
h ∗ C, where h is the grid size. As h goes to zero, this does not converge to the
solution of the continuous Eikonal problem given by |u2

x+u2
y|

1/2 = C Thus, Dikstra’s
method cannot be used to obtain a solution to the continuous problem.

2.2.1. Ordered Upwind Solvers for Continuous Isotropic Control

In the case of isotropic cost functions in which the cost depends only on position
and not on direction, two recent algorithms, first Tsitsiklis’s Method [16] and then
Sethian’s Fast Marching Method [10] have been introduced to solve the problems
with the same computational complexity as Dijkstra’s method. Both methods ex-
ploit information about the flow of information to obtain this efficiency; the causality
allows one to build the solution in increasing order, which yields the Dijkstra-like
nature of the solutions. Both algorithms result from a key feature of Eikonal equa-
tions, namely that their characteristic lines coincide with the gradient lines of the
viscosity solution u(x); this allows the construction of one-pass algorithms. Tsit-
siklis’ algorithm evolved from studying isotropic min-time optimal trajectory prob-
lems, and involves solving a minimization problem to update the solution. Sethian’s
Fast Marching Method evolved from studying isotropic front propagation problems,
and involves an upwind finite difference formulation to update the solution. Each
method starts with a particular (and different) coupled discretization and each
shows that the resulting system can be decoupled through a causality property.
We refer the reader to these references for details on ordered upwind methods for
Eikonal equations, as well as [13] for a detailed discussion about the similarities and
differences between the two techniques.

2.2.2. Ordered Upwind Solvers for Continuous Anisotropic General Op-

timal Control

Consider now the full continuous optimal control problem, in which the cost function
depends on both position and direction. In [12, 13], Sethian and Vladimirsky built
and developed single-pass “Ordered Upwind Methods” for any continuous optimal
control problem. They showed how to to produce the solution Ui by recalculating
each Ui at most r times, where r depends only the equation and the mesh structure,
but not upon the number of mesh points.

Building one-pass Dijkstra-like methods for general optimal control is con-
siderably more challenging than it is for the Eikonal case, since characteristics no
longer coincide with gradient lines of the viscosity solution. Thus, characteristics
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and gradient lines may in fact lie in different simplexes. This is precisely why both
Sethian’s Fast Marching Method and Tsitsiklis’ Algorithm cannot be directly ap-
plied in the anisotropic (non-Eikonal) case: it is no longer possible to de-couple the
system by computing/accepting the mesh points in the ascending order.

The key idea introduced in [12, 13] is to use the location anisotropy of the
cost function to limit of the number of points on the accepted front that must be
examined in the update of each Considered point. Consider the anisotropic min-
time optimal trajectory problems, in which the speed of motion depends not only
on position but also on direction. The value function u for such problems is the
viscosity solution of the static Hamilton-Jacobi-Bellman equation

maxa∈S1
{(∇u(x) · (−a))f(a, x)} = 1, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.
(2.2)

In this formulation, a is the unit vector determining the direction of motion, f(a, x)
is the speed of motion in the direction a starting from the point x ∈ Ω, and q(x)
is the time-penalty for exiting the domain at the point x ∈ ∂Ω. The maximizer a
corresponds to the characteristic direction for the point x. If f does not depend on
a, Eqn. 2.2 reduces to the Eikonal equation, see [1].

Now, define the anisotropy ratio F1/F2, where 0 < F1 ≤ f(a, x) ≤ F2 < ∞.
In [13], two key lemmas were proved:

• Lemma 1. Consider the characteristic passing through x̄ ∈ Ω and level curve
u(x) = C, where qmax < C < u(x̄). The characteristic intersects that level set
at some point x̃. If x̄ is distance d away from the level set then ‖x̃− x̄‖ ≤ dF2

F1

.
• Lemma 2. Consider an unstructured mesh X of diameter h on Ω. Consider

a simple closed curve Γ lying inside Ω with the property that for any point x
on Γ, there exists a mesh point y inside Γ such that ‖x−y‖ < h. Suppose the
mesh point x̄i has the smallest value u(x̄i) of all of the mesh points inside the
curve. If the characteristic passing through x̄i intersects that curve at some
point x̃i then ‖x̃i − x̄i‖ ≤ hF2

F1

.

