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1 Introduction

In this article, we review past work on Level Set Methods, introduced by Osher
and Sethian in [20], and Fast Marching Methods, introduced by Sethian in [25],
for tracking propagating interfaces in two and three space dimensions. Both
sets of techniques are based on a partial differential equations view of interface
motion, and rely on the use of the theory of viscosity solutions, upwind finite
difference schemes for hyperbolic conservation laws, and the theory of curve and
surface evolution developed in [23]. Both sets of techniques require an adaptive
methodology to obtain computational efficiency. We briefly review some of these
methods, and show some examples of some applications.

2 Overview

Fast Marching Methods and Level Set Methods are computational techniques
based on finite difference schemes for tracking propagating interfaces. They
share the virtues of working in an arbitrary number of space dimensions with
no change, handle topological merger and splitting with no special procedures,
and accurately and efficiently compute the motion of fronts with sharp corners
moving under speed laws which may include large variations in velocities.

Fast Marching Methods, introduced by Sethian in [25], approximate the so-
lution of a boundary value partial differential equations view of propagating
interface, while level set methods, introduced by Osher and Sethian in [20], ap-
proximate the solution of an initial value partial differential equation. At the
core, both techniques rely on viscosity solutions for Hamilton-Jacobi equations,
linking finite difference upwind schemes for hyperbolic conservation laws to prop-
agating fronts, and aspects of the theory of curve and surface evolution. They
have been used in a large variety of applications, including problems in fluid
interface motion, combustion, dendritic solidification, etching and deposition in
semi-conductor manufacturing, robotic navigation and path planning, image seg-
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mentation in medical imaging scans, computation of seismic travel times, and
aspects of computational geometry and computer vision.

Both sets of techniques require an adaptive methodology to obtain compu-
tational efficiency. In the case of Fast Marching methods, this stems from a
Dijkstra-like technique which exploits a causality relationship inherent in the
chosen upwind finite difference formulation. In the case of level set methods,
this leads to the Narrow Band Method given in [1].

This paper reviews some recent work in these areas. An overview and sum-
mary of current work on Fast Marching and level set methods is given in a recent
cumulative introduction and resource book on level set and Fast Marching Meth-
ods [28]; an additional resource is the web site

http::/math.berkeley.edu/∼ sethian/level set.html

3 Initial and Boundary Value Formulations of Front Prop-

agation

3.1 A Boundary Value Formulation

Imagine a closed curve Γ in the plane propagating normal to itself with speed
F . Furthermore, assume that F > 0, hence the front always moves “outwards”.
One way to characterize the position of this expanding front is to compute the
arrival time T (x, y) of the front as it crosses each point (x, y), as shown in Figure
1.
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Fig. 1. Transformation of Front Motion into Boundary Value Problem

The equation that describes this arrival surface T (x, y) is given by

|∇T |F = 1 T = 0 on Γ. (3.1)

This is a boundary value problem; if the speed F depends only on position, then
the equation reduces to the familiar Eikonal equation.

3.2 Initial Value Formulation

Conversely, suppose we embed the initial position of the front as the zero level
set of a higher dimension function φ, as was done in [20]. We can then identify
the evolution of this function φ with the propagation of the front itself through
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a time-dependent initial value problem. At any time, the front is given by the
zero level set of the time-dependent level set function φ, see Figure 2.
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Fig. 2. Transformation of Front Motion into Initial Value Problem

In order to derive an equation of the motion for this level set function φ, we
note that the stipulation that the zero level set of the evolving function φ always
match the propagating hypersurface means that

φ(x(t), t) = 0. (3.2)

By the chain rule,
φt + ∇φ(x(t), t) · x′(t) = 0. (3.3)

Since F supplies the speed in the outward normal direction, then x′(t) · n = F
where n = ∇φ/|∇φ| and this yields an evolution equation for φ, namely,

φt + F |∇φ| = 0, (3.4)

given φ(x, t = 0). (3.5)

This is the level set equation introduced by Osher and Sethian [20]. For certain
forms of the speed function F , one obtains a standard Hamilton–Jacobi equation.

This equation describes the time evolution of the level surface function φ in
such a way that the zero level set of this evolving function is always identified
with the propagating interface; see Figure 2.

Thus, we wish to solve

Initial Value Formulation Boundary Value Formulation

φt + F |∇φ| = 0 |∇T |F = 1
Front= Γ(t) = {(x, y)|φ(x, y, t) = 0} Front= Γ(t) = {(x, y)|T (x, y) = t}

Applies for arbitrary F Requires F > 0
(3.6)
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3.3 Advantages of These Perspectives

There are certain advantages associated with these two perspectives on prop-
agating interfaces. First, both are unchanged in higher dimensions; that is,
for surfaces propagating in three dimensions and higher. Second, topological
changes in the evolving front Γ are handled naturally; the position of the front
at time t is given either by the zero level set φ(x, y, t) = 0 of the evolving level
set function or the contour T = t of the boundary value solution. This set need
not be connected, and can break and merge as t advances. T (x, y) and the level
set function φ remain single-valued. Both rely on viscosity solutions, and can be
converted into computational schemes by exploiting adaptive schemes borrowed
from hyperbolic conservation laws.

There are significant differences between the two approaches. The most ob-
vious distinction between the two views is that the initial value level set formu-
lation allows for both positive and negative speed functions F ; the front may
move forwards and backwards as it evolves. The boundary value perspective is
restricted to fronts that always move in the same direction, because it requires a
single crossing time T at each grid point, and hence a point cannot be revisited.
While approximation of more complex speed functions F , such as those includ-
ing curvature, are most naturally done in the initial value level set perspective,
in contrast, speed functions F which depend on position and vary widely are
best handled through the boundary value perspective approximated with Fast
Marching Methods. This is because Fast Marching Methods employ no time
step, and hence are not subject to CFL conditions, unlike level set methods.

3.4 Numerical Approximations

One of the main difficulties in solving the above equations is that the solution
need not be differentiable, even with arbitrarily smooth boundary data. This
non-differentiability is intimately connected to the notion of appropriate weak
solutions; our goal is construct numerical techniques which naturally account for
this non-differentiability in the construction of accurate and efficient approxima-
tion schemes, and admit physically correct non-smooth solutions.

In [23; 24], the equation for a curve propagating normal to itself with a
given speed F , and which remains a graph as it moves, is studied. An entropy
condition is given for this problem which is the limit of smoothed curvature-
driven problems as the curvature term goes to zero; this motion is shown to be
intimately connected to a hyperbolic conservation law with viscous right-hand-
side. For example, consider a function y = f(x) moving with speed F = 1−ǫκ in
the normal direction; here κ is the curvature at the point x. In [24], this is shown
to be related to a hyperbolic conservation law with viscosity, and the suggestion
is made to borrow schemes from the numerical solution of gas dynamics to solve
the resulting equation of motion. There is a close relationship between this
motion and the idea of viscosity solutions for Hamilton-Jacobi equations; we
refer the interested reader to [11] for more about this relationship.

The above discussion is limited to curves which remain graphs. The level
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set method, introduced by Osher and Sethian [20], takes the perspective of em-
bedding the front in one higher dimension. In addition, that work developed a
particular set of multi-dimensional schemes to approximate the relevant gradi-
ents; details on these schemes may be found in [20].

4 Approximation Schemes

4.1 Stationary Formulation

For the boundary value formulation, we wish to solve

|∇u(x, y, z)| = f(x, y, z). (4.1)

Using the multi-dimensional approximations from [20] we have

|∇u| ≈ (max(D−x
ijku, 0)2 + min(D+x

ijkT, 0)2

+max(D−y
ijku, 0)2 + min(D+y

ijkT, 0)2

+max(D−z
ijku, 0)2 + min(D+z

ijkT, 0)2)1/2

= fijk. (4.2)

The forward and backwards operators D−y, D+y , D−z , and D+z in the other
coordinate directions are similar to the one defined earlier for the x direction.

A slightly different upwind scheme, given in [21], which will turn out to be
more convenient, is given by





max(D−x
ijku,−D+x

ijku, 0)2+

max(D−y
ijku,−D+y

ijku, 0)2+

max(D−z
ijku,−D+z

ijku, 0)2





1/2

= fijk, (4.3)

where we use the same forward and backward operators D− and D+ and fijk is
the slowness at the gridpoint ijk.

4.2 Level Set Initial Value Formulation

For the Initial Value Formulation, an entropy-satisfying viscosity scheme for
initial value formulation was introduced in [20], leading to the numerical method
known as the level set method, namely

φn+1
ijk = φn

ijk − ∆t[max(Fijk, 0)∇+ + min(Fijk, 0)∇−], (4.4)

where

∇+ =





max(D−x
ijk, 0)2 + min(D+x

ijk, 0)2+

max(D−y
ijk, 0)2 + min(D+y

ijk, 0)2+

max(D−z
ijk, 0)2 + min(D+z

ijk, 0)2





1/2

∇− =





max(D+x
ijk, 0)2 + min(D−x

ijk, 0)2+

max(D+y
ijk, 0)2 + min(D−y

ijk, 0)2+

max(D+z
ijk, 0)2 + min(D−z

ijk, 0)2





1/2
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Higher order schemes are available, some based on the ENO formulations
introduced in [14]. For details, see [20].