Thus, one may use the anisotropy ratio to exclude a large fraction of points on the
Accepted Front in the update of any Considered Point; the size of this excluded
subset depends on the anisotropy ratio. Building on these results, a fast, Dijkstra-
like method was constructed. As before, three of mesh points classes are used. The
AcceptedFront is defined as a set of Accepted mesh points, which are adjacent to
some not-yet-accepted mesh points. Define the set AF of the line segments xjxk,
where xj and xk are adjacent mesh points on the AcceptedFront, such that there
exists a Considered mesh point xi adjacent to both xj and xk. For each Considered
mesh point xi one defines the part of AF “relevant to xi”:

NF (xi) =

{
(xj, xk) ∈ AF |∃x̃ on (xj, xk) s.t. ‖x̃ − xi‖ ≤ h

F2

F1

}
.

We will further assume that some consistent upwinding update formula is available:
if the characteristic for xi lies in the simplex xixjxk then Ui = K(Uj , Uk, xi, xj, xk).
For the sake of notational simplicity we will refer to this value as Kj,k.



6 J.A. Sethian

1. Start with all mesh points in Far (Ui = ∞).
2. Move the boundary mesh points (xi ∈ δΩ) to Accepted (Ui = q(xi)).
3. Move all the mesh points xi adjacent to the boundary into Considered and

evaluate the tentative value of Ui = min(xj,xk)NF (xi) Kj,k.
4. Find the mesh point xr with the smallest value of U among all the Considered.
5. Move xr to Accepted and update the AcceptedFront.
6. Move the Far mesh points adjacent to xr into Considered.
7. Recompute the value for all the Considered xi within the distance hF2

F1

from
xr. If less than the previous tentative value for xi then update Ui.

8. If Considered is not empty then goto 4).

2.2.3. Analysis and Results

This is a ”single-pass” algorithm since the maximum number of times each mesh
point can be re-evaluated is bounded by the number of mesh points in the hF2

F1

neighborhood of that point; the method formally has the computational complexity
of O((F2

F1

)2M log(M)). Convergence of the method to the viscosity solution is proved
in [13], and depends on the upwinding update formula Ui = K(Uj , Uk, xi, xj, xk).

As an example, taken from [12], we compute the geodesic distance on the
manifold g(x, y) = .9 sin(2πx) sin(2πy) from the origin. This can be shown to be
equivalent to solving the static Hamilton-Jacobi equation

‖∇u(x)‖F

(
x,

∇u(x)

‖∇u(x)‖

)
= 1, (2.3)

with speed function F given by F (x, y, ω) =

√
1+g2

y cos2(ω)+g2
x sin2(ω)−gxgy sin(2ω)

1+g2
x+g2

y

where ω is the angle between ∇u(x, y) and the positive direction of the x-axis. The
anisotropy is substantial, since the dependence of F upon ω can be pronounced
when ∇g is relatively large. Equidistant contours are shown on the left in Figure 3.
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Figure 3: Left: Anistropic Front Propagation Right: Arrival Paths

3. Fast Methods for Multiple Arrivals
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3.1. Computing Multiple Arrivals

We now consider the problem of multiple arrivals. As an example, consider the
two-dimensional Eikonal equation

|∇u|F (x, y) = 0 (3.1)

with F (x, y) given. We imagine a computational domain and a source point, as
shown on the right in Figure 3. Suppose the goal is to determine the arrival time
and path to each point in the interior from the source point. Here, we are interested
not only in the first arrival, but all later arrivals as well.

One popular approach to computing multiple arrivals is to work in phase
space, in which the dimensionality of the problem is increased from physical space to
include the derivative of the solution as well. There are two approaches to computing
these multiple arrivals through a phase space formulation. One is a Lagrangian (ray
tracing) approach, in which the phase space characteristic equations are integrated,
often from a source point, resulting in a Lagrangian structure which fans out over
the domain. Difficulties can occur in either in low ray density zones where there
are very few rays or near caustics where rays cross. The other is an Eulerian
description of the problem, in either the physical domain or phase space. In recent
years, this has led to many fascinating and clever Eulerian PDE-based approaches
to computing multiple arrivals, see, for example, [15, 14, 9, 5, 2]. We note that the
regularity of the phase space has been utilized previously in theoretical studies on
the asymptotic wave propagation [8]. The above phase space approaches to solving
for multiple arrivals have two characteristics in common:

• A phase space formulation increases the dimensionality of the problem. In two
physical dimensions, the phase space formulation requires three dimensions; in
three physical dimensions, the phase space formulation is in five dimensions.

• Given particular sources, the problem is solved with those source location(s)
as initial data. Different sources requires re-solving the entire problem.

• The problem is cast as an initial value partial differential equation, and is
evolved in time. Time step considerations in regions of high velocity play a
role in the stability of the underlying scheme.

3.2. A Boundary Value Formulation

Fomel and Sethian [7] take a different approach. A set of time-independent “Es-
cape Equations” are derived, each of which is an Eulerian boundary value partial
differential equation in phase space. Together, they give the exit time, location and
derivative of all possible trajectories starting from all possible interior points. Thus,
the particular choice of sources is reduced to post-processing. The computational
speed depends on whether one wants to obtain results for all possible boundary
conditions, or in fact only for a particular subset of possibilities.
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3.2.1. Liouville Formulation

Briefly (see [7] for details) begin with the static Hamilton-Jacobi equation

H(x,∇u) = 0, (3.2)

and write the well-known characteristic equations in phase space (x, p), where p
corresponds to ∇u (see, for example, [6]). The characteristics must obey

dx

dσ
= ∇pH ;

dp

dσ
= −∇xH. (3.3)

Differentiating the function u(x(σ)), we obtain an additional equation for trans-
porting the function u along the characteristics:

du

dσ
= ∇u ·

dx

dσ
= p · ∇pH. (3.4)

Eqns. 3.3,3.4 can be initialized at σ = 0: x(0) = x0, p(0) = p0, u(0) = 0.

One can now convert the phase space approach into a set of Liouville equations.
To simplify notation, we denote the phase-space vector (x, p), by y, the right-hand
side of system given in Eqn. 3.3 by vector function R(y), and the right-hand side
of Eqn. 3.4 by the function r(y). In this notation, the Hamilton-Jacobi system is

∂y(y0 , σ)

∂σ
= R(y);

∂u(y0, σ)

∂σ
= r(y), (3.5)

and is initialized at σ = 0 as y = y0 and u = 0. This system satisfies

∂y(y0 , σ)

∂σ
= ∇0y R(y0) , (3.6)

and the transported function u satisfies the analogous equation

∂u(y0 , σ)

∂σ
= ∇0u R(y0) + r(y0) , (3.7)

where ∇0 denotes the gradient with respect to y0. These are the Liouville equations.

3.2.2. Formulation of Escape Equations

The key idea in [7] is as follows. Assume a closed boundary ∂D in the y space that
is crossed by every characteristic trajectory originating in y0 ∈ D. This defines for
every y0 the function σ = σ̂(y0) of the first crossing of the corresponding charac-
teristic with ∂D. Now introduce a differentiable function Γ(y) that identifies the
boundary, that is, Γ(y) = 0. In particular, we then have that Γ (y(y0 , σ̂(y0)) = 0.
One can then differentiate with respect to the initial condition y0 to obtain an es-
cape equation for the parameter σ̂. Similarly, one can derive escape equations for
the position and value, yielding the full set of
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EscapeEquations 1 + ∇0σ̂ · R(y0) = 0

∇0ŷ R(y0) = 0

∇0û · R(y0) + r(y0) = 0

(3.8)

3.3. Fast Solution of Escape Equations

Summarizing, rather than compute in physical space, we derive boundary value
Escape equations in phase space y = (x, p). All time step considerations are avoided,
and one can compute all the arrivals from all possible sources simultaneously. This
Eulerian formulation means that the entire domain is covered, even quiet slow zones.

Finally, and most importantly, a constructive, “One-pass” algorithm, similar
to the one presented for viscosity solutions, can be designed. Exit time, position, and
derivative at the boundary form boundary conditions. We can then systematically
march the solution inwards in phase space from the boundary, constructing the
solution through an ordering sequence based on the characteristics that ensures
computational phase space mesh points need not be revisited more than once.

Consider a square boundary as an example, and suppose we wish to find the
time û(x, z, θ) at which a ray leaving the initial point (x, z) inside the square, initially
moving in direction θ, hits the boundary. We assume that the slowness field n(x, z)
is given. First, note that the set û(x, z, θ) = T , drawn in x, z, θ space, gives the
set of all initial positions and directions which reach the boundary of the square at
time T . By the uniqueness of characteristics, the set of all points parameterized
by T and given by Û(T ) = {x, z, θ | û(x, z, θ) = T} sweep out the solution space.
Figure 3.3.a shows the solution surfaces û(x, z, θ) for the collapsing square.

Details on the exact algorithm are given in [7]. As demonstration (see [7]), in
Figure 3.3.b, the top pair shows all the arrivals starting from a source at the center
of the top wall, together with the slowness field on the right (darker is slower). The
bottom pair shows the first arrival and on the amplitude of the displayed arrival
(the lighter the tone, the more amplitude).
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