5 Adaptivity:

The schemes given for both the boundary value and initial value formulations
are computationally inefficient. In this section, we make both schemes optimal
through the use of variations on adaptivity and causality.

5.1 The Narrow Band Level Set Scheme

Equation 4.4 is an explicit scheme, and hence can be solved directly. The time
step requirement depends on the nature of the speed function F ; for an F that
depends only on position, the time step behaves like ∆t

∆xF ≤ 1. In the case
when the speed function F depends on curvature terms (for example, F = −κ).
the equation has a parabolic component, and hence the time step requirement
resembles that of a non-linear heat equation; the time step depends roughly on
∆y
∆x2 .

In the level set formulation, both the level set function and the speed are em-
bedded into a higher dimension. This then implies computational labor through
the entire grid, which is inefficient. A rough operation count of this technique
assumes N grid points in each space dimension of a three-dimensional problem.
For a simple problem of straightforward propagation with speed F = 1; assum-
ing that it takes roughly N time steps for the front to propagate through the
domain (here, the CFL condition is taken almost equal to unity), this produces
an O(N4) method.

Considerable computational speedup in the level set method comes from the
use of the “Narrow Band Level Set Method”, introduced by Adalsteinsson and
Sethian in [1]. It is clear that performing calculations over the entire computa-
tional domain is wasteful. Instead, an efficient modification is to perform work
only in a neighborhood of the zero level set; this is known as the Narrow Band
Approach. This drops the operation count in three dimensions drops to O(kN3),
where k is the number of cells in the narrow band, a significant cost reduction;
it also means that extension velocities need only be done to points lying in the
narrow band, as opposed to all points in the computational domain.

Use of narrow bands leads to level set front advancement algorithms that are
computationally equivalent in terms of complexity to traditional marker methods
and cell techniques, while maintaining the advantages of topological merger, ac-
curacy, and easy extension to multi-dimensions. Typically, the speed associated
with the narrow band method is about ten times faster on a 160× 160 grid than
the full matrix method. Such a speed-up is substantial; in three-dimensional
simulations, it can make the difference between computationally intensive prob-
lems and those that can be done with relative ease. Details on the accuracy,
typical tube sizes, and number of times a tube must be rebuilt may be found in
Adalsteinsson and Sethian [1].
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5.2 The Fast Marching Method

One approach to solving the finite difference scheme given for the stationary
formulation (Eqn. 4.3), given by Rouy in [21], is through iteration, which leads
to an O(N4) algorithm in three dimensions, where N is the number of points in
each direction. Instead, we take a different approach.

The Fast Marching method [25] is connected to Huyghen’s principle, which
is a construction involving expanding wavefronts, and Dijkstra’s method, which
is depth-first search algorithm on network paths. The viscosity solution to the
Eikonal equation |∇u(x)| = F (x) can be interpreted through Huyghen’s prin-
ciple in the following way; circular wavefronts are drawn at each point on the
boundary, with the radius proportional to F (x). The envelope of these wave-
fronts is then used to contruct a new set of points, and the process is repeated;
in the limit the Eikonal solution is obtained. The Fast Marching Method mimics
this construction; a computational grid is used to carry the solution u, and an
upwind, viscosity-satisfying finite difference scheme is used to approximate this
wavefront.

The order in which the grid values produced through these finite difference
approximations are obtained is reminiscent of Dijkstra’s method, which is a
depth-search technique for computing shortest paths on a network. In that tech-
nique, the algorithm keeps track of the speed of propagation along the network
links, and fans out along the network links to touch all the grid points. The
Fast Marching Method exploits this idea in the context of a continuous finite
difference approximation to the underlying partial differential equation, rather
than the discrete network links.

The Fast Marching Method evolved in part from examining the limit of the
narrow band method as the band was reduced to one grid cell. Fast Marching
Methods, by taking the perspective of the large body of work on higher order
upwind, finite difference approximants from hyperbolic conservation laws, allow
for higher order versions on both structured and unstructured meshes. Sev-
eral other Dijkstra-like algorithms for solving the Eikonal equation are available.
One which is not an upwind finite difference scheme but also respects the vis-
cosity solutions of the underlying partial differential equation was given earlier
by Tsitsiklis in [34]. He obtains a control-theoretic discretization of the Eikonal
equation, which then leads to a causality relationship based on the optimality
criterion rather than on the upwind finite difference operators employed in Fast
Marching Methods. In the particular special case of a first order upwind finite
difference for the Fast Marching Method on a square mesh, the resulting update
equation at each grid point can be seen to be the same quadratic equation ob-
tained through Tsitsikilis’s control theoretic approach. We refer the reader to
Tsitsiklis [34] for further details on his approach.

In more detail, the Fast Marching Method is as follows. Suppose at some
time the Eikonal solution is known at a set of points (denoted Accepted points).
For every not-yet accepted grid point such that it has an accepted neighbor, we
compute a trial solution to the above quadratic Eqn. 4.3, using the given values
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for u at accepted points, and values of ∞ at all other points. We now observe
that the smallest of these trial solutions must be correct, since it depends only on
accepted values which are themselves smaller. This “ causality” relationship can
be exploited to efficiently and systematically compute the solution as follows:

First, tag points in the initial conditions as Accepted. Then tag as Considered
all points one grid point away and compute values at those points by solving Eqn.
4.3. Finally, tag as Far all other grid points. Then the loop is :

(1) Begin Loop: Let Trial be the Considered point with smallest value of u.

(2) Tag as Considered all neighbors of Trial that are not Accepted. If the
neighbor is in Far, remove it from that set and add it to the set Considered.

(3) Recompute the values of u at all Considered neighbors of Trial by solving
the piecewise quadratic equation according to Eqn. 4.3.

(4) Add point Trial to Accepted; remove from Considered

(5) Return to top until the Considered set is empty.

This is the Fast Marching Method given in [25]. Helmsen compares a similar
algorithm with a volume-of-fluid approach for photolithography simulations in
[15]; Malladi and Sethian apply the Fast Marching Method to image segmenta-
tion in [19].

The key to an efficient implementation of the above technique lies in a fast
way of locating the grid point in the narrow band with the smallest value for
u. An efficient scheme for doing so, discussed in detail in [28], can be devised
using a min-heap structure, similar to what is done in Dijkstra’s method. Given
N elements in the heap, this allows us to change any element in the heap and
re-order the heap in O(logN) steps. Thus, the computational efficiency of the
total Fast Marching Method for the mesh with N points is O(N log N) : N steps
to touch each mesh point, where each step is O(log N) since the heap has to be
re-ordered each time the values are changed.

5.3 Flow Chart of Methods

These techniques have been used to tackle a wide collection of front propaga-
tion problems, including problems in geometry and singularity formation [8; 9],
robotic navigation and path planning, computing first arrivals in seismic travel
times [30], computing geodesics [16], the construction of extension velocity fields
[3], two-phase flow [33; 6], etching and deposition in semiconductor manufac-
turing [2], surface diffusion [10], variational level set methods for multiple inter-
face in [35], crystal growth and dendritic solidification [31; 7], applications to
photolithography development [27; 15], and application to medical imaging and
image segmentation [5; 17].

In Figure 3, we give a perspective on how some of these topics are related.
There are many other contributors to the evolution of these ideas; the chart is
meant to give perspective on how the theory, algorithms, and applications have
evolved. The text and bibliography of [28] gives a more complete sense of the
literature and the range of work underway.
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Fig. 3. Algorithms and Applications for Interface Propagation
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6 Applications

Finally, we present a few results. To begin, these interface techniques can be
used to segment images; the central idea is grow a seed inside a region with a
propagation velocity which depends on the image gradient and hence stops when
the boundary is reached. This strategy was proposed by Malladi, Sethian, and
Vemuri in [17] and Caselles, Catte, Coll, and Dibos in (see [5]). Malladi makes
his approach fast by coupling it to Narrow Band Methods in [18], extends it to
three dimensions, couples his approach to Fast Marching Methods in [19]. Figure
4 shows a 3D reconstruction of the liver (the z axis from head to toe is not to
scale). Figure 4a shows a 2D slice and the 2D contour; Figure 4b shows the full
3D reconstructed shape displayed embedded in the same 2D slice.

Fig. 4. Reconstruction of three-dimensional liver.

In [16], Kimmel and Sethian give a technique for computing geodesics on
manifolds using the Fast Marching Method. A second order version of the Fast
Marching Method on triangulated domains to compute shape offsets on machine
parts is given by Sethian and Vladimirsky in [32]. Figure 5 shows offsets equidis-
tant from the bounding box on a manifold which represents a complex machine
part; the triangulation used is obtained by mapping a regular triangular mesh in
the xy plane onto the surface; this creates a large number of obtuse and non-nice
triangles, including some with angles bigger than 160o.
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Fig. 5. Obtuse triangulated Fast Marching Method

Further information may be found at http::/math.berkeley.edu/∼ sethian/level set.html.
